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F. Rodŕiguez Villegas and J. F. Voloch

November 1997

0. In the course of another investigation we came across a sequence of poly-

nomials Pd ∈ Z[x, y], such that Pd is absolutely irreducible, of degree d, has low

height and at least d2 + 2d + 3 integral solutions to Pd(x, y) = 0. We know of

no other family of polynomials of increasing degree with as many integral (or even

rational) solutions in terms of their degree, except of course those with infinitely

many rational points.

It is a consequence of Siegel’s theorem [Si] that these polynomials have finitely

many integral zeros, since their homogeneous part of highest degree has distinct

roots. Siegel [Si, §7] speculated whether there is a bound for the number of integral

zeros of a polynomial as a function of the number of non-zero coefficients, provided

it has only finitely many zeros. This is still very much of an open problem but

Caporaso et al. [CHM] have shown that a similar statement for rational points on

curves (with the genus replacing the number of coefficients) would follow from a

conjecture of Lang. Abramovich [ℵ] proved an analogue of the result of [CHM] for

integral points on elliptic curves. See also [ℵV].

A polynomial in two variables and degree d has N =
(
d+2
2

)
coefficients, so, given

points (x1, y1), . . . , (xN−1, yN−1), one can find a non-zero polynomial that vanishes

on these points. If these points have integer coordinates of absolute value at mostH,

then such a polynomial can be chosen with integer coefficients of absolute value at

most (NHd)N , by a straightforward application of Siegel’s lemma. We can choose

H = N/2, for instance, and it will turn out that our polynomials Pd have slightly

lower height and twice as many points as this construction gives. Moreover, this

construction does not ensure that the polynomial obtained is absolutely irreducible.

A slightly better construction, suggested by Ed Schaffer is to take a polynomial of

the shape (x− x1) · · · (x− xd) + α(y − y1) · · · (y − yd), which will vanish on the d2

points (xi, yj), i, j = 1, . . . , d, is irreducible for most chioces of α and has height at

most |α|Hd. Our polynomials Pd have larger height but more points.

We have checked that Pd = 0 defines a smooth curve for d = 1, 2, · · · , 25. We

do not know whether this is true in general, though it is very likely. Also, we can
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prove the existence of certain points on the curve, but numerical experimentation

shows that they may contain a few more. We present the data in no 7.

1. Let Tk ∈ Z[x, y] be defined recursively by

(T0)
T0 = 1, T1 = y,

Tk+1 = yTk + k(x+ k − 1)Tk−1, k ∈ N.

The first few polynomials are

T2 = x+ y2

T3 = 3yx+ y3 + 2y

T4 = 3x2 + 6y2x+ 6x+ y4 + 8y2

T5 = 15yx2 + 10y3x+ 50yx+ y5 + 20y3 + 24y

T6 = 15x3 + 45y2x2 + 90x2 + 15y4x+ 210y2x+ 120x+ y6 + 40y4 + 184y2.

From the recursion it follows easily that

(T1) Tk(x,−y) = (−1)kTk(x, y), k ∈ N.

Hence for k = 2d with d ∈ N, Tk(x, y) = Pd(−x, y2) with Pd ∈ Z[x, y].

We will use the following notation: given a polynomial

H =
∑
m,n

am,nx
myn ∈ C[x, y],

we let

||H||1 =
∑
m,n

|am,n|.

We will prove the following.

Theorem. Let d ∈ N and Pd be the polynomial defined above. Then

a) Pd has degree d;

b) Pd is absolutely irreducible;

c) the coefficients of Pd(−x, y) are relatively prime non-negative integers;

d) ||Pd||1 = (2d)! ; and

e) Pd vanishes at the d2 + 2d+ 3 integral points:

I : (n, 0), (n, 22), (n, 42), · · · , (n, n2), 0 ≤ n ≤ 2d− 1, n even

II : (n, 12), (n, 32), (n, 52), · · · , (n, n2), 0 ≤ n ≤ 2d− 1, n odd

III : (4d, 22), (4d, 62), (4d, 102), · · · , (4d, 4(2d− 1)2)

IV : (8d+ 1, 32), (2d− 4,−6d+ 4), (2d− 3,−2d+ 1)

Note that Pd, Pd+1 intersect in exactly d(d+ 1) of the above points.
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2. Fix x, y and consider the generating function

F (λ) =

∞∑
k=0

Tk
(x)k

λk

k!
,

where

(z)0 = 1, (z)k = z(z + 1) · · · (z + k − 1), k ∈ N.

It is not hard to see that the recursion defining Tk implies that F satisfies the

differential equation

λ
d2F

dλ2
+ x

dF

dλ
− (λ+ y)F = 0.

In order to get a formula for Tk we consider G(λ) = eλF (λ). A calculation shows

that G satisfies the differential equation

λ
d2G

dλ2
+ (x− 2λ)

dG

dλ
− (x+ y)G = 0.

It follows that

G(λ) = Φ(1
2 (x+ y), x, 2λ),

where Φ is the confluent hypergeometric function (see for example, [Le §9.9]).

If we write

G(λ) =

∞∑
k=0

Sk
(x)k

λk

k!
,

the differential equation implies that

Sk+1 = (y + x+ 2k)Sk, k ∈ N.

Therefore,

Sk = (y + x)(y + x+ 2) · · · (y + x+ 2k − 2),

from which we obtain

(T2) Tk =
k∑
j=0

(−1)k−j
(
k

j

)
(x+ y)(x+ y + 2) · · · (x+ y + 2j − 2)

(x+ j)(x+ j + 1) · · · (x+ k − 1).

We now may see why Pd vanishes at the points I and II of the theorem. The

principle is based on the following self-proving lemma; we leave the details to the

reader.

Lemma. Let x1, · · · , xn and y1, · · · , yn be two sets of n elements of a field K. Let

φ0 = 1, φν(x) = (x− x1)(x− x2) · · · (x− xν),∈ K[x] 1 ≤ ν ≤ n
ψ0 = 1, ψν(y) = (y − y1)(y − y2) · · · (y − yν),∈ K[y] 1 ≤ ν ≤ n,
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with x, y indeterminates. Then any linear combination

n∑
ν=0

αν φν(x) ψn−ν(y) ∈ K[x, y], αν ∈ K,

has degree at most n and vanishes at the points (xµ, yν) for all 1 ≤ µ ≤ ν ≤ n.

3. It is clear from the recursion T0 that Tk has degree k, that the coefficients

of Tk are non-negative integers and that the coefficient of yk is 1. This proves parts

a) and c) of the theorem. To prove part d), let ck = Tk(1, 1). Note that ck = ||Tk||1
since the coefficients of Tk are non-negative. From the recursion

c0 = 1, c1 = 1,

ck+1 = ck + k2ck−1, k ∈ N.

It follows easily that ck = k! hence

(T3) ||Tk||1 = k! , k ∈ N.

Let us also remark that T2 implies the following

(T4)
Tk(m,n)

k!
∈ Z, for all m,n ∈ Z.

4. Let T̃k = zkTk(x/z2, y/z). Then T̃k is isobaric of weight k, if we assign x

weight 2, y weight 1, and z weight 1. These polynomials satisfy the recursion

T̃0 = 1, T̃1 = y,

T̃k+1 = yT̃k + k(x+ z2(x− 1))T̃k−1, k ∈ N.

Set now Rk = T̃k(1, t, 0), the leading terms of T̃k at infinity. Then

R0 = 1, R1 = t,

Rk+1 = tRk − kRk−1, k ∈ N.

It follows that Rk(t) = 2−k/2Hk(t/
√

2), where Hk is the classical Hermite polyno-

mial (see for example [Le §4.9]). More precisely,

(T5) Rk(t) = zkT (1/z2, t/z)
∣∣
z=0

= k!

[k/2]∑
j=0

(−1)j

j! (k − 2j)! 2j
tk−2j

It is interesting that the discriminant can be computed explicitly

disc(Rk) =
k∏
j=1

jj ,

but we only need to know that it is non-zero.
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Lemma. Let K be a perfect field and K an algebraic closure of K. Let P ∈
K[x, y, z] be a homogeneous polynomial of degree d. Suppose that P (t, 1, 0) ∈ K[t]

also has degree d, is irreducible over K and P (x, y, z) = 0 has more than d2/4

projective solutions over K. Then P is irreducible over K.

Proof. Since P (t, 1, 0) has degree d and is irreducible overK it follows that P (x, y, z)

is also irreducible over K. Suppose P is not absolutely irreducible. Then, P =∏
σ Q

σ, where Q is an irreducible factor of P over K of degree e ≤ d/2 and σ

runs through the embeddings of the field of definition of Q into K. Any K-rational

point of P = 0 is a rational point of Qσ = 0 for every σ. Since the Qσ’s are all

distinct, Bezout’s theorem implies that the number of K-rational points of P = 0

is bounded by e2 ≤ d2/4, a contradiction. �

According to Schur [Sc] the polynomials Rk for k even and Rk/t for k odd are

irreducible over Q. Hence, the above lemma applies and we deduce part b) of the

theorem.

5. For p > 2 a prime number let us consider the recursion defining Tk modulo

p. It turns out to have a very simple structure. First, from T2 it follows that

Tp ≡ yp − y mod p, p > 2, p prime.

Also,
Tp+k ≡ (yp − y)Tk mod p

Tp+k+1 ≡ yTp+k + k(x+ k − 1)Tp+k−1 mod p

and we conclude that

(T6) Tk ≡ Ta0(yp − y)a1(yp
2

− yp)a2 · · · mod p, k = a0 + a1p+ a2p
2 · · · ∈ N.

6. We now prove that Pd vanishes on the points III of the theorem. First we

need the following. For each k ∈ N consider the polynomials

Uk(z, w) = Tk(x, y), z = 1
2 (x− y), w = x− k + 1.

Let λ be an indeterminate and z, w two fixed integers. Then using T2 we obtain

(T7)

∞∑
k=0

Uk(z, w)
λk

k!
=

(1 + 2λ)z

(1 + λ)w
, z, w ∈ Z.

From this identity it is not hard to see that

(T8)
Uk(z, w)

k!
=
w−1∑
j=0

(−2)j
(
z

j

)(
k + w − j − 1

w − j − 1

)
, 0 ≤ z ≤ w.
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Note that the right hand side is a polynomial of degree w − 1 in k. Without the

hypothesis z ≤ w T8 holds for all k sufficiently large. In particular, given integers

z, w there is only finitely many polynomials Uk that vanish at the point (z, w), for

w ≥ 0.

It follows that Pd vanishes at the points III if

(*)
m∑
j=0

(−2)j
(
m

k

)(
2k − j
k

)
= 0, 0 ≤ m ≤ k, m odd,

where k = 2d.

To prove this identity we start with(
a+ b

k

)
=

a∑
r=0

(
a

r

)(
b

k − r

)
, a, b ∈ Z≥0,

which follows from the binomial theorem by comparing the k-th coefficients on both

sides of

(1 + λ)a+b = (1 + λ)a(1 + λ)b.

Applying this to a = m− j, b = 2k −m we obtain

(
2k − j
k

)
=

m−j∑
r=0

(
m− j
r

)(
2k −m
k − r

)

and hence (*) is equivalent to

m∑
j=0

m−j∑
r=0

(−2)j
(
m

j

)(
m− j
r

)(
2k −m
k − r

)
= 0.

This in turn follows from the stronger fact

m−r∑
j=0

(−2)j
(
m

j

)(
m− j
r

)
= (−1)m

r∑
j=0

(−2)j
(
m

j

)(
m− j
m− r

)
,

since
(
2k−m
k−r

)
=
(

2k−m
k−m+r

)
, obtained by expanding

(λ− 1)m = (λ+ 1− 2)m

and comparing the coefficients of λr and λm−r respectively.

The fact that the points listed in IV are in Pd = 0 will be left to the reader.

7. We now present the experimental data. We first discuss the cases d = 3, 4 in

more detail, where the equations Pd(x, y) = 0 determine smooth projective curves

of genus 1, 3 respectively.
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For d = 3 we have

P3 = −15x3 + 45yx2 + 90x2 − 15y2x− 210yx− 120x+ y3 + 40y2 + 184y.

The equation P3 = 0 defines an elliptic curve and a Weierstrass equation for it

(courtesy of F. Hajir) is given by:

y2 = x3 + 230940/23 ∗ x2 + 9286041600/529 ∗ x+ 90438421708800/12167.

A computer search yielded the following 25 integral solutions (x, y) to P3(x, y) =

0.

(0, 0) (1, 1) (2,−14) (2, 0) (2, 4) (3,−5) (3, 1) (3, 9)
(4, 0) (4, 4) (4, 16) (5, 1) (5, 9) (5, 25) (9, 25) (12, 4)

(12, 36) (12, 100) (16, 144) (25, 9) (67, 25) (345, 1225) (−1,−9) (−4,−20)
(−14,−56)

For d = 4

P4 = 105x4 − 420x3y − 1260x3 + 210x2y2 + 4200x2y + 4620x2

− 28xy3 − 1540xy2 − 11872xy − 5040x+ y4 + 112y3 + 2464y2 + 8448y

A computer search yielded the following 31 integral solutions (x, y) to P4(x, y) = 0.

(0, 0) (2, 0) (4, 0) (6, 0) (1, 1) (3, 1) (5, 1) (7, 1)
(3,−3) (2, 4) (4, 4) (6, 4) (16, 4) (5,−7) (3, 9) (5, 9)

(7, 9) (33, 9) (4, 16) (6, 16) (4,−20) (0,−24) (5, 25) (7, 25)
(3,−35) (6, 36) (16, 36) (7, 49) (16, 10) (16, 196) (−11,−35)

For higher d we have the following data, where we only present those points not

given by the Theorem. We searched exhaustively for points with |x| ≤ 1000. We

haven’t found any patterns in the extra points; perhaps a more attentive reader

will.

d new points total number of points
5 (16, 144), (17, 81), (25, 441), (99, 589) 42
6 (1,−11), (17, 121), (34, 784) 54
7 (16, 16), (17, 49), (25, 169), (36, 676), (98, 16) 71
8 none 85
9 (9,−35), (33, 289) 104

10 none 123
11 (34, 784), (36, 676), (41, 441), (57, 2601), (67, 3249) 160
12 none 171
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To verify that Pd = 0 defines a smooth curve is enough to check that it has no

affine singularities as the Hermite polynomial is separable. For this we computed,

using the recursion modulo p, the quantity

Resy(Resx(Pd,
∂Pd
∂x

),Resx(Pd,
∂Pd
∂y

)) mod p,

for various primes p, where Rest stands for resultant in the variable t, and confirmed

it is not zero for d = 2, 3, . . . , 25.
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