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Abstract. We prove that a form of finite Galois descent obstruc-
tion is the only obstruction to the existence of integral points on
integral models of twists of modular curves over function fields.

1. Introduction

The purpose of this paper is to study finite descent obstructions for
integral points on curves over function fields. In the special case of
modular curves, we use a similar approach to the work of D. Helm
and the author [5], where we obtained results over Q from Serre’s
conjecture. In this paper, we replace the use of Serre’s conjecture with
Deligne’s [2] approach to modularity of elliptic curves over function
fields. We prove that the existence of an adelic point surviving finite
descent obstructions given by covers coming from modular curves of
higher levels (and satisfying an additional non-integrality condition at
some place, in certain situations to be made precise below) implies the
existence of a global point. We also show that this additional condition
cannot be removed and, without it there are counterexamples.

Let K be a global field and X, Y be smooth K-varieties. Let π : Y →
X be an etale map of varieties such that π : Y → X is Galois (where
here and elsewhere, the bar denotes base change to the algebraic closure
K̄ of K). As usual, a twist of π is a map π′ : Y ′ → X, defined over K,

such that π′ : Y
′ → X is isomorphic over K̄ to π : Y → X as a cover.

The set of isomorphism classes of twists of π will be denoted Tw(π).
Let S be a finite set of places of K and OS the ring of S-integers of
K. Let X ,Y and so on denote integral models of X, Y over SpecOS.
Standard descent theory ([8]) gives the following:

X (OS) = ∪π′∈Tw(π)π
′(Y ′(OS)).
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Indeed, for P ∈ X (OS), π−1(P ) is a torsor of the Galois group of π
which determines a π′. We can even restrict the union to a subset of
Tw(π), described by local conditions, which is finite if the degree of
π is prime to the characteristic of K. This is a consequence of the
Chevalley-Weil theorem.

Let (Pv) ∈
∏

v 6∈S X (Ov) ×
∏

v∈S X(Kv). If there exists π′ ∈ Tw(π)

such that the twisted torsor Y ′ contains a point (Qv) ∈
∏

v 6∈S Y ′(Ov)×∏
v∈S Y

′(Kv) that maps to (Pv), we say that (Pv) is unobstructed by the
cover. This differs slightly from the convention in [5] by the inclusion of
the places in S. There, the conditions at S were irrelevant, but will be
relevant here. Global points are thus unobstructed. A natural question
is to identify those adelic points that are unobstructed by all Galois
covers which we denote by X f−cov following [9], who conjectured that
if X is a projective curve over a number field, then X f−cov = X(K)
(note that integrality conditions don’t matter in the projective case).
A stronger conjecture in the number field case is that abelian covers is
enough. This stronger conjecture, in the number field case, is equivalent
to whether the Brauer-Manin obstruction is the only obstruction to
the existence of rational points, see [8, 7]. Poonen and the author [6]
proved that the Brauer-Manin obstruction is the only obstruction to
the existence of rational points in the function field case under fairly
general additional hypotheses and some other cases were proved in [10].
However, in the function field case, it is not true that the Brauer-Manin
obstruction is equivalent to the finite abelian descent obstruction, since
the former allows for some flat inseparable covers and, indeed, the
proofs in [6, 10] make extensive use of covers coming from inseparable
isogenies in the curve’s Jacobian. Thus, the results of this paper and
of [6, 10] are related but neither supercedes the other. We note also
that, in work in preparation, the author and D. Harari prove that the
finite abelian descent obstruction is enough for affine varieties over
function fields. However, this last paper uses Artin-Schreier covers and
those typically do not satisfy finiteness of the relevant subset of Tw(π)
alluded to above. In the present paper, our covers are typically of
degree prime to the characteristic, so this finiteness holds for them.

2. Modular curves

Let N be a positive integer and YN/Q be the affine curve parametriz-
ing triples (E,P,C) where E is an elliptic curve, P is a point on E of
exact order N and C is a cyclic subgroup of E of order N such that
P and C generate E[N ]. YN has a smooth model over Z[1/N ]. Let X
be a twist of some Ym. As in [5] we obtain etale Galois covers of X
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by considering modular curves with additional level structure. In [5] it
was assumed that m > 3 whereas in Theorem 1 below we only assume
m > 1. What is required is that the natural maps YN → Ym for m|N
be ramified only at the cusps and, for that, m > 1 suffices. Again, as in
[5] we conclude that a point of X f−cov consists of elliptic curves Ev/Kv

with good reduction for v /∈ S for which, for all primes `, there exist
Galois representations ρ` : GK → GL2(Z`), such that ρ` restricted to a
decomposition group at v corresponds to the action of GKv on the Tate
module T`Ev. In particular, these representations are all unramified
outside S and their determinant is the cyclotomic character.

Here is our first result.

Theorem 1. Assume that K is a global function field. Let X be the
S-integral model of a twist of Ym,m > 1 corresponding to a represen-
tation ρ̄ : GK → GL2(Z/m). We have that, if X f−cov has a point with
multiplicative reduction at some place in S (when viewed as an elliptic
curve) then X (OS) does too.

Remark 2.1. The hypothesis on the existence of a place with multiplica-
tive reduction in the theorem is automatically satisfied if ρ̄ is ramified
and semistable at some place of K.

Proof. The existence of a point in X f−cov yields (see [5]) a Galois rep-
resentation ρ : GK → GL2(Z`) for some prime ` 6= p extending the
representation obtained from ρ̄ to GL2(Z/`

d), where `d||m. We will
follow [2] to obtain an elliptic curve from ρ. The representation ρ and
its twists by characters of GK give rise to L-functions which are ratio-
nal functions in q−s and satisfy functional equations ([2], section 9.1).
This implies that the L-function associated to ρ comes from a Drin-
fel’d modular form, which is cuspidal if this L-function is a polynomial
in q−s. Deligne gives a necessary and sufficient condition for that to
happen which we will recall below. When this condition is fulfilled, the
modular form is a cusp form and gives rise to an elliptic curve occur-
ring as a factor of the Jacobian of a Drinfel’d modular curve and whose
`-adic representation is ρ. This elliptic curve provides us with a point
in X (OS), because its Galois representation is ρ which is unramified
outside of S. Moreover, since its L-function is a polynomial, it has
multiplicative reduction at some place, which then must be in S.

Let G0 be the subgroup of GK which acts trivially on constants.
Denote by V the 2-dimensional Q`-vector space with GK-action given
by ρ. Denote by ρ0 the restriction of ρ to G0, but we abuse notation
and still denote by V the space where G0 is acting. Deligne’s conditions
for the L-function to be polynomial are that the invariants V G0 and
coinvariants VG0 both vanish. We proceed to verify these conditions
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under the assumptions of the theorem. The verification is the same for
ρ or its twists, so we do it just for ρ.

First, since ρ is everywhere locally the action of Galois on the Tate
module of an elliptic curve, its determinant is the cyclotomic character.
Therefore, the determinant of ρ0 is 1. At a place v of multiplicative
reduction (which is automatically split multiplicative when we extend
scalars to the algebraic closure of the constant field), the curve Ev is
a Tate curve Gm/q

Z and the local Galois action on `n-torsion has a
generator σ : ζ`n 7→ ζ`n , q

1/`n 7→ ζ`nq
1/`n . In particular, VG0 6= V . If

VG0 is one-dimensional, then there is a one dimensional subspace W of
V , which is a G0 submodule and VG0 = V/W . Now, VG0 is a trivial
G0-module, so the action of G0 on W is through det ρ0 = 1, i.e., W
is a trivial G0-module, hence W = V G0 . We now proceed to derive a
contradiction from the assumption that V G0 6= 0.

This time, V G0 is a trivial G0-module, so the action of G0 on V/V G0

is through det ρ0 = 1, i.e., V/V G0 is also a trivial G0-module. So ρ0
is given by upper triangular matrices with 1 in the diagonal, i.e., its
image is isomorphic to Z`. Let F be the subfield of the separable
closure of K fixed by ker ρ and L the subfield of F fixed by G0. Then
L/K is an extension by constants and F/L is a Z`-extension, given by

adjoining α
1/`n

n , (αn)n ∈ lim←−L
∗/(L∗)`

n
. Since L/K is Galois, the Z`-line

generated by (αn)n has to be GK-invariant. It follows that ρ can be
put in upper-triangular form with the cyclotomic character χ in the
diagonal (since it gives the action of Galois in L/K). Since, again, the
determinant of ρ is χ, the other diagonal entry is 1. Thus, the trace of
ρ applied to Frobenius at a place v of K is 1 +Nv. On the other hand,
since ρ locally comes from an elliptic curve, this trace is an integer of
absolute value at most 2(Nv)1/2. Taking Nv sufficiently large gives a
contradiction.

�

3. Remarks

Let K be a number field or a function field. One might consider
extending the approach of [5] and the present paper using (subvarieties
of) moduli spaces of abelian varieties of arbitrary dimension. This leads
to the following. Consider a Galois representation ρ : GK → GLn(Z`),
such that ρ restricted to a decomposition group at v corresponds to
the action of GKv on the Tate module T`Ev for abelian varieties Ev/Kv

of dimension n, with good reduction for v /∈ S. In particular, this
representation is unramified outside S. In the number field case, the
Fontaine-Mazur conjecture [3] predicts that this representation occurs
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as a factor of the Galois representation of GK on H i(E,Q`) for some
algebraic variety A/K and some i. If that is indeed the case, then
weight considerations and the fact the representation locally comes
from an abelian variety imply that i = 1. We may thus replace A
by its Albanese variety and assume, without loss of generality, that
A itself is an abelian variety. The representation ρ corresponds to a
Galois invariant factor V of T`A such that for every place v of K, there
is an abelian variety Ev/Kv such that the action of the absolute Galois
group of Kv on V gives a representation isomorphic to T`Ev. Does it
follow that A has a factor E with T`E isomorphic to V ? If that was
the case, then we could extend much of our method. Unfortunately the
answer to this question is no. The following counterexample is due to
Y. Zarhin.

Let A/K be a simple abelian surface (where K is either a number
field or a function field), whose ring of (absolute) endomorphisms is a
maximal order in an indefinite quaternion algebra D over the rationals.
These are well-known to exist. For explicit examples, see e.g., [1].
Assume that K is large enough so that all endomorphisms of A are
defined over K, A has semistable reduction everywhere and, if A has
good reduction at v then all the endomorphisms of its reduction Ãv
are defined over the residue field. It is known that if A(K) contains
all points of order 12 on A then K is large enough in this sense. Note
that Q is never large enough.

Then A has good reduction at every v and this reduction is isogenous
to the square of an elliptic curve Ẽv. Now suppose that D splits at
`. Then the D ⊗ Q`-module V`(A) splits into a direct sum of two
copies of a two-dimensional Galois invariant subspace V . If the residual
characteristic of v is not `, then one may identify the Gal(Kv)-module
V with V`(Ev) where the elliptic curve Ev/Kv is a lifting of Ẽv to Kv.

This example also shows that without the non-integrality hypothesis
in Theorem 1 the proof does not work. Indeed, the adelic point on
a modular curve whose component at v is Ev corresponds to a global
Galois representation and is thus unobstructed in the modular tower.
But this representation does not come from a global elliptic curve, since
this would force the abelian surface A to be non-simple, contrary to
the assumptions.
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