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1. Introduction

Let A be an abelian variety over a function field K in one variable over a finite field k.

Let v be a place of K. In this paper we will study the topology induced on A(K) by the

v-adic topology on A(Kv). In many cases this will lead to bounds for the v-adic distance

between points in A(K) in terms of their height and to abelian analogues of Leopoldt’s

conjecture. This paper also studies the question of integral points on affine open subsets

of Abelian varieties in positive characteristics. In the classical case of number fields, Lang

has conjectured and Faltings [F] proved that for A be an abelian variety over the number

field K, if V is an affine open subset of A and S is a finite set of places of K, then the

set of S-integral points of V is finite. Faltings has also a non-effective bound. Buium and

the author [BV] obtained a similar result for function fields of characteristic zero, but in

positive characteristic the problem has not been studied, except in dimension 1, i.e., for

elliptic curves. In this case we have obtained, in [V], results on this problem. In this paper

we will obtain a result under restrictive, but quite general, hypotheses for abelian varieties

of arbitrary dimension and deduce the finiteness of integral points on affine subsets under

these hypotheses. Our strategy will be similar to [BV]. The question of integral points is

related to estimates for the v-adic distance from rational points to a divisor and this in

turn will be estimated by the distance to a subvariety of smaller dimension. This inductive

procedure, in the present situation, is provided by a general result of Hrushovski ([H],

see theorem 1 below) and reduces the problem to our basic question of estimating v-adic

distance between points.

We do not solve our problem in full generality. Our results are restricted to the cases

when either A has ”sufficiently general moduli”(in a sense that will be precised below) or

is an elliptic curve defined over a finite field. The intermediate cases are still open.
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2. Local results

Let A/K be an abelian variety of dimension n. For any closed subscheme X ⊂ A

there is a function λv(X, .) : A(Kv) → [0,∞] which satisfies the following property: for

any affine open set U ⊂ A and any system of generators g1, . . . , gm ∈ O(U) of the ideal

defining X ∩ U in U , we may write λv(X,P ) = min{v(g1(P )), . . . , v(gm(P ))}+ b(P ) with

b bounded on any bounded subset of U(Kv). The function λv(X, .) is uniquely determined

by the above property up to the addition of a bounded function and is called the local

height function associated to X. This notion is developed in detail in [Si]. In the analogous

situation for number fields, Lang has conjectured [L] that λv(X,P ) � log h(P ) + O(1),

for all P ∈ A(K) \X, where h(P ) is the logarithmic height, and Faltings [F] proved that

λv(X,P ) = o(h(P )). The following result is theorem 6.3 of [H].

Theorem 1 (Hrushovski). Let A and X be as above and assume that the K/k-trace

of A is zero. Then there exists a subvariety Y of X, defined over K̄, which is a finite

union of translates of abelian subvarieties of A, such that λv(X,P )� λv(Y, P ) + 1 for all

P ∈ A(K).

Let A be an abelian variety over a local field of characteristic p with valuation v.

Let A1 be the formal group of A, that is the kernel of reduction modulo v. Then A1 is

naturally a Zp-module, since pnP → O, n → ∞ for P in A1. We will be studying this

Zp-module structure and will begin by lemma 1 below. Let us remark that it is not hard

to check that A1 has infinite Zp-rank. We will not, strictly speaking, need this fact but it
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is helpful to put some of our results in perspective.

Lemma 1. Let A be an ordinary Abelian variety over a local field of characteristic p

with valuation v. There exists a neighbourhood U of O in the v-adic topology, such that

λv(O, pP ) = pλv(O, P ) +O(1) for all P in U .

Proof: Let n = dimA and t1, . . . , tn be local parameters at O , so that λv(O, P ) =

min{v(t1(P )), . . . , v(tn(P ))} and the parameters can be chosen so that ti(pP ) = aiti(P )p+

· · · , i = 1, . . . , n, because A has an ordinary formal group, where the · · · represent a power

series in t1(P ), . . . , tn(P ) of degree greater than p and the ai are non-zero v-adic integers.

The result now follows. Note that the implied constant depends on the valuation of the

ai’s, which in turn depend on the reduction type of A at v, in particular this constant is

zero if A has good, ordinary reduction at v.

3. Global results

Lemma 2. Let A be an abelian variety over a function field K over a finite field of

characteristic p > 0 and v a place of K. Assume that A[p∞] ∩ A(Ks) = Γ is finite, where

Ks is the separable closure of K. Then there is a neighbourhood U of O in the v-adic

topology, such that, if P ∈ A(K) ∩ U then P ∈ pA(K).

Proof: Assume first that Γ = {O}. Let ker[p] be the group subscheme of A which is

the kernel of multiplication by p. For any field extension L/K, there is a coboundary map

in flat cohomology of group-schemes, δL : A(L)/pA(L)→ H1(L, ker[p]) which is injective.

The image of δK is finite, by the Mordell-Weil theorem. Also δKv
is continuous in the v-adic

topology. ([M2], Lemma III.6.5). It follows that there is a v-adic neighbourhood U of O

such that if P ∈ A(K)∩U then δKv (P ) = 0. We will show that, in fact P ∈ pA(K), which

will prove the lemma. From the above there exists Q ∈ A(Kv), such that pQ = P . Let L =

K(Q), then L/K is a finite extension and L ⊂ Kv so, in particular, v is unramified in L and,

a fortiori, L/K is separable. Let M/K be the Galois closure of L/K. Then P ∈ ker δM .

Hence δK(P ) is in the kernel of the restriction map H1(K, ker[p])→ H1(M, ker[p]). But, by

the Hochschild-Serre spectral sequence ([M1], Remark II.2.21 (a)), the kernel of restriction
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is the Galois cohomology group H1(Gal(M/K), ker[p](M)). However, ker[p](M) = O by

hypothesis, since M/K is separable. Hence δK(P ) = 0, which shows that Q ∈ A(K). Note

that since Γ = {O}, Q is uniquely determined by P . We claim that, as P → O v-adically,

we have Q→ O also. Indeed, if this were not so, there would be a sequence Pn → O with

Pn = pQn and Qn bounded away from O. Since A(Kv) is compact, after passing to a

subsequence, we can assume that Qn → Q 6= O and pQ = O, but Q is separable over K,

since is defined over Kv and this contradicts Γ = {O}.

In general, let φ : A → A/Γ = B and ψ : B → A, φ ◦ ψ = [pm]. If P ∈ A(K) is

sufficiently close to O v-adically, then so is φ(P ) and therefore, by the above there exists

Q ∈ B(K), φ(P ) = pm+1Q = φ(ψ(pQ)). Therefore P − pψ(Q) ∈ Γ, but if we choose P

sufficiently close to O then Q will be close to O also and therefore, P − pψ(Q) = O since

Γ is finite. This completes the proof.

Theorem 2. Let A be an ordinary abelian variety over a function field K of characteristic

p > 0 and v a place of K and assume that the K/k-trace of A is zero and that A[p∞]∩A(Ks)

is finite. Let X be a subvariety of A. Then λv(X,P )� h(P )1/2 for all P ∈ A(K), P /∈ X.

Corollary 1. Hypotheses as in Theorem 2. Assume further that X is an ample divisor.

Then for any finite set S of places of K, the set of S-integral points of A\X is finite.

Proof of corollary 1: In this case, h(P ), for an S-integral point of A\X, is the sum of

λv(X,P ) over the elements of S, and it follows that the height is bounded, which proves

the corollary.

Proof of theorem 2: By theorem 1, we can replace X by Y which is a finite union of

translates of abelian subvarieties of A and by taking a component of Y , we can assume

that Y is an abelian subvariety of A. Finally passing to A/Y we are reduced to showing

that λv(O, P )� h(P )1/2 for all P ∈ A(K).

Now, using theorem 1 and lemmas 1 and 2 we may assume that P ∈ U , where U

is a neighbourhood of O in the v-adic topology such that for all P ∈ A(K) ∩ U we have

P ∈ pA(K) and λv(O, pP ) ≤ pλv(O, P ) + O(1). Moreover, we can assume that U does
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not contain any non-zero torsion point. Let r be maximal with P = prQ,Q ∈ A(K) ∩ U ,

which exists since P is not torsion. Then λv(O, P ) ≤ pr(λv(O, Q) +O(1)). Also λv(O, Q)

is bounded, since if Q were sufficiently close to O then Lemma 2 would imply that r is

not maximal. It follows that there exists c > 0 such that λv(O, P ) ≤ cpr. On the other

hand, since Q is not a torsion point, h(P ) = p2rh(Q) ≥ dp2r, where d is the minimum

height of a non-torsion point. Putting these inequalities together, we get λv(O, P ) ≤ cpr ≤

(c/d1/2)h(P )1/2, as desired.

4. Moduli and p-torsion points

In this section we show that the condition that A[p∞]∩A(Ks) is finite holds if A has

sufficiently general moduli.

Suppose T is a scheme, S is a scheme over T and A is an abelian scheme over S. Let

ωωω1
A denote the sheaf on S of invariant relative one-forms on A/S and tA the dual of A.

Then one has the Kodaira-Spencer pairing κ:ωωω1
A ⊗ ωωω1

tA → Ω1
S/T . Let S = Spec(R), where

R is a complete local ring of characteristic p with residue field k̄ and T = Spec(k̄). Let f

denote the map tA→ S and Ω1
R/k̄

= Ω1
S/T . Then the sequence of sheaves on tA

0→ f∗Ω1
R/k̄ → Ω1

tA/k̄ → Ω1
tA/R → 0

is exact. Let Kod denote the composition

ωωω1
tA
∼= f∗Ω

1
tA/R → R1f∗f

∗Ω1
R/k̄
∼= R1f∗OtA ⊗ Ω1

R/k̄,

where the second map is the boundary map. Then, κ(ω,tω) = ω.Kod(tω).

For an object X over R, we let X̄ denote its special fibre. Suppose the residue field

k̄ of R is algebraically closed. If m is the maximal ideal of R, a construction of Serre

and Tate gives a pairing q:TpĀ(k̄) × T tpĀ(k̄) → 1 + m for an ordinary abelian variety A,

where TpĀ(k̄) is the ”physical” Tate module of Ā, which in turn gives local parameters

on the local moduli space of ordinary abelian varieties over an Artin local ring of residue

characteristic p (see [K]). In [K], Katz gives formulas for the Serre-Tate parameters in terms
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of the Kodaira-Spencer pairing. We will need the following theorem which is a corollary

of Katz’s results.

Suppose A and tA are dual ordinary abelian varieties over R. If α ∈ TpA, we can view

it as a homomorphism from the p-divisible group of tA to Gm, the formal multiplicative

group. We define then, ωα = α∗(dt/t) ∈ ωωω1
tA, where dt/t is the canonical invariant form

on Gm. For a ∈ R∗, let d log(a) = da/a ∈ Ω1
R/k̄

.

Theorem 3 (Katz). Suppose R is as above, k̄ is algebraically closed and A is an ordinary

abelian variety over R. If α ∈ TpĀ(k̄) and tα ∈ T tpĀ(k̄), we have:

d log q(α,tα) = κ(ωtα, ωα) .

To justify the assertion, made in the introduction, that abelian varieties with suffi-

ciently general moduli satisfy the hypotheses of Theorem 2, we will prove the following

result.

Proposition. Let A be an ordinary abelian variety over a function field K of characteristic

p > 0 such that the Kodaira-Spencer map has maximal rank, then A[p] ∩A(Ks) = O.

Proof: Let us briefly recall the definition of the Serre-Tate pairing (see [K]). Given

an element of TpĀ(k̄) × T tpĀ(k̄) one constructs canonically a subgroup of the p-divisible

group of A isomorphic to an extension of Zp by Tpµ, where the latter is the p-divisible

group of p-power roots of unity. Then the value of the Serre-Tate pairing is the class of

this extension in Ext1(Zp, Tpµ). If we are interested (as is the case) only in the Serre-Tate

pairing modulo p-th powers, we can restrict our attention to extensions of Z/pZ by µp

contained in the group-scheme ker[p]. If A[p]∩A(Ks) contains a non-zero element, it gives

rise to a trivial such extension for each subgroup of ker[p] isomorphic to µp. It follows

that the Serre-Tate pairing modulo p-th powers is not of maximal rank and hence, from

Katz’s theorem, that the Kodaira-Spencer map is also not of maximal rank, proving the

proposition.

5. Abelian analogues of Leopoldt’s conjecture in characteristic p
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Leopoldt’s conjecture asserts that the Zp-rank of the p-adic closure of the group of

units of a number field is the same as the Z-rank of the group of units. This is known in

a few cases but is open in general. An analogue of it for function fields of characteristic

p has been shown by Kisilevsky [Ki]. These questions have obvious abelian analogues

replacing the multiplicative group by an abelian variety and we will study this question

now. Recall that A1, the kernel of reduction in A(Kv), is naturally a Zp-module. Also,

since we assumed that K is a function field in one variable over a finite field, A1 ∩ A(K)

is of finite index in A(K).

Theorem 4. Let A be an ordinary abelian variety over a function field K of characteristic

p > 0 and v a place of K and assume that A[p∞]∩A(Ks) = is finite. Then the Zp-rank of

the closure of A1 ∩A(K) in A(Kv) in the v-adic topology is equal to the Z-rank of A(K).

Proof: Let P1, . . . , Pn ∈ A(K) be Z-linearly independent generating A1 ∩ A(K) over

Z and assume that they become Zp dependent, say
∑
αiPi = 0. We may assume that not

all the αi are divisible by p. Let ai be integers p-adically close to αi. Then ai − αi are

divisible by a high power of p and so
∑

(ai−αi)Pi is v-adically close to zero, hence
∑
aiPi

is close to zero which implies, by lemma 2, that the ai are divisible by p, but then so are

the αi, giving a contradiction that proves the theorem.

Remark: Theorem 4 is valid, with the same proof, for semi-abelian varieties satisfying

the same hypotheses. In particular it is valid for the multiplicative group, giving a new

proof of the characteristic p analogue of Leopoldt’s conjecture already proved by Kisilevsky

[Ki].

The same proof as in Lemma 2 yields the following result:

Lemma 3. Let A be an abelian variety defined over a finite field k and F be the cor-

responding Frobenius automorphism of A. Let K/k be a function field of characteristic

p > 0 and v a place of K. Then there is a neighbourhood U of O in the v-adic topology,

such that, if P ∈ A(K) ∩ U then P ∈ F (A(K)).

It is also clear that points v-adically close to O have images under F even closer to
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O. It follows that if R is the completion of the ring Z[F ] with respect to the maximal

ideal generated by F then the R-rank of the v-adic closure of A(K) in A(Kv) is equal

to the Z[F ]-rank of A(K). If R happens to be contained in Zp then the Zp-rank of the

v-adic closure of A(K) in A(Kv) will be smaller than the Z-rank of A(K). This happens

for example if A is an ordinary elliptic curve defined over the finite field k. Indeed, let

x2−ax+q be the characteristic polynomial of Frobenius (hence #A(k) = q+1−a). Since

A is ordinary, a is prime to q = #k, so the characteristic polynomial has a p-adic root

φ ≡ 0 mod p and Z[F ] = Z[φ] ⊂ Zp. Hence the analogue of Leopoldt’s conjecture fails in

this case. This example also shows that Theorem 2 does not hold with the hypothesis on

the p-power torsion removed.

Corollary 2. Let A be an ordinary abelian variety over a function field K of characteristic

p > 0 and v a place of K and assume that A[p∞] ∩A(Ks) is finite. If P ∈ A(K) ∩A1 and

α ∈ Zp is irrational then αP is transcendental over K.

Proof: Assume by contradiction that αP is algebraic and extend K, if necessary, so

that it is rational. However, if α is irrational, P and αP are Z-independent, but Zp-

dependent, contradicting Theorem 4 and remark (b) above.

Remarks:(c) The analogue of this corollary for the multiplicative group has been

proved by Mendès France and van der Poorten [MP].

(d) There is an analogue of this corollary for ordinary elliptic curves defined over a

finite field. However one needs to assume that α /∈ Z[F ]. (See lemma 3 and the discussion

following it).

References.

[AV] D. Abramovich and J. F. Voloch, Toward a proof of the Mordell- Lang conjecture in

characteristic p, International Math. Research Notices No. 5 (1992) 103-115.

[BV] A. Buium, J. F. Voloch, Integral points of abelian varieties over function fields of

characteristic zero, Math. Ann. 297 (1993) 303-307.

8



[F] G. Faltings, Diophantine approximation on abelian varieties, Ann. Math. 133 (1991)

549-576.

[H] E. Hrushovski, The Mordell-Lang conjecture for function fields, preprint, 1993.

[K] N. M. Katz, Serre-Tate local moduli, Springer LNM 868 (1981) 138-202.

[Ki] H. Kisilevsky, Multiplicative independence in function fields, J. Number Theory 44

(1993) 352-355.

[L] S. Lang, Number Theory III: Diophantine Geometry, Encyclopaedia Math. Sci. 60,

Springer, Berlin 1991.

[MP] M. Mendès France, A. J. van der Poorten, Automata and the arithmetic of formal

power series, Acta Arithmetica, XLVI (1986) 211-214.

[M1] J. S. Milne, Étale cohomology, Princeton Univ. Press, 1990.

[M2] J. S. Milne, Arithmetic duality theorems, Academic Press, Orlando, 1986.

[P] A. N. Parshin, Finiteness theorems and hyperbolic manifolds, in The Grothendieck

festschrift, P. Cartier et al., eds., Birkaüser, Basel, 1990, vol. 3,pp 163-178.
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