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Abstract

This article continues the characterization of elliptic curves among sets in a finite plane
which are met by lines in at most three points. The case treated here is that of sets of
prime-power cardinality.

1 Notation

GF (q) the finite field of q elements
PG(2, q) the projective plane over GF (q)

PG(1)(2, q) the set of lines in PG(2, q)
P(X) the point of PG(2, q) with coordinate vector X
PQ the line joining the points P and Q
`(P,Q) PQ
〈P 〉 the group generated by P .

2 Introduction

This article continues the work of [5] in considering sufficient conditions for a set of points in
a finite plane to be embedded in a cubic curve. Similar results to those in [5] were obtained
independently by Ghinelli, Melone and Ott [1].

For completeness the main results in [5] need to be summarized.

Definition 2.1 A (k;n)-arc in PG(2, q) is a set of k points with at most n points on any
line of the plane.

The fundamental problem is to decide when a (k;n)-arc Kn lies on an absolutely irreducible
algebraic curve Cn of degree n. Here we consider the problem for n = 3.

A crucial point is the number of points K3 contains and the number of rational points on
C3. Let m3(2, q) be the maximum number of points on K3. Then

m3(2, q) ≤ 2q + 1 for q > 3, (1)

[10], [2, p.331], and the exact values known are given in Table 1.
For q = 11, 2q − 1 ≤ m3(2, q) ≤ 2q + 1.
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q 2, 3 4, 5, 7 8, 9

m3(2, q) 2q + 3 2q + 1 2q − 1

Table 1: Values for m3(2, q)

For an elliptic curve, Nq(1) is the maximum number of points it can contain. Its value,
for q = ph with p prime, is

Nq(1) =

{
q + [2

√
q] when h is odd, h ≥ 3 and p|[2

√
q]

q + 1 + [2
√
q] otherwise,

where [t] denotes the integer part of t, [12], [3, p. 273]. The precise values that are achieved
by the number of points of an elliptic curve over GF (q) are also known [12], as well as the
number of isomorphism classes and the number of plane projective equivalence classes for a
given value, [9]. For such a value the possible structures of the abelian group the points form
is also known, [8], [11].

3 Axioms

Now, we recall the axioms imposed on a (k; 3)-arc in [5], and then solve the main case unre-
solved there. For further motivation and details concerning the axioms, see [5, section 2].

Let K be a (k; 3)-arc in PG(2, q). Four axioms (E1) - (E4) are required. For each axiom,
the property that it gives to K is mentioned in parentheses.
(E1) There exists O in K such that ` ∩ K = {O} for some line `. (INFLEXION)
(E2) There exists an injective map τ : K\{O} → PG(1)(2, q) such that P ∈ Pτ and
|Pτ ∩ K| ≤ 2, for all P ∈ K\{O}. (TANGENT)
(E3) If P,Q ∈ K and PQ 6= Pτ orQτ , then |PQ ∩ K| = 3. (FEW BISECANTS)
(E4) ForP ∈ K, define P to be the third point of K on OP . For P,Q ∈ K, define P +Q = R,
where R is the third point of K on PQ. Now, let K be an abelian group under the operation
+ with identity O and −P = P . (ABELIAN GROUP)

Definition 3.1 A (k; 3)-arc K satisfying (E1) - (E4) is called a group-arc or k-group-arc.

It follows from the axioms that
(a) any subgroup of a group-arc is a group-arc,
(b) P +Q+R = O if and only if P,Q,R are collinear.

Definition 3.2 In PG(2, q), the point set S is linearly determined by the set T of points and
lines if every point of S is the intersection of two lines each of which is in T or is the join of
two points of T or is the join of two points iteratively determined in this way.

Lemma 3.3 If P is a point of an arbitrary group-arc, then the cyclic group 〈P 〉 is linearly
determined by {O,±P,±2P, 3P, (−2P )τ}.
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Lemma 3.4 Let P be a point of order at least six of a group-arc. Then 〈P 〉 is a subgroup of
a unique cubic curve with inflexion O.

Lemma 3.5 Let E1 and E2 be cubic curves and K a k-group-arc which is a subgroup of both
E1 and E2. If k > 5, then E1 = E2.

Lemma 3.6 Let K be a group-arc contained in a cubic curve E such that any cyclic subgroup
of K is a subgroup of E. Then K is a subgroup of E.

Theorem 3.7 Let K be a k-group-arc in PG(2, q) such that one of the following hold:
(a) k = p1p2r where p1 and p2 are distinct primes ≥ 7;
(b) k = 2a3b5cpd1, where p1 is a prime ≥ 7, d ≥ 1 and 2a3b5c ≥ 6.
Then K is a subgroup of the group of non-singular points of a cubic curve.

The theorem leaves the following values of k to be considered:
(i) k = 2a3b5c, with a, b, c ≥ 0; (ii) k = epd1 , with p1 prime ≥ 7, d ≥ 1, 1 ≤ e ≤ 5.

In the next section we consider case (ii).

4 The main theorem

Lemma 4.1 Suppose P,Q are elements of a group-arc K both of prime order p1 6= 2, 3
generating a subgroup G of order (p1)

2. Then G is uniquely determined by

O,±P,±Q,P ±Q, 2P.

Proof: First,
−P −Q = `(P,Q) ∩ `(O,P +Q),
−P +Q = `(P,−Q) ∩ `(O,P −Q).

Now assume, by induction on m < p1 − 1, that we know

±(iP +Q),±iP

for i = 0, . . . ,m. This is true for i = 1. Now we determine these points for i = m + 1 as
follows:

−(m+ 1)P −Q = `(P,mP +Q) ∩ `(2P, (m− 1)P +Q),
(m+ 1)P +Q = `(−P,−mP −Q) ∩ `(O,−(m+ 1)P −Q),

(m+ 1)P = `(−P,−mP ) ∩ `(Q,−(m+ 1)P −Q),
−(m+ 1)P = `(P,mP ) ∩ `(O, (m+ 1)P ).

The last equality works providing the two lines are distinct; that is, providing (m+ 1)P 6= O
or (2m+ 2)P 6= O. However, the first is true since otherwise the induction would have been
finished at the previous step.

In particular, 〈P 〉 has been determined. Now 〈P1〉, where P1 = P + Q, is found. From
the previous step,

O,±P1,±Q,P1 ±Q, 2P1
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are required. Of these, the only ones lacking are P1 + Q and 2P1. These are determined as
follows:

P1 +Q = P + 2Q = `(−P −Q,−Q) ∩ `(−2P −Q,P −Q),
2P1 = 2P + 2Q = `(−2P −Q,−Q) ∩ `(−3P −Q,P −Q).

Now, with P1 instead of P , we can determine 〈P2〉, where P2 = P1 +Q = P + 2Q. Continuing
this process, 〈P + mQ〉 for m = 0, 1, ..., p1 − 1 can be determined. To complete the proof,
only 〈Q〉 needs to be found. By reversing the initial roles of P and Q, we require

O,±P,±Q,Q± P, 2Q.

Of these, only 2Q is missing; this is given by

2Q = `(P,−P − 2Q) ∩ `(−P, P − 2Q).

Corollary 4.2 A group-arc K isomorphic to (Zp1)2, p1 ≥ 5, is a subgroup of a unique cubic
curve.

Proof: Given O,±P,±Q,P ±Q, 2P , where K = 〈P 〉⊕ 〈Q〉, the conditions that a cubic passes
through these points and has an inflexion at O are nine independent conditions and determine
the cubic uniquely.

Theorem 4.3 Let K be a k-group-arc in PG(2, q) such that k is divisible by a prime p1 ≥ 7.
Then K is a subgroup of a unique cubic curve.

Proof: By Theorem 3.7, it suffices to consider the case that k = epd1 with 1 ≤ e ≤ 5.
Consider first the case that the p1-Sylow subgroup P1 of K is cyclic so that P1 = 〈P1〉.

Now, K = P1 ⊕ G, where |G| = e and |P1| = pd1. As P1 is cyclic it is contained in a cubic
curve E1. For any point P in P1, the subgroup 〈P 〉 is contained in a cubic curve E , which
coincides with E1 by Lemma 3.5. If Q is any point of K, then Q = P + R for some P ∈ P1
and R ∈ G. By Lemma 3.4, 〈Q〉 is contained in an cubic curve E ′; also, since the orders of P
and R are coprime, 〈Q〉 contains both 〈P 〉 and 〈R〉. Again, by Lemma 3.5, E ′ = E1. Hence
K ⊂ E1.

Now consider the non-cyclic case and let K1 ⊂ K with K1 isomorphic to (Zp1)2. Then,
by the previous corollary, K1 is contained in a cubic E . As in the previous case, K = K0 ⊕G
where |G| = e and |K0| = pd1. If P in K0\K1 has order pλ1 , then 〈P 〉 is contained in a cubic E ′
and, for Q ∈ K1\{O}, the sum 〈pλ−11 P 〉 ⊕ 〈Q〉 is contained in a cubic E ′′. Now E ′′ ∩ E ⊃ 〈Q〉,
whence E ′′ = E by Lemma 3.5. Also, E ′ ∩ E ′′ ⊃ 〈pλ−11 P 〉 and so E ′ = E ′′. Hence E = E ′ and
therefore K0 ⊂ E .

Now, let R ∈ G. Then there is a cubic E ′′′ containing 〈R + Q〉. As e(R + Q) = eQ ∈ E
and eQ 6= O, so 〈eQ〉 = 〈Q〉 and E ′′′ ∩ E ⊃ 〈Q〉 . Therefore E ′′′ = E by Lemma 3.5 and
〈R +Q〉 ⊂ E , whence p1(R +Q) = p1R ∈ E . So R ∈ E . It has now been shown that both G
and K0 lie in E , whence K ⊂ E .
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5 Small cases

I. k = 8

Lemma 5.1 An 8-group-arc K isomorphic to Z2 × Z2 × Z2 exists in PG(2, q) if and only if
q = 2h, h ≥ 3. Such a group-arc lies on a unique cuspidal cubic.

Proof: Let O = P(1, 0, 0), P = P(0, 1, 0), Q = P(0, 0, 1), R = P(1, 1, 1) be points of K.
Then

R+Q = P(t, t, 1), t 6= 0, 1;
P +R = P(1, s, 1), s 6= 1.

Also
P +Q = `(P,Q) ∩ `(Q+R,P +R) = P(0, t− ts, 1− t);

P +Q+R = `(P +R,Q) ∩ `(P,Q+R) = P(1, s, t−1).

Now, P +Q+R ∈ `(P +Q,R)⇒∣∣∣∣∣∣∣
1 1 1
0 t− ts 1− t
1 s t

∣∣∣∣∣∣∣ = 0

⇒ 1− s+ 1− t− (t− ts)− s(1− t) = 0
⇒ 2(1− s)(1− t) = 0
⇒ 2 = 0.

Since O is on none of the lines

`(Q,P +R), `(R+Q,P +R), `(P +Q,P +Q+R),

it follows that s 6= 0, s 6= t, s 6= t−1; hence q > 4. Also the 7 points of K\{O} form a PG(2, 2).
The 8 points lie on the unique cubic C with equation

(s+ 1)x2y + s(t+ 1)x2z + (t+ 1)y2z + t(s+ 1)yz2 = 0.

This is irreducible when (s + t)(st + 1) 6= 0, which is satisfied in this case. It has a cusp at
P(
√
t,
√
st, 1) and all tangents to C are concurrent at O.

For more on cuspidal cubics, see [2, section 11.3].

Lemma 5.2 An 8-group-arc K isomorphic to Z2 × Z4 exists in PG(2, q) if and only if q is
odd with q ≥ 5. Such a group-arc lies on a unique cubic curve, which is elliptic.

Proof: The eight points of K written as elements of Z2 × Z4 are

O = (0, 0), P1 = (0, 2), P2 = (1, 0), P3 = (1, 2), Q1 = (0, 1), Q2 = (0, 3), Q3 = (1, 1), Q4 = (1, 3).

Hence

2P1 = 2P2 = 2P3 = O, P1 + P2 + P3 = O, 2Q1 = 2Q2 = 2Q3 = 2Q4 = P1.

So P1, P2, P3 are the points of contact of the tangents through O, and Q1, Q2, Q3, Q4 the
points of contact of the tangents through P1.
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Let O = P(0, 0, 1) with tangent y = 0. Let P1 = P(0, 1, 0), P2 = P(1, 1, 1), P3 = P(α, 1, α)
with respective tangents x = 0, x = y, x = αy; so α 6= 0, 1. Then, if K lies on the cubic curve
E , consider the intersection divisors in which E meets the two curves with equations

y(x− z)2 = 0 and x(x− y)(x− αy) = 0.

In both cases the divisor is

O ⊕O ⊕O ⊕ P1 ⊕ P1 ⊕ P2 ⊕ P2 ⊕ P3 ⊕ P3,

where ⊕ has been used to denote the formal sum to distinguish it from the sum on a cubic
curve elsewhere in this paper. So E has equation

y(x− z)2 + λx(x− y)(x− αy) = 0. (2)

The common points of a line z = tx through P1 and C are determined by

(1− t)2x2y + λx(x− y)(x− αy) = 0; (3)

that is, apart from P1 , the points defined by

λx2 + xy{(1− t)2 − λ(1 + α)}+ λαy2 = 0. (4)

Since there are four tangents through P1 , so q is odd. For a tangent, the discriminant ∆ = 0.
Here

∆ = {(1− t)2 − λ(1 + λ)}2 − 4λ2α = (1− t)4 − 2λ(1 + α)(1− t)2 + λ2(1− α2).

Since ∆ = 0 has four solutions for t, so the discriminant ∆′ of ∆ considered as a quadratic in
(1− t)2 is a square. Now,

∆′ = λ2(1 + α)2 − λ2(1− α)24λ2α.

Hence α = β2; this incidentally means that GF (q) contains a square other than 0 and 1,
whence q 6= 3. Solving ∆ = 0 for (1− t)2 gives

(1− t)2 = λ(1 + β2)± 2λβ = λ(1± β)2.

Hence λ = γ2 . Thus
1− t = ±γ(1± β).

Therefore, (4) becomes (x± βy)2 = 0. This gives for Q1, Q2, Q3, Q4 the points

P(eβ, 1, eβ + fβγ − efβ2γ)

where e, f = ±1. Also C has equation

y(x− z)2 + γ2x(x− y)(x− β2y) = 0,

which is elliptic.
For the calculation of the equations of cubic curves with a precise number of points, see

also [4], [6], [7].
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II. k = 25

Each case not covered in this paper can be reduced to a finite calculation. An arbitrary
group-arc K of a given order is given by a set of points, where some of the coordinates are
elements of GF (q) and some are indeterminates. The necessary collinearities are given by a
set of polynomial equations in the indeterminates. An algebraic manipulation programme can
then determine the consistency of these equations, and check whether or not K lies on a cubic
curve. For example, A. Simis (personal communication) has verified that if K is isomorphic
to (Z5)

2 , then this works, as one expects from Corollary 4.2.
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