GROUP-ARCS OF PRIME POWER ORDER ON CUBIC CURVES

J.W.P. Hirschfeld and J.F. Voloch

September 18, 2015

Abstract

This article continues the characterization of elliptic curves among sets in a finite plane which are met by lines in at most three points. The case treated here is that of sets of prime-power cardinality.

1 Notation

GF(q)	the finite field of q elements
PG(2,q)	the projective plane over $GF(q)$
$PG^{(1)}(2,q)$	the set of lines in $PG(2,q)$
$\mathbf{P}(X)$	the point of $PG(2,q)$ with coordinate vector X
PQ	the line joining the points P and Q
$\ell(P,Q)$	PQ
$\langle P \rangle$	the group generated by P .

2 Introduction

This article continues the work of [5] in considering sufficient conditions for a set of points in a finite plane to be embedded in a cubic curve. Similar results to those in [5] were obtained independently by Ghinelli, Melone and Ott [1].

For completeness the main results in [5] need to be summarized.

Definition 2.1 A (k; n)-arc in PG(2, q) is a set of k points with at most n points on any line of the plane.

The fundamental problem is to decide when a (k; n)-arc \mathcal{K}_n lies on an absolutely irreducible algebraic curve \mathcal{C}_n of degree n. Here we consider the problem for n = 3.

A crucial point is the number of points \mathcal{K}_3 contains and the number of rational points on \mathcal{C}_3 . Let $m_3(2,q)$ be the maximum number of points on \mathcal{K}_3 . Then

$$m_3(2,q) \le 2q + 1 \text{ for } q > 3,$$
 (1)

[10], [2, p.331], and the exact values known are given in Table 1. For $q=11, 2q-1 \leq m_3(2,q) \leq 2q+1$.

$$\begin{array}{c|ccccc} q & 2, 3 & 4, 5, 7 & 8, 9 \\ \hline m_3(2,q) & 2q+3 & 2q+1 & 2q-1 \end{array}$$

Table 1: Values for $m_3(2,q)$

For an elliptic curve, $N_q(1)$ is the maximum number of points it can contain. Its value, for $q = p^h$ with p prime, is

$$N_q(1) = \begin{cases} q + [2\sqrt{q}] & \text{when } h \text{ is odd, } h \ge 3 \text{ and } p | [2\sqrt{q}] \\ q + 1 + [2\sqrt{q}] & \text{otherwise,} \end{cases}$$

where [t] denotes the integer part of t, [12], [3, p. 273]. The precise values that are achieved by the number of points of an elliptic curve over GF(q) are also known [12], as well as the number of isomorphism classes and the number of plane projective equivalence classes for a given value, [9]. For such a value the possible structures of the abelian group the points form is also known, [8], [11].

3 Axioms

Now, we recall the axioms imposed on a (k;3)-arc in [5], and then solve the main case unresolved there. For further motivation and details concerning the axioms, see [5, section 2].

Let \mathcal{K} be a (k;3)-arc in PG(2,q). Four axioms (E1) - (E4) are required. For each axiom, the property that it gives to \mathcal{K} is mentioned in parentheses.

- (E1) There exists O in K such that $\ell \cap K = \{O\}$ for some line ℓ . (INFLEXION)
- (E2) There exists an injective map $\tau : \mathcal{K} \setminus \{O\} \to PG^{(1)}(2,q)$ such that $P \in P\tau$ and $|P\tau \cap \mathcal{K}| \leq 2$, for all $P \in \mathcal{K} \setminus \{O\}$. (TANGENT)
- (E3) If $P, Q \in \mathcal{K}$ and $PQ \neq P\tau$ or $Q\tau$, then $|PQ \cap \mathcal{K}| = 3$. (FEW BISECANTS)
- (E4) For $P \in \mathcal{K}$, define \overline{P} to be the third point of \mathcal{K} on OP. For $P, Q \in \mathcal{K}$, define $P + Q = \overline{R}$, where R is the third point of \mathcal{K} on PQ. Now, let \mathcal{K} be an abelian group under the operation + with identity O and $-P = \overline{P}$. (ABELIAN GROUP)

Definition 3.1 A(k;3)-arc K satisfying (E1) - (E4) is called a group-arc or k-group-arc.

It follows from the axioms that

- (a) any subgroup of a group-arc is a group-arc,
- (b) P + Q + R = O if and only if P, Q, R are collinear.

Definition 3.2 In PG(2,q), the point set S is linearly determined by the set T of points and lines if every point of S is the intersection of two lines each of which is in T or is the join of two points of T or is the join of two points iteratively determined in this way.

Lemma 3.3 If P is a point of an arbitrary group-arc, then the cyclic group $\langle P \rangle$ is linearly determined by $\{O, \pm P, \pm 2P, 3P, (-2P)\tau\}$.

Lemma 3.4 Let P be a point of order at least six of a group-arc. Then $\langle P \rangle$ is a subgroup of a unique cubic curve with inflexion O.

Lemma 3.5 Let \mathcal{E}_1 and \mathcal{E}_2 be cubic curves and \mathcal{K} a k-group-arc which is a subgroup of both \mathcal{E}_1 and \mathcal{E}_2 . If k > 5, then $\mathcal{E}_1 = \mathcal{E}_2$.

Lemma 3.6 Let K be a group-arc contained in a cubic curve \mathcal{E} such that any cyclic subgroup of K is a subgroup of \mathcal{E} . Then K is a subgroup of \mathcal{E} .

Theorem 3.7 Let K be a k-group-arc in PG(2,q) such that one of the following hold:

- (a) $k = p_1p_2r$ where p_1 and p_2 are distinct primes ≥ 7 ;
- (b) $k = 2^a 3^b 5^c p_1^d$, where p_1 is a prime ≥ 7 , $d \geq 1$ and $2^a 3^b 5^c \geq 6$.

Then K is a subgroup of the group of non-singular points of a cubic curve.

The theorem leaves the following values of k to be considered:

(i) $k = 2^a 3^b 5^c$, with $a, b, c \ge 0$; (ii) $k = ep_1^d$, with p_1 prime $\ge 7, d \ge 1, 1 \le e \le 5$.

In the next section we consider case (ii).

4 The main theorem

Lemma 4.1 Suppose P,Q are elements of a group-arc K both of prime order $p_1 \neq 2,3$ generating a subgroup G of order $(p_1)^2$. Then G is uniquely determined by

$$O, \pm P, \pm Q, P \pm Q, 2P.$$

Proof: First,

$$\begin{array}{rcl} -P-Q & = & \ell(P,Q)\cap\ell(O,P+Q), \\ -P+Q & = & \ell(P,-Q)\cap\ell(O,P-Q). \end{array}$$

Now assume, by induction on $m < p_1 - 1$, that we know

$$\pm (iP + Q), \pm iP$$

for i = 0, ..., m. This is true for i = 1. Now we determine these points for i = m + 1 as follows:

$$\begin{array}{lcl} -(m+1)P-Q & = & \ell(P,mP+Q)\cap\ell(2P,(m-1)P+Q),\\ (m+1)P+Q & = & \ell(-P,-mP-Q)\cap\ell(O,-(m+1)P-Q),\\ (m+1)P & = & \ell(-P,-mP)\cap\ell(Q,-(m+1)P-Q),\\ -(m+1)P & = & \ell(P,mP)\cap\ell(O,(m+1)P). \end{array}$$

The last equality works providing the two lines are distinct; that is, providing $(m+1)P \neq O$ or $(2m+2)P \neq O$. However, the first is true since otherwise the induction would have been finished at the previous step.

In particular, $\langle P \rangle$ has been determined. Now $\langle P_1 \rangle$, where $P_1 = P + Q$, is found. From the previous step,

$$O, \pm P_1, \pm Q, P_1 \pm Q, 2P_1$$

are required. Of these, the only ones lacking are $P_1 + Q$ and $2P_1$. These are determined as follows:

$$\begin{array}{rcl} P_1 + Q & = & P + 2Q & = & \ell(-P - Q, -Q) \cap \ell(-2P - Q, P - Q), \\ 2P_1 & = & 2P + 2Q & = & \ell(-2P - Q, -Q) \cap \ell(-3P - Q, P - Q). \end{array}$$

Now, with P_1 instead of P, we can determine $\langle P_2 \rangle$, where $P_2 = P_1 + Q = P + 2Q$. Continuing this process, $\langle P + mQ \rangle$ for $m = 0, 1, ..., p_1 - 1$ can be determined. To complete the proof, only $\langle Q \rangle$ needs to be found. By reversing the initial roles of P and Q, we require

$$O, \pm P, \pm Q, Q \pm P, 2Q.$$

Of these, only 2Q is missing; this is given by

$$2Q = \ell(P, -P - 2Q) \cap \ell(-P, P - 2Q).$$

Corollary 4.2 A group-arc K isomorphic to $(\mathbf{Z}_{p_1})^2, p_1 \geq 5$, is a subgroup of a unique cubic curve.

Proof. Given $O, \pm P, \pm Q, P \pm Q, 2P$, where $\mathcal{K} = \langle P \rangle \oplus \langle Q \rangle$, the conditions that a cubic passes through these points and has an inflexion at O are nine independent conditions and determine the cubic uniquely.

Theorem 4.3 Let K be a k-group-arc in PG(2,q) such that k is divisible by a prime $p_1 \geq 7$. Then K is a subgroup of a unique cubic curve.

Proof. By Theorem 3.7, it suffices to consider the case that $k = ep_1^d$ with $1 \le e \le 5$.

Consider first the case that the p_1 -Sylow subgroup \mathcal{P}_1 of \mathcal{K} is cyclic so that $\mathcal{P}_1 = \langle P_1 \rangle$. Now, $\mathcal{K} = \mathcal{P}_1 \oplus G$, where |G| = e and $|\mathcal{P}_1| = p_1^d$. As \mathcal{P}_1 is cyclic it is contained in a cubic curve \mathcal{E}_1 . For any point P in \mathcal{P}_1 , the subgroup $\langle P \rangle$ is contained in a cubic curve \mathcal{E} , which coincides with \mathcal{E}_1 by Lemma 3.5. If Q is any point of \mathcal{K} , then Q = P + R for some $P \in \mathcal{P}_1$ and $R \in G$. By Lemma 3.4, $\langle Q \rangle$ is contained in an cubic curve \mathcal{E}' ; also, since the orders of P and P are coprime, P contains both P and P and P and P are coprime.

Now consider the non-cyclic case and let $\mathcal{K}_1 \subset \mathcal{K}$ with \mathcal{K}_1 isomorphic to $(\mathbf{Z}_{p_1})^2$. Then, by the previous corollary, \mathcal{K}_1 is contained in a cubic \mathcal{E} . As in the previous case, $\mathcal{K} = \mathcal{K}_0 \oplus G$ where |G| = e and $|\mathcal{K}_0| = p_1^d$. If P in $\mathcal{K}_0 \setminus \mathcal{K}_1$ has order p_1^{λ} , then $\langle P \rangle$ is contained in a cubic \mathcal{E}' and, for $Q \in \mathcal{K}_1 \setminus \{O\}$, the sum $\langle p_1^{\lambda-1}P \rangle \oplus \langle Q \rangle$ is contained in a cubic \mathcal{E}'' . Now $\mathcal{E}'' \cap \mathcal{E} \supset \langle Q \rangle$, whence $\mathcal{E}'' = \mathcal{E}$ by Lemma 3.5. Also, $\mathcal{E}' \cap \mathcal{E}'' \supset \langle p_1^{\lambda-1}P \rangle$ and so $\mathcal{E}' = \mathcal{E}''$. Hence $\mathcal{E} = \mathcal{E}'$ and therefore $\mathcal{K}_0 \subset \mathcal{E}$.

Now, let $R \in G$. Then there is a cubic \mathcal{E}''' containing $\langle R+Q \rangle$. As $e(R+Q)=eQ \in \mathcal{E}$ and $eQ \neq O$, so $\langle eQ \rangle = \langle Q \rangle$ and $\mathcal{E}''' \cap \mathcal{E} \supset \langle Q \rangle$. Therefore $\mathcal{E}''' = \mathcal{E}$ by Lemma 3.5 and $\langle R+Q \rangle \subset \mathcal{E}$, whence $p_1(R+Q)=p_1R \in \mathcal{E}$. So $R \in \mathcal{E}$. It has now been shown that both G and \mathcal{K}_0 lie in \mathcal{E} , whence $\mathcal{K} \subset \mathcal{E}$.

5 Small cases

I. k = 8

Lemma 5.1 An 8-group-arc K isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ exists in PG(2,q) if and only if $q = 2^h, h \geq 3$. Such a group-arc lies on a unique cuspidal cubic.

Proof: Let $O = \mathbf{P}(1,0,0), P = \mathbf{P}(0,1,0), Q = \mathbf{P}(0,0,1), R = \mathbf{P}(1,1,1)$ be points of \mathcal{K} . Then

$$R + Q = \mathbf{P}(t, t, 1), t \neq 0, 1;$$

 $P + R = \mathbf{P}(1, s, 1), s \neq 1.$

Also

$$P + Q = \ell(P,Q) \cap \ell(Q + R, P + R) = \mathbf{P}(0, t - ts, 1 - t);$$

 $P + Q + R = \ell(P + R, Q) \cap \ell(P, Q + R) = \mathbf{P}(1, s, t^{-1}).$

Now, $P + Q + R \in \ell(P + Q, R) \Rightarrow$

$$\left| \begin{array}{ccc} 1 & 1 & 1 \\ 0 & t - ts & 1 - t \\ 1 & s & t \end{array} \right| = 0$$

$$\Rightarrow 1 - s + 1 - t - (t - ts) - s(1 - t) = 0$$
$$\Rightarrow 2(1 - s)(1 - t) = 0$$
$$\Rightarrow 2 = 0.$$

Since O is on none of the lines

$$\ell(Q, P + R), \ell(R + Q, P + R), \ell(P + Q, P + Q + R),$$

it follows that $s \neq 0, s \neq t, s \neq t^{-1}$; hence q > 4. Also the 7 points of $\mathcal{K} \setminus \{O\}$ form a PG(2,2). The 8 points lie on the unique cubic \mathcal{C} with equation

$$(s+1)x^2y + s(t+1)x^2z + (t+1)y^2z + t(s+1)yz^2 = 0.$$

This is irreducible when $(s+t)(st+1) \neq 0$, which is satisfied in this case. It has a cusp at $\mathbf{P}(\sqrt{t}, \sqrt{st}, 1)$ and all tangents to \mathcal{C} are concurrent at O.

For more on cuspidal cubics, see [2, section 11.3].

Lemma 5.2 An 8-group-arc K isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_4$ exists in PG(2,q) if and only if q is odd with $q \geq 5$. Such a group-arc lies on a unique cubic curve, which is elliptic.

Proof: The eight points of \mathcal{K} written as elements of $\mathbf{Z}_2 \times \mathbf{Z}_4$ are

$$O = (0,0), P_1 = (0,2), P_2 = (1,0), P_3 = (1,2), Q_1 = (0,1), Q_2 = (0,3), Q_3 = (1,1), Q_4 = (1,3).$$

Hence

$$2P_1 = 2P_2 = 2P_3 = O, \ P_1 + P_2 + P_3 = O, \ 2Q_1 = 2Q_2 = 2Q_3 = 2Q_4 = P_1.$$

So P_1, P_2, P_3 are the points of contact of the tangents through O, and Q_1, Q_2, Q_3, Q_4 the points of contact of the tangents through P_1 .

Let $O = \mathbf{P}(0,0,1)$ with tangent y = 0. Let $P_1 = \mathbf{P}(0,1,0), P_2 = \mathbf{P}(1,1,1), P_3 = \mathbf{P}(\alpha,1,\alpha)$ with respective tangents $x = 0, x = y, x = \alpha y$; so $\alpha \neq 0, 1$. Then, if \mathcal{K} lies on the cubic curve \mathcal{E} , consider the intersection divisors in which \mathcal{E} meets the two curves with equations

$$y(x-z)^{2} = 0$$
 and $x(x-y)(x-\alpha y) = 0$.

In both cases the divisor is

$$O \oplus O \oplus O \oplus P_1 \oplus P_1 \oplus P_2 \oplus P_2 \oplus P_3 \oplus P_3$$
,

where \oplus has been used to denote the formal sum to distinguish it from the sum on a cubic curve elsewhere in this paper. So \mathcal{E} has equation

$$y(x-z)^2 + \lambda x(x-y)(x-\alpha y) = 0.$$
(2)

The common points of a line z = tx through P_1 and C are determined by

$$(1-t)^{2}x^{2}y + \lambda x(x-y)(x-\alpha y) = 0; (3)$$

that is, apart from P_1 , the points defined by

$$\lambda x^{2} + xy\{(1-t)^{2} - \lambda(1+\alpha)\} + \lambda \alpha y^{2} = 0.$$
 (4)

Since there are four tangents through P_1 , so q is odd. For a tangent, the discriminant $\Delta = 0$. Here

$$\Delta = \{(1-t)^2 - \lambda(1+\lambda)\}^2 - 4\lambda^2\alpha = (1-t)^4 - 2\lambda(1+\alpha)(1-t)^2 + \lambda^2(1-\alpha^2).$$

Since $\Delta = 0$ has four solutions for t, so the discriminant Δ' of Δ considered as a quadratic in $(1-t)^2$ is a square. Now,

$$\Delta' = \lambda^2 (1+\alpha)^2 - \lambda^2 (1-\alpha)^2 4\lambda^2 \alpha.$$

Hence $\alpha = \beta^2$; this incidentally means that GF(q) contains a square other than 0 and 1, whence $q \neq 3$. Solving $\Delta = 0$ for $(1-t)^2$ gives

$$(1-t)^2 = \lambda(1+\beta^2) \pm 2\lambda\beta = \lambda(1\pm\beta)^2.$$

Hence $\lambda = \gamma^2$. Thus

$$1 - t = \pm \gamma (1 \pm \beta).$$

Therefore, (4) becomes $(x \pm \beta y)^2 = 0$. This gives for Q_1, Q_2, Q_3, Q_4 the points

$$\mathbf{P}(e\beta, 1, e\beta + f\beta\gamma - ef\beta^2\gamma)$$

where $e, f = \pm 1$. Also \mathcal{C} has equation

$$y(x-z)^{2} + \gamma^{2}x(x-y)(x-\beta^{2}y) = 0,$$

which is elliptic.

For the calculation of the equations of cubic curves with a precise number of points, see also [4], [6], [7].

II. k = 25

Each case not covered in this paper can be reduced to a finite calculation. An arbitrary group-arc \mathcal{K} of a given order is given by a set of points, where some of the coordinates are elements of GF(q) and some are indeterminates. The necessary collinearities are given by a set of polynomial equations in the indeterminates. An algebraic manipulation programme can then determine the consistency of these equations, and check whether or not \mathcal{K} lies on a cubic curve. For example, A. Simis (personal communication) has verified that if \mathcal{K} is isomorphic to $(\mathbf{Z}_5)^2$, then this works, as one expects from Corollary 4.2.

References

- [1] Ghinelli, D., Melone, N. and Ott, U. (1989) On abelian cubic arcs, Geom. Dedicata 32, 31-52.
- [2] Hirschfeld, J.W.P. (1979) *Projective geometries over finite fields*, Oxford University Press, Oxford.
- [3] Hirschfeld, J.W.P. (1985) Finite projective spaces of three dimensions, Oxford University Press, Oxford.
- [4] Hirschfeld, J.W.P. and Thas, J.A. (1990) Sets with more than one representation as an algebraic curve of degree three. *Finite Geometries and Combinatorial Designs*, American Mathematical Society, Providence, pp. 99-110.
- [5] Hirschfeld, J.W.P. and Voloch, J.F. (1988) The characterization of elliptic curves over finite fields, J. Austral. Math. Soc. Ser. A 45, 275-286.
- [6] Keedwell, A. (1988) Simple constructions for elliptic cubic curves with specified small numbers of points, *European J. Combin.* **9**, 463-481.
- [7] Keedwell, A. (1991) More simple constructions for elliptic cubic curves with small numbers of points, preprint.
- [8] Rück, H.-G. (1987) A note on elliptic curves over finite fields, *Math. Comput.* **49**, 301-304.
- [9] Schoof, R. (1987) Non-singular plane cubic curves over finite fields, J. Combin. Theory Ser. A 46, 183-211.
- [10] Thas, J.A. (1975) Some results concerning $\{(q+1)(n-1); n\}$ -arcs and $\{(q+1)(n-1) + 1; n\}$ -arcs in finite projective planes of order q, J. Combin. Theory Ser. A 19, 228-232.
- [11] Voloch, J.F. (1988) A note on elliptic curves over finite fields, Bull. Soc. Math. France 116, 455-458.
- [12] Waterhouse, W.G. (1969) Abelian varieties over finite fields, Ann. Sci. Ecole Norm. Sup. 2, 521-560.

School of Mathematical and Physical Sciences University of Sussex Brighton BN1 9QH United Kindom

Department of Mathematics University of Texas at Austin Austin TX 78712 U S A