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Let K be a field, complete with respect to an absolute value |.|. Let X be an algebraic

variety defined over K. Then X(K) has a natural topology coming from the topology of

K induced by |.| and it is possible, in many different ways, to describe this topology by

a metric. This has been studied, for instance, in [Si], where many functorial properties

are obtained. However, the main focus of [Si] is to obtain global height functions, so the

metrics considered are defined in completions of global fields and care was used to study

how things varied with respect to the place. Also, archimedian valuations are considered.

All this results in the results of [Si] stated as holding only modulo bounded functions.

Some of the results of [Si] were extended in [B]. Another approach, for projective space,

was suggested in [R] and studied further in [CV]. Again, the focus was on global fields.

The purpose of this note is to concentrate on the non-archimedian local case and obtain

more refined results. We will use a different development of the theory, but we will show

that we recover the metrics defined by the aforementioned authors, in particular showing

that they coincide, which is not obvious from their definitions. Our results will be sharp

and will not involve any unspecified bounded function. Most, if not all, of our results will

not be a surprise to the experts and, in fact, we have implicitly used these results, e.g. in

[V]. Nevertheless, it seems appropriate to record these results with proofs, since no other

source is currently available in the literature. At the end we will discuss some global results

and give a sharpening of a result of Carlitz which suggests an interesting conjecture.

In the case K = Qp, the definition of our metric will be, informally, that d(P,Q) =

p−m, if P,Q are equal modulo pm but not modulo pm+1. To make sure that our definitions

are independent of any choice of coordinates and to deal with more general situations, we

will use the language of schemes. Perhaps with a bit more effort one could dispense with

that.

Let K be a field, complete with respect to an absolute value |.|. That is, for any
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x ∈ K, |x| is a real number and the following holds:

(i) For all x ∈ K, |x| ≥ 0 and |x| = 0 if and only if x = 0.

(ii) For all x, y ∈ K, |xy| = |x||y|.

(iii) For all x, y ∈ K, |x+ y| ≤ max{|x|, |y|}, with equality holding if |x|, |y| are distinct.

Let O = {x ∈ K | |x| ≤ 1}, be the ring of integers of K and, for any ε, 0 < ε ≤ 1,

define Mε = {x ∈ K | |x| < ε}. So, M1 =M is the maximal ideal of O. Let Oε = O/Mε

for 0 < ε ≤ 1. If X is a scheme over O, we will denote by Xε the base change of X to

Oε, Xε = X ⊗O Oε.

Let X be a reduced scheme of finite type over SpecO. We will define a metric on

X(O). More generally, we will define, for a closed subscheme Y of X a distance function

of elements of X(O) to Y as follows. Let d(P, Y ) = inf{ε > 0 | Pε ∈ Yε}, provided this set

is non-empty, otherwise set d(P, Y ) = 1.

If we start with a variety over K we can always take a model over O and work there.

If the variety is projective, then any K-rational point extends to an integral point of the

integral model. In general, this will not be the case, and thus our metric is only defined

for integral points. This is similar to a difficulty encountered in [Si] where in the quasi-

projective case, he obtained his distance functions modulo a “distance to the boundary”.

Theorem 1. Let X be a reduced scheme of finite type over SpecO. The distance defined

above has the following properties:

(a) If Y is an effective Cartier divisor on X and U is an open subset of X on which Y is

given by (f), f ∈ OX(U), then d(P, Y ) = |f(P )| for P ∈ U(O).

(b) If Y,Z are closed subschemes of X then d(P, Y ∩ Z) = max{d(P, Y ), d(P,Z)}.

(c) If Y is another reduced scheme of finite type over SpecO and f : X → Y is a morphism

of SpecO-schemes, then for any closed subscheme Z of Y , d(P, f∗(Z)) = d(f(P ), Z),

for all P ∈ X(O).

(d) As a function on X(O)×X(O), d(P,Q) defines a metric which induces the topology

coming from the topology of O. Moreover, it satisfies the ultrametric inequality

d(P,R) ≤ max{d(P,Q), d(Q,R)}, for all P,Q,R ∈ X(O) with equality holding if

2



d(P,Q), d(Q,R) are distinct.

(e) If L/K is a Galois extension with ring of integers O′, σ ∈ Gal(L/K) and Y is a closed

subscheme of X ⊗O O′, we have d(Pσ, Y σ) = d(P, Y ), for all P ∈ X(O′).

Proof: To prove (a), note that the reduction of f modulo Mε defines Yε in Uε and

that |f(P )| < ε if and only if the reduction of f(P ) modulo Mε is zero. Likewise, (b) is

straightforward. For (c), it suffices to notice that f(Pε) = f(P )ε and that f∗(Z)ε = f∗(Zε),

as follows from the functorial properties of base change. For P,Q ∈ X(O), Pε ∈ Qε if and

only if Pε = Qε, so the ultrametric inequality follows from transitivity of equality and the

case of equality in the ultrametric inequality is a formal consequence of it. Finally, it easy

to show that the induced topology is that coming from the topology of O, by taking local

coordinates and using (a). To prove (e) it is enough to notice that the idealsM′ε of O′ are

Galois invariant since K is complete and the rest follows from the functorial properties of

base change.

Remark: It follows from items (a) and (b) of the theorem and [Si], theorems 1.1 and

2.1 that our distance coincides with that of [Si]. Note however that [Si] always works with

− log d.

The distance of [R] is defined as follows. If P,Q are points in Pn(K) represented

by vectors x, y ∈ Kn+1, then d′(P,Q) = |x ∧ y|/|x||y|, where vectors are given the sup-

norm. When regarding a point in Pn(K) as a point in Pn(O), one chooses a representative

x ∈ On+1 one of whose coordinates is a unit, thus |x| = 1. If such representatives x, y are

chosen for P and Q, then d′(P,Q) = maxi 6=j{|xiyj − xjyi|}. To show that this coincides

with our definition, note that (compare [Si], §3) d(P,Q) = d((P,Q),∆), where ∆ is the

diagonal in Pn × Pn. Now, it follows that d = d′ since xiyj − xjyi = 0, i 6= j, gives a

system of equations defining ∆. Theorem 1 (d) also gives that, if A is a linear map on

Pn over O, then A induces an isometry on Pn(O), which is a special case of Theorem 3

of [CV], since A is defined over O if and only if η(A) = 1 in the notation of [CV]. More

generally, automorphims of X/ SpecO are isometries.

Another equivalent way of defining the distance is through intersection theory. This
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is standard when the valuation on K is discrete, but it does work in general. Namely, if

P ∈ X(O) is viewed as a section sP : SpecO → X and Y is as above, then either the

image of sP and Y are disjoint (in which case d(P, Y ) = 1) or the image of sP is contained

in Y (in which case d(P, Y ) = 0) or s∗P (Y ) is a closed subscheme of SpecO supported at

the closed point, thus defined by an ideal I of O, in which case d(P, Y ) = inf{ε | I ⊂Mε},

as is readily checked. This shows that d(P, Y ) = 0 if and only if P ∈ Y (O).

As an application we prove the following higher dimensional generalization of Kras-

ner’s lemma:

Corollary 1. LetX be a reduced scheme of finite type over SpecO. If P andQ are integral

points of X defined over a separable algebraic extension of K and d(P,Q) < d(P, P ′) for

every conjugate P ′ of P over K, then P is defined over K(Q).

Proof: If P is not defined over K(Q), then there exists σ in the absolute Galois group

of K(Q) such that Pσ 6= P . It follows from Theorem 1 that

d(P, P σ) ≤ max{d(P,Q), d(Q,Pσ)} = d(P,Q)

and this contadicts the hypothesis.

Corollary 2. Let G be a reduced group-scheme of finite type over SpecO. Then the

distance is translation invariant.

Proof: This follows immediately from Theorem 1 (c), applied to the morphism given

by translation by an element of G(O).

Remark: It follows that, in the situation of the corollary, d(P,Q) = d(PQ−1, 1) and,

from the ultrametric inequality, the sets G(ε) = {P ∈ G(O) | d(P, 1) < ε} form a filtration

of G(O) by subgroups, which recovers the canonical filtration of the formal group G(1) of

G.

We should also remark that, given a distance function on points, there is an obvious al-

ternative way of defining distances to subschemes as follows: d′(P, Y ) = infQ∈Y (O) d(P,Q).

It follows from theorem 1 that d(P, Y ) ≤ d(P,Q) for Q ∈ Y (O) by applying item (b) with
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Z = Q, so d(P, Y ) ≤ d′(P, Y ) for all P ∈ X(O). If the valuation on K is discrete then, by

[G1], corollary 1, there exists c, δ > 0, such that d′(P, Y ) ≤ cd(P, Y )δ, for all P ∈ X(O)

and this was generalized to arbitrary K as above in [Sc].

As a final application we discuss a global problem in “non-linear diophantine approx-

imation”.

Let X be an algebraic variety defined over a field K, either a number field or a function

field in one variable, with field of constants k. Let v be a place of K and Y a subvariety

of X defined over the local field Kv. We shall be interested in points in X(K) which are

v-adically close to Y in terms of their heights. If Y is defined over K, it is easy to get an

estimate that states that a point cannot be too close to Y unless it is in Y , which can be

viewed as a generalization of Liouville’s theorem in diophantine approximation. When K

is a number field, one can view Vojta’s conjectures [Vo] as an analogue of Roth’s theorem

in this context, but these remain largely unproved, except when X is an abelian variety.

Our goal is to state and prove, under some hypotheses in the function field case, a result

which can be viewed as an analogue of Dirichlet’s theorem. Such results are known if X

is projective space and Y is a linear subspace, whereas we try to obtain results in a more

general context, which explains the term “non-linear”. Such questions seem to have first

been raised by Schmidt [S1] and he obtained some results for hypersurfaces of projective

space of sufficiently high dimension in the number field case in [S2]. The special case of

projective quadrics has been extensively studied under the guise of Oppenheim’s conjecture

and there the results are sharper in the number field case, due to the work of Margulis and

others (see [M]).

Let K = k(t), where k is an algebraically closed field and t is an indeterminate and

consider its completion Kv = k((t)) with respect to the valuation v centered at 0. We

consider the distance function, as defined above, for varieties over Kv. We define the

global height of P = (x0 : . . . : xn) ∈ Pn(K) as h(P ) = max{deg xi} if x0, . . . , xn ∈ k[t]

have no common factor.

Theorem 2. Let f1, . . . , fs ∈ K[x0, . . . , xn], g ∈ Kv[x0, . . . , xn] be homogeneous polyno-
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mials. Let X = {P ∈ Pn | f1(P ) = · · · = fs(P ) = 0}, Y = {P ∈ X | g(P ) = 0}. Let

di = deg fi, e = deg g. Assume that
∑
di + e ≤ n and that Y (K) = ∅. Then, for infinitely

many P ∈ X(K),− log(d(P, Y )) ≥ µh(P ) +O(1), where µ = n+ 1−
∑
di.

Proof: The proof is an extension of the classical proof of Tsen’s theorem (compare,

e.g. [G2]). A similar argument occurs in [C], where finite, instead of algebraically closed

fields are considered. However, in [C], it is only proved that there is a solution to the given

inequality, as opposed to infinitely many.

Let H be a large integer and consider x0, . . . , xn ∈ k[t] of degree at most H, poly-

nomials to be determined. Their coefficients then give (n + 1)(H + 1) unknowns in

k. The conditions fi(x0, . . . , xn) = 0, i = 1, . . . , s and v(g(x0, . . . , xn)) ≥ M impose

H
∑s

1 di +M +O(1) conditions given by homogeneous equations in the unkowns. A solu-

tion can be guaranteed to exist if we let M = H(n+ 1−
∑s

1 di) +O(1). Let x0, . . . , xn be

a solution and d their greatest common divisor. Then putting P = (x0 : . . . : xn) we have

h(P ) = max{deg xi} − deg d ≤ H − deg d and − log d(P, Y ) ≥M − v(d)e ≥M − deg de ≥

µh(P ) + O(1). What remains to be shown is that this process leads to infinitely many

distinct points P . Suppose not. Assume that the same point P gives rise to infinitely

many x0, . . . , xn and therefore to infinitely many d. From v(g(x0, . . . , xn)) ≥ M we get

that, since g(x0, . . . , xn) 6= 0, ev(d) ≥ M + O(1) hence edeg d ≥ M + O(1), and since

deg d ≤ H we get eH ≥ M + O(1), dividing by H and letting H go to infinity then gives

e ≥ n+ 1−
∑s

1 di, contradicting the hypothesis. This completes the proof.

This result is best possible in its generality. For example, let n = 1, s = 0 and

g(x0, x1) = x20 + tx21, then X = P1 and − log d(P, Y ) ≤ 1,∀P ∈ X. There are other

examples in all dimensions. It is conceivable that under additional hypotheses there will

be a similar result for higher degree. The same polynomial g can be used for n = 2, say,

to show that the constant µ cannot be improved in general. However, one may conjecture

that if Y (Kv) is Zariski dense in Y , one may weaken the restriction
∑
di + e ≤ n to∑

di ≤ n. One may also conjecture that similar statements also hold in the number field

case.
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