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If A is an abelian variety defined over the complex numbers C, then there exists a

lattice Λ ⊂ Cg, g = dimA, such that A(C) = Cg/Λ. This lattice is called the period lattice

because functions on A will be periodic functions on Cg with periods in Λ. In this note we

give an analogue in characteristic p for the period lattice Λ and for the parametrization

A(C) = Cg/Λ.

Notation: For an abelian group H we define Ĥ = lim←−H/p
nH. Then Ĥ is a Zp-

module.

Let A be an ordinary abelian variety over a field K of characteristic p > 0 and let

Ks be the separable closure of K and G = Gal(Ks/K). Let A(pn) be the image of A

under the n-th power of the Frobenius map Fn and Vn : A(pn) → A the dual isogeny, the

n-th order Verschiebung, which is separable since A is ordinary. Then kerVn is the pn

torsion of A(pn). We define the period lattice by Λ = lim←− kerVn. This definition is not

new, it corresponds to the Serre-Tate parameters (see e.g. [K]), however it usually only

considered when the ground field is a local field. See [K] also for the relationship between

the Serre-Tate parameters and moduli. The generalization of the analytic parametrization

of an abelian variety is given by the following:

Theorem 1. Λ→ K̂∗s ⊗ Λ⊗(−1) → ̂A(Ks)→ 0 as G-modules.

A few comments are in order. As a Zp-module, K̂∗s ⊗ Λ⊗(−1) is isomorphic tô(K∗s )g, g = dimA, but they are different as G-modules. Secondly, the analogy with

the analytic parametrization is more evident after composing it with the exponential

map. This construction also generalises the Tate parametrization of elliptic curves: If

Kv is a local field and E/Kv has split multiplicative reduction then ∃q ∈ Kv such that

0→ qZ → K∗v → E(Kv)→ 0 ([S], Ch. V). It is easy to show that Theorem 1 follows from

the Tate parametrization in this case (see [V1], lemma 2). This generalizes to Mumford’s

parametrization of abelian varieties with completely multiplicative reduction [Mu].
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Proof: We we have the exact sequence of group schemes

0→ kerFn → ker[pn]→ kerVn → 0.

Taking flat cohomology yields

kerVn(Ks)→ H1(Ks, kerFn)→ H1(Ks, ker[pn])→ 0.

On the other hand, H1(Ks, ker[pn]) = A(Ks)/p
nA(Ks), which follows from the exact

sequence 0→ ker[pn]→ A→ A→ 0 and also

H1(Ks, kerFn) = H1(Ks, µpn)⊗ kerV ⊗−1n = K∗s /(K
∗
s )p

n

⊗ kerV ⊗−1n .

Putting these together and passing to the inverse limit yields the theorem.

Corollary. If K is a global field, E/K an elliptic curve and v a place of K where E has

bad reduction, then q is transcendental over K and so is any u ∈ K∗v which maps to a

point of infinite order in E(K).

This corollary is proved in detail in [V]. The proof consists in comparing the Tate

parametrization and the parametrization given by Theorem 1 and using a theorem of

Igusa which guarantees that the action of G on Λ is not through a finite quotient. The

transcendence of q is the characteristic p analogue of the recent result of Barré-Sirieix et

al. [B]. It would be nice to generalize the corollary to higher dimensional abelian varieties.

This would require understanding the action of G on Λ. The result follows, for example if

G acts via the full general linear group, which is the generic case by [FC], Prop. V.7.1.

Another application of theorem 1 is to local duality. It is a classical result of Tate (up

to the p-part in characteristic p, which is due to Milne) that, if K is a local field with finite

residue field, then A(K) and H1(G,A(Ks)) are Pontrjagin duals. There is a conjecture of

Milne ([M], III, Conjecture 10.7) which generalizes the local duality to case of algebraically

closed residue field. This conjecture is known in the case of good reduction (Bester, see

[M]) and for elliptic curves with split multiplicative reduction (Shatz, see [M]). We extend

these results a bit in the following proposition, and we believe its proof may be extended

to give further results along these lines.
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Proposition. Let K be a local field whose residue field is the algebraic closure of a

finite field of characteristic p > 0 and A/K an abelian variety whose reduction is a semi-

abelian variety with ordinary abelian quotient. Assume also that A[p] ∩ A(Ks) = 0, then

Tp(H1(G,A(Ks)) is isomorphic to H1(G,Λ).

Proof: Consider the exact sequence of G-modules

0→ K∗s
pn

→ K∗s → K∗s /(K
∗
s )p

n

→ 0.

Under the hypotheses of the theorem, H1(G,K∗s ) = H2(G,K∗s ) = 0, so the Galois coho-

mology sequence of the above exact sequence yields (K̂∗s )G = K̂∗ and H1(G, K̂∗s ) = 0.

Now consider the exact sequence of G-modules

0→ A(Ks)
pn

→ A(Ks)→ A(Ks)/p
nA(Ks)→ 0.

Taking Galois cohomology yields 0→ Â(K)→ ̂A(Ks)
G
→ Tp(H1(G,A))→ 0.

By our hypothesis on the reduction type of A we obtain that Vn is étale on the special

fibre as well as on A, thus Λ = Zg
p with the trivial action of G. It also follows that Vn is

an isomorphism on the formal group of A. Thus, given P ∈ A(K) in the formal group,

we can find Q ∈ A(pn)(K), Vn(Q) = P and we can then map Q to H1(K, kerFn) using

the coboundary map of the flat cohomology sequence coming from the exact sequence

0 → kerFn → A → A(pn) → 0. This gives us an inverse, in the formal group, to the

map (K̂∗)g = lim←−H
1(K, kerFn) → Â(K) which comes from theorem 1. It follows that

Â(K) = (K̂∗)g/Λ.

We are now ready to take Galois cohomology of the exact sequence of theorem 1. Note

that under our present assumptions this sequence is exact on the left also. We get

0→ Λ→ (K̂∗)g → ̂A(Ks)
G
→ H1(G,Λ)→ 0.

Since (K̂∗)g surjects onto Â(K), we obtain that

Tp(H1(G,A)) = ̂A(Ks)
G
/Â(K) = H1(G,Λ).
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We say that an ordinary abelian variety A is sufficiently general if A[p∞] ∩ A(Ks) is

finite. It follows from the proof of theorem 1, that A is sufficiently general if and only if the

map Λ → K̂∗s ⊗ Λ⊗(−1) is injective. In [V2] a sufficient condition for A to be sufficiently

general is given which justifies the name ”sufficiently general”. The following theorem

studies the action of the endomorphisms of A on Λ and produces a best possible result

under the hypotheses, showing that Λ behaves like the period lattice in this case and also

like the `-adic representation.

Theorem 2. The natural map End(A) ⊗ Zp → End(Λ) is injective if A is sufficiently

general.

Proof: It suffices to show, by standard arguments, that if φ ∈ End(A) acts trivially

(via φ(p
n)) on kerVn for n large, then φ factors through [p] : A → A. Let Ǎ be the dual

abelian variety and fix a polarization α : A → Ǎ, defined over K. We have a dual map

φ̌ : Ǎ→ Ǎ and φ̌ kills the Cartier dual of kerVn which is kerFn on Ǎ. We can thus factor

φ̌ = ψ ◦ Fn, ψ : Ǎ(pn) → Ǎ. We are done if φ̌ kills ker[p]. But, if that is not the case there

exists a cyclic subgroup H of Ǎ(pn) of order pn on which ψ is injective. This subgroup will,

moreover, be defined over Ks. Thus, α(ψ(H)) is a large subgroup of A of p-power order

defined over Ks, which will be a contradiction for n sufficiently large.

One may conjecture, transposing a similar conjecture of Tate, that End(A) ⊗ Zp is

isomorphic to EndG(Λ), if A is defined over a global field K with absolute Galois group G

and A is sufficiently general. This is trivial if A is an elliptic curve, since both groups are

isomorphic to Zp under the hypotheses. The first non-trivial case is when A is a product

of two elliptic curves and in this case the conjecture is true, being essentially equivalent to

Keating’s characterization of the Igusa tower [Ke].
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