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Abstract

A planar surface is a surface in three-space in which every tan-
gent line has triple or higher contact with the surface at the point of
tangency. We study properties of planar surfaces in positive charac-
teristics, use that to bound the number of points of a planar surface
over a finite field and give an application to Waring’s problem for
polynomials.

1 Introduction

Let S be a surface in three-space (for any reasonable interpretation of the
term, for now). If P is a smooth point on S, then the lines that have at
least double contact with S at P are the lines on the tangent plane to S at
P that pass through P. These are called tangent lines to S at P. Typically,
one expects that most tangent lines have contact exactly 2. A point P for
which all tangent lines have contact at least 3 is called a planar point of S. A
surface for which all smooth points are planar is called a planar surface. In
characteristic zero, planar surfaces are planes. This is very classical in both
the algebraic, analytic or differentiable settings. In positive characteristic this
is no longer the case and now we restrict ourselves to the situation where we
have an algebraic surface in P? over a field of positive characteristic p. There
are many more planar surfaces in positive characteristic, a classification of
the smooth ones was obtained by Xu [Xu] who also proved that, on a planar
surface, the generic order of contact at P of a tangent line with S is a power
of p. We will give a somewhat different proof of these results under less
restrictive hypotheses.



On a general point P of a non-planar surface, there are two (or occasion-
ally just one) lines that touch S at a point with multiplicity at least three,
called the asymptotic lines. The basic starting point of this paper is the
observation (proved below) that, on a general point P of a planar surface,
there is exactly one tangent line, which we call the hyperasymptotic line,
which touches S at P with multiplicity higher than the general tangent line
to S at P.

In this paper we will study various geometric questions connected to
hyperasymptotic lines on planar surfaces. In addition, we give an application
of our results to Waring’s problem for polynomials.

In addition we will use them to give a bound on the number of rational
points of the surface when the surface is defined over a finite field. This
bound will be obtained by counting the number of points P of S in an
algebraic closure of F, whose image under the Frobenius map lies in the
hyperasymptotic line to S at P.

A additional motivation for the study of planar surfaces is the paper of
Ellenberg and Hablicsek [EH].

2 Geometry

In this section we fix an algebraically closed field &k of characteristic p > 0.
Let S be a closed, integral surface of degree d > 1 over k defined by the
equation f = 0, where f is an irreducible homogeneous polynomial of degree
d in k[zg, x1, x2, x3]. We assume that S is planar, that is, for all smooth points
P on S, and all lines L tangent to S at P, the intersection multiplicity of
the intersection of L and S at is at least 3. We say that S has controlled
singularities if the one-dimensional component of the set of singular points
of S is empty or is a curve of degree less than d/2 (compare [He]).

Theorem 1 Let S be a planar surface with controlled singularities in char-
acteristic p > 0 of degree d given by f = 0. Then there exists r, a power
of p, such that d = 1 (mod r) and polynomials g;,1 = 0,...,3 such that
f =>_glx; and the intersection multiplicity of a general tangent line to S
at a general point P 1is exactly r.

Let C' be a general plane section of S. From the assumption that S has
controlled singularities, it follows that C' has controlled singularities in the
sense of [He]. Let P be a general point of C'. The line to C' at P is tangent
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to S at P with the same contact multiplicity and, since S is assumed planar,
P is an inflection point of C'. By the results of [He] (in particular Theorem
5.1), since P is general, there is r as in the statement of the theorem such
that the contact of C' (hence also S) with the tangent line at P is r and the
equation for C'is given by a similar expression (with one fewer variable) to
that claimed for f. As C'is a general plane section of S, it follows that f has
the desired form.

Theorem 2 On a general point P of a planar surface, there is exactly one
tangent line which touches S at P with multiplicity higher than the general
tangent line to S at P.

Consider a general point P on the surface and choose affine coordinates
x,y,2z with P being at the origin and the tangent plane at P being z = 0.
Expand z as a power series in z,y. Now, the condition that the generic order
is r, gives that all partial derivatives of z of total order s with 1 < s < r
vanish identically. It follows from that also that the mixed partials (i.e. those
involving both x and y) of total order s = r also vanish identically. Indeed,
the mixed Hasse partial of order (7,j) is the composition of the i-th Hasse
derivative with respect to  and the j-th Hasse derivative with respect to y
(see [He|, Section 3). If i + j = r and both 4, j > 0 then both i, j < r and

Dylz = D (Djz) = D;(0) =0

by the above, unless j =1 (as 7 < r). If j = 1, then switch = and y. We
are done, except if i = j = 1, i.e. r = 2 but S is not planar if r = 2. So
the homogeneous term of order r of z is a r-th power of a linear form (as
r is a power of the characteristic, by the previous theorem) and that linear
form determines the unique tangent line with contact bigger than r. This
completes the proof.

We will call the line, whose existence is asserted by the theorem, the
hyperasymptotic line to S at P and denote it by Lp if the surface is fixed.

Note that the theorem does not have any assumptions on the singular
locus of S, unlike the previous theorem. From the theorem it follows that a
planar surface of degree r and generic order r is ruled, since the hyperasymp-
totic line at a general point has to be contained in S.

For a planar surface S of degree d and generic order r, given a point () in
P32, the equation of the surface, together with the first and r-th polars at Q,
describe the set of points P € S with () € Lp. This is a system of equations



of degree d(d — 1)(d — r) but since first polar is a r-th power, the expected
number of points P € S,Q € Lp is d(d —1)(d —r)/r.

On a planar surface S of degree d and generic order r, we consider the set
X of points P € S for which the hyperasymptotic line to S at P has contact
higher than r + 1 or the generic tangent has contact higher than r. This
is the analogue of the flecnodal locus and will will called the hyperflecnodal
locus. One expects X to be a curve and one can bound its degree (following
Kollar [K], 24) as follows. Recall, from theorem 1, that r is a power of p. We
need to study the resultant of a system of forms of the shape

ZCL,L'ZL'Z' = szl': = ZCZ']'SC;ZCJ‘ = O,i,j = 1,2,3

which has multidegree (r?+r,7+1,7) as can be seen by raising the first equa-
tion to the r-th power, solving the two linear equations in x] and substituting
in the r-th power of the third. Using

a; = Dy, f,bi = Dy f,cij = D, Dy, f,
leads to an equation cutting X inside S of degree at most
(r4r)d—1)+r+D(d-r)+r(d—r—1)=(?+3r+1)d —3r(r +1).

This argument fails if every point on S is hyperflecnodal, that is, the order
of contact of the hyperasymptotic line at a generic point P € S with S at
P is always bigger than r 4+ 1. In this case, unless S is ruled, there exists a
finite s > r+ 1 which is the order of contact of the hyperasymptotic line at a
generic point P € § with S at P. Now a modification of the above argument
leads to a resultant of equations of multidegree (rs, s, r), giving an equation
cutting X inside of S of degree at most d(sr(d—1)+s(d—r)+r(d—s)) and
thus an upper bound of d(sr(d—1)+s(d—r)+r(d—s)) for the degree of X.
In particular, it follows that S contains at most d?(d? —2d+2) lines (compare
[K], prop. 26). An interesting question is to determine the possible values
for r, s given d, p. Clearly r < s < d. A guess would be that s =r 4 1,2r or
another power of p.

3 Arithmetic

Consider a planar surface S of degree d and generic order r, defined over a
finite field of cardinality ¢, such that not every point of S is hyperflecnodal.
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We will give a bound on the number of rational points of the surface using
the hyperasymptotic lines. This bound will be obtained by counting the
number of points P of S in an algebraic closure of F, whose image under the
Frobenius map lies in the hyperasymptotic line to S at P.

Theorem 3 Let S be planar surface of degree d and generic order r, de-
fined over a finite field of cardinality q, such that not every point of S is
hyperflecnodal. Then

dld+q—1)(d+rqg—r)
r(r+1)

#S(F,) < +d((r* +3r +1)d —3r(r +1))(g+ 1).

The proof is similar to theorem 2 of [V]. Consider the algebraic set
Z of points P of S in an algebraic closure of F;, whose image under the
Frobenius map lies in the hyperasymptotic line to S at P. The expected
number of points satisfying this condition is d(d + ¢ — 1)(d + qr — r) with
the rational points being counted with multiplicity at least r(r 4+ 1), with
equality if the rational point is not hyperflecnodal (by a calculation similar
to that of [V]). So, if Z has a one-dimensional component, it is contained in
the hyperflecnodal locus of S, which has degree at most d((r? + 3r + 1)d —
3r(r+1)), as we saw in the previous section. The first term of the inequality
of the theorem is an upper bound on the isolated points of Z and the second
accounts for the other points.

4 Examples

The Hermitian surface S : 2P +9PT1 4+ 2P*1 = 1 is planar in characteristic p.
If F, denotes the F2-Frobenius then the line PF,(P) is tangent to S at P if
P # F5(P). Since the order of contact is at least p, then it must be exactly p,
unless the line is entirely contained in S, as the surface has degree p+1. Also,
if a line has contact bigger than p + 1 at a point then the line is contained
in S. S contains (p+1)(p® + 1) lines and (p* +1)(p® + 1) F2-rational points
with p + 1 lines passing through each of them ([Hi] Thm 19.1.5). The locus
{P € S|Fy(P) € Lp} consists of exactly the lines contained in S which is
also the locus of points for which the hyperasymptotic line has contact bigger
than p+ 1. If ¢ = p™, m > 2, the set Z in the proof of the theorem of the
previous section contains, in addition to the lines, the set of F;, and F .
rational points.



The surface z = (2% + y% 4+ 1)y, p = 3 is planar ([Xu]). It contains three
lines z =y = 0 and z = y, x = +iy, where 2 = —1. Except at the origin, the
generic tangent line has contact 3 and the hyperasymptotic line has contact
at least 6, with equality outside of the lines.

We now consider the surface X : 224t + 92t 4 22071 — 1 where ¢ is a
power of the characteristic p. Note that it has automorphisms consisting of
permuting the variables (projectively, even) and multiplying some variables
by 2q + 1-st roots of unity. In what follows, we will often work in an affine
piece of X and use the automorphisms to extend the results to the whole
of X. Note that z = ¢, (%! = 1 meets X in 2¢ + 1 lines and, using the
automorphisms, we get 3(2¢ + 1)? lines in X.

We begin by computing the hyperasymptotic line at a general point of
X and an equation for the hyperflecnodal locus. Consider a line (z + ¢,y +
at, z 4+ bt) through (z,y,z2) € X.

(z+)2 T 4 (y+at) 2T 4 (24-b8) 20— 1 = Ct+-Cot?+Cst I+ Oyt 1 4+ Cyt 201,

The conditions C; = C5 = 0 impose linear relations on a?, b? and define
the hyperasymptotic line. Explicitly,

2 2 2
Cf = 27 + y*Taf + 2°7 1"

and
Cy = P + yq+1aq + Lat1pa
so the conditions are
_ 2¢% _q+1 2¢%  q+1 2¢% _q+1 2¢% q+1
a‘]__(l»qzq _quq )/(yqzq _quq )’

pl — _($2q2yq+1 _ y2q2$q+1)/(22q2yq+1 _ y2q2zq+1)‘

The equation for the hyperflecnodal locus is obtained by substituting
these values of a4, b? into

cl = 29 4y et 4 2 palat))

yielding

209292 qg+1  _2¢%, q+1N\g+1 | .. ¢%(..2¢° .q+1  _2¢° .q+1\g+1 | q%/..2¢%, q+1 . 2¢% q+1\q+1
Iq (quQ+ _quQ+)Q+ +yq (ququ _ququ)qu _|_Zf1 (quCI+ _yqqur )qu



2¢+1 2¢+1

If we abbreviate u = x
becomes (zyz)? F, where

,v = y?T w = 22971 the above expression

F = uv(wzfl _ Uqfl)qul 4 uw(uq—l o wq—l)q+1 + ’Uw('l}qil _ wq71>q+1.

So, the hyperflecnodal locus consists of the curves given by xyz = 0 as
well as the curve D described by the equations F' = 0,u +v +w = 1. The
hyperosculating line at a general point of zyz = 0 has contact 2¢q + 1 with
the point. For instance, if z = 0, the line is given by (z,y,t).

Note that D contains the set of lines given by (u + v)(u + w)(v 4+ w) = 0.
We proceed to find the singular locus of the curve F' = 0,u +v+w =1 in
the variables u, v, w. The singular locus is described by the extra equations
OF/0u = OF/0v = OF /0w = 0. Since F is homogeneous, this forces all
three partials to vanish if p > 3, which we assume henceforth. Now,

OF /Ou = v(ut™" — 0 1T —qp(ud™! — v H) 2024
w(ui™t —w™ T — g (u? — w1 =

—(wurt =T Fwuit —wt )

which simplifies to —(u4™! — 1)? upon w = 1 — v — v. In particular, the
singular locus of curve F' = 0,u + v + w = 1 consists of the points with
ul™t = 97! = w? ! = 1. We remark that, in particular, this curve is
reduced. We use this to show that, on a general point of the hyperflecnodal
locus, we have Cy # 0, i.e., the order of contact of the hyperasymptotic line
with the point is exactly 2¢. To see this, note that C; = x + ya?? 4 2b*? and,
substituting the above expressions for a4, b? in this, transforms the condition
Cy = 0 into (zyz)*G = 0, where

G= uv(uq_l — vq—l)Z + uw(uq_1 _ wq—1)2 + vw(vq_1 . wq—l)Q'

Now, the equation I = 0 defines a reduced curve of degree ¢* + 1 in the
plane u + v + w = 1, while the equation G = 0 defines a curve of degree 2¢,
so the first curve cannot be a subset of the second, by degree considerations.
Note that G = 0 also contains (u + v)(u + w)(v + w) = 0, so they do have
components in common.



5 Waring’s problem

Let R be aring and n > 1 a fixed integer. Waring’s problem in this setting is
to determine the least integer s for which every element of R is a sum of s n-th
powers of elements of R, if such an integer exists, or co otherwise. Note that
what is usually called Waring’s problem is not what we call Waring’s problem
for Z. For n odd, what we call Waring’s problem for Z is usually referred
to as the “easier” Waring’s problem, with Waring’s problem proper referring
only to positive integers. In this section, we consider Waring’s problem for
R = k[t], where k is an algebraically closed field of characteristic p and we
denote the least s as above by v(p,n). This problem has been extensively
studied ([C, LW] and references therein). For p = 0, it’s known that y/n <
v(0,n) < n (INS]). Our focus hereison p > 0. If n = ko +kip+ -+ kp"
is the base p expansion of n (i.e. 0 < k; < p), then Liu and Wooley [LW]
showed that v(p,n) < [[(k; +1). We improve this bound for some values of
n and relate this to the geometric discussion above.

Note that, if s is the smallest integer for which there exists x1,..., 2, €
k[t] with > ' = t, then s = v(p,n), simply by replacing ¢ by a polynomial
in ¢. It is easy to see that v(p,2) = 2,p > 2, that v(p,n) > 2 for all n > 2
and that v(p,n) = oo if pjn. The following proposition for n = p™ + 1 is
due to Car, [C], Prop. 3.2. Our proof, although similar, gives slightly more
information and motivates our next result.

Proposition 1 If n|(p™ + 1) for some m, then v(p,n) = 3.

Let us write ¢ = p™. An identity > 27! = ¢ gives (2™ = ¢ 50
we need only consider n = ¢ + 1. Let x,y € k satisfy 2% + ¢91 +1 = 0,
then

(wt + 27) 4 (yt 4+ yT)H 4 (E+ 1) = o,

where ¢ = 27 4471+ 1 and can be chosen to be nonzero by an appropriate
choice of x,y. Replacing ¢ by t/c completes the proof.
We remark that the solutions to 24’1 4 y@*+1 1 = g0t 499t 4 1 =0

are in F .
The identity Y, (x;(t))™ = t, for polynomials z;(t) € k[t] can be inter-
preted as follows. The rational curve parametrized by (zq(t) : ... : 24(t)) in

P*~! meets the hypersurface X given by the equation Y ;  a? =0at t =0
with multiplicity one and at ¢ = oo with multiplicity n(maxdegz;) — 1 (the
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latter because there is no intersection with ¢ # 0, 0o and Bézout). The iden-
tity from the previous proposition follows from the fact that the Hermitian
curve 277 + 227 + 29! = 0 is Frobenius non-classical in the sense of [SV],
more precisely, the tangent line at general point P of the curve has contact ¢
with the curve and also contains the image of P under the ¢>-Frobenius map.
It follows from the known properties of the Fermat curves z{ + 24 + 25 =0
that there are no linear polynomials z;(t) € k[t] with 327 (x;(t))" = t, un-
less n is of the form ¢ + 1. We conjecture that v(p,n) > 3 in the cases not
covered by the above proposition.

Theorem 4 Ifp > 3 and n|(2p™ + 1) for some m, then v(p,n) < 4.

As in the previous proof, we reduce to the case n = ¢ + 1. From the
example in the previous section, the surface 29! + 24 4+ 24T 4 29t = 0
has points (viz. the general point on the hyperflecnodal locus) for which there
is a line that intersects the surface at the point with multiplicity exactly 2q.
Parametrizing such a line in a way that the point of tangency correspond to
t = oo and the additional point of intersection corresponds to t = 0 proves
the proposition from the discussion preceding it.
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