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Abstract. Using the relation between the problem of counting
irreducible polynomials over finite fields with some prescribed co-
efficients to the problem of counting rational points on curves over
finite fields whose function fields are subfields of cyclotomic func-
tion fields, we count the number of generators of finite fields with
powers of trace zero up to some point, answering a question of Z.
Reichstein, and give a few other applications of this method.

1. Introduction

As usual, for a prime p and a power q of p we use Fq to denote the
finite field of q elements.

We consider the following problem which is a question of Z. Re-
ichstein, asked in connection with the results of [7]. Specifically, he
asked when for a given m is there y ∈ Fqn with Fq(y) = Fqn and
Tr(y) = · · · = Tr(ym) = 0, (where Tr is the Fqn/Fq trace). As we
will show below, this is equivalent to the minimal polynomial P (t) of y
being of degree n and having all the coefficients of tn−i, 1 ≤ i ≤ m, p - i
vanish.

Reichstein was particularly interested in the case n = 6,m = 3, p =
2. Here one can proceed directly as follows, as already indicated in [7].
To find y in Fq6 , not in a smaller field with Tr(y) = Tr(y3) = 0 (where
the trace is to Fq) it is enough to find x, z ∈ Fq6 with y = xq − x, y3 =
zq − z and Fq(y) = Fq6 . The equations simplify to zq − z = (xq − x)3

and letting u = z + x3, we get uq − u = x2q+1 + xq+2 as p = 2. The
latter equation defines a curve of genus q(q − 1) over Fq6 . The Weil
bound gives that the number of points on the projective curve is at
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least q6 + 1 − 2q(q − 1)q3. There is one point at infinity and at most
q5 points with y = xq − x ∈ Fq3 , these are the bad points. So we need
q6 + 1 − 2q(q − 1)q3 > 1 + q5 and is enough to have q6 > 3q5, i.e.
q > 3. For q = 2, there are in fact two irreducible polynomials over F2,
x6 + x + 1 and x6 + x4 + x2 + x + 1, whose roots satisfy the required
conditions.

The purpose of this paper is to answer the general question above
by first reducing it to counting points on a certain curve over a finite
field, showing how to estimate its genus and then finally using the Weil
bound to count the points. The case p = 2 has been studied before
by I. Shparlinski [8] and O. Ahmadi [1]. We recover their results in
this paper. Their methods are superficially different to ours but, in
essence, they are similar and the results of this paper on Reichstein’s
question, for arbitrary p and m, could be obtained by their methods.
The more conceptual approach of this paper, however, can be applied
to more general situations. For instance, we will also count the number
of y ∈ Fqn with Fq(y) = Fqn whose minimal polynomial over Fq has
all the coefficients of tn−i, 1 ≤ i ≤ m, pj - i vanish. For j > 1, to
analyze this problem with exponential sums would require the use of
Witt vectors (as in e.g. [10]), which is beyond the scope of [1, 8].

A classical problem in the arithmetic of finite fields is to count monic
irreducible polynomials with some coefficients prescribed. Specifically,
given I ⊂ {0, . . . , n − 1} and fixed elements bi ∈ Fq, i ∈ I, one is
interested in counting the number of monic irreducible polynomials in
Fq[t] of degree n for which the coefficient of ti is bi. For a survey of
known results up to 2005, see [2].

The following idea, implicit in older papers (e.g. [3]) but made
clear in the work of Hsu ([5]), relates the above problem, when I =
{0, . . . ,m} or {n − m − 1, . . . , n} to certain curves over finite fields.
Carlitz constructed the so-called cyclotomic function fields that de-
scribe abelian extensions of Fq(t). For each monic polynomial f in
Fq[t], he constructed a field Kf , Galois over Fq(t) with Galois group
G = (Fq[t]/f)∗. Moreover a prime (i.e. monic irreducible) P of Fq[t]
splits completely inKf if and only if P ≡ 1 (mod f). Kf is the function
field of some curve over Fq and the Weil bound for this curve (applied
to Fqn points) describes the number of monic irreducible polynomials
P of degree n with P ≡ 1 (mod f).

If we want to count irreducible polynomials H(t) of degree n with
H(t) = tn+atn−m+. . ., we instead consider tnH(1/t) to fall back on the
above framework. There is only one glitch, namely that tnH(1/t) is no
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longer monic so really we should look at P = atnH(1/t), for suitable
a. But now, we can only look at P constant (mod tm+1). These
are precisely the primes that split completely in the subfield of Kf ,
f = tm, which is the fixed field of the subgroup of (Fq[t]/f)∗ consisting
of (images of) constants which is sometimes called the maximal real
subfield Rf of Kf . As mentioned before, this construction is in [5].

In this paper we look at the subsets I = {1 ≤ i ≤ m, pj - i} and we
will show that this corresponds to looking at primes P splitting com-
pletely in the subfield of Ktm+1 , which is the fixed field of the subgroup
of the Galois group of Kf/Fq(t) consisting of pj-th powers.

2. Genus estimates

For definitions and background on the cyclotomic function fields
see [4]. Fix an integer m > 1 and let K = Ktm+1 be the corre-
sponding cyclotomic function field (denoted by k(Λtm+1) in [4]). Let
G = (Fq[t]/tm+1)∗. Then G is the Galois group of K/Fq(t) and has
(q − 1)qm elements. The genus g of K satisfies 2g − 2 = qm(q − 1)m.
This is a special case of Hayes’s formula [4], cor. 4.2. Also, from [4],
thm 4.1, the prime above t = 0 is totally ramified in K and there are
qm primes above t = ∞ which are tamely ramified, with ramification
index q − 1.

To get the genus of the field fixed by constants or p-th powers we use
the Hurwitz formula. Let R = Rtm+1 be the maximal “real” subfield of
K, which is by definition the fixed field of the subgroup F∗q of G. The
qm primes above t = ∞ and the unique prime above t = 0 of R are
all totally and tamely ramified in K/R, so the genus r of R satisfies
2g − 2 = (q − 1)(2r − 2) + (qm + 1)(q − 2).

It is clear that Gpj , the group of pj-th powers of G, consists of classes
represented by polynomials in tp

j
of degree at most bm/pjc, therefore

Gpj has index qm−bm/p
jc in G. If we denote by Lj the fixed field of

Gpj , then R/Lj is an extension of degree qbm/p
jc and the prime above

t = 0 is the only prime ramifying in this extension and it is totally and
wildly ramified. If `j denotes the genus of Lj, we have the inequality

2r − 2 ≥ qbm/p
jc(2`j − 1).

3. Vanishing traces and prescribed coefficients prime to p

Let πk(x1, . . . , xn) = xk1 + · · · + xkn and σk be the usual elementary
symmetric functions.
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Lemma 1. In a field K of characteristic p > 0, we have πj vanishes at
(a1, . . . , an) ∈ Kn, for j ≤ m if and only if σj vanishes at (a1, . . . , an) ∈
Kn, for j ≤ m, (j, p) = 1.

Proof. We have the Newton identities:

kσk =
k∑
i=1

(−1)i−1σk−iπi

It’s clear from the above identities that, if πj vanishes at (a1, . . . , an) ∈
Kn, for j ≤ m, then mσm vanishes at (a1, . . . , an), which gives one di-
rection.

For the other direction, we can assume by induction that πj vanishes
at (a1, . . . , an), j < m and the above identities give 0 = mσm(a1, . . . , an) =
±πm(a1, . . . , an), since σ0 = 1.

ut

Note that prescribing arbitrary values for the πj, j ≤ m is not equiv-
alent to prescribing values for the σj, j ≤ m, (j, p) = 1. For instance,
when p = 2, σ1 = π1, π2 = π2

1 and

σ3 = σ2π1 + π3
1 + π3,

hence, given π1 6= 0, π2, π3, we can select σ3 (or σ2) arbitrarily.

It follows from the above that y ∈ Fqn with Fq(y) = Fqn and Tr(y) =
. . . = Tr(ym) = 0, (where Tr is the Fqn/Fq trace) is equivalent to the
minimal polynomial of y being of degree n and having all the coefficients
of tn−j, 1 ≤ j ≤ m, (j, p) = 1 vanish.

Theorem 2. Given a prime power q and positive integers m ≤ n, the
number N of y ∈ Fqn with Fq(y) = Fqn whose minimal polynomial
over Fq has all the coefficients of tn−i, 1 ≤ i ≤ m, pj - i vanish (or,
equivalently, for j = 1 that Tr(y) = · · · = Tr(ym) = 0, where Tr is the

Fqn/Fq trace) satisfies N = qn−m+bm/pjc + O(qn/2m), with an absolute
constant.

Proof. It follows from the discussion preceding the statement of the
theorem that the condition on y is equivalent to the minimal polynomial
of 1/y over Fq being of degree n and having the coefficients of ti, 1 ≤
i ≤ m, pj - i vanish. So this polynomial is a pj-th power modulo tm+1.
Conversely, the roots of an irreducible polynomial of degree n which is
a pj-th power modulo tm+1, have the desired property.



GENERATORS OF FINITE FIELDS 5

If Yj is the curve over Fq corresponding to the field Lj described
above, then the desired y correspond to orbits under the Galois group
of Lj/Fq(t) of points of Yj defined over Fqn but not a smaller field,
excluding possibly the points above t = 0,∞. For any d|n, the Weil
bound gives #Yj(Fqd) = qd + O(`jq

d/2), with an absolute constant,
where `j as before is the genus of Yj. Now, the Galois group of Lj/Fq(t)
has order qm−bm/p

jc and `j = O(mqm−bm/p
jc). Finally, we need to count

the elements of Fqn , not on some Fqd , for d|n, d < n with the desired
property but the excluded ones are at most

∑
d|n,d<n

qd ≤
n/2∑
d=0

qd ≤ 2qn/2

and it can be incorporated in the error term. ut

4. Concluding remarks

Let π : Y → X be a map of curves which is Galois with group
G. A twist of π is a map π′ : Y ′ → X such that, after base change
to the algebraic closure of the ground field, there is an isomorphism
φ : Y → Y ′, with π′ ◦ φ = π. Over an arbitrary field, the set of twist
of a fixed cover is described an H1. Over a finite field, which has a
pro-cyclic Galois group, the twists of π correspond to elements of G
and, denoting by Y (γ), the twist of Y corresponding to γ ∈ G, we have
that

∑
γ∈G #Y (γ)(Fq) = #G#X(Fq).

In particular, if π : Y → P1 corresponding to the the extension of
function fields, Kf/Fq(t) with Galois group G = (Fq[t]/f)∗, then a twist

of π corresponds to an element of G and, if K
(γ)
f is the function field

of Y (γ), a prime (i.e. monic irreducible) P of Fq[t] splits completely in

K
(γ)
f if and only if P ≡ γ (mod f). K

(γ)
f is the function field of the

curve Y (γ)/Fq and the Weil bound for this curve (applied to Fqn points)
describes the number of monic irreducible polynomials P of degree n
with P ≡ γ (mod f). Note that, since the Y (γ) are all isomorphic over
an extension of Fq, they all have the same genus. The same of course
works for the fixed fields of subgroups of G. In this way, we recover
the results of [1].

One can also deal by the methods of this paper with the related
problem of constructing primitive polynomials (that is, an irreducible
polynomial with a root that is a generator of the multiplicative group
of the field extension it generates).
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First of all, given an algebraic curve Y/Fq and a non-constant rational
function f on Y , one can count the number of points P ∈ Y (Fq) for
which f(P ) is a generator of F∗q by counting the number of points on

the covers of Y given by zd = f , for the various divisors d of q− 1 and
applying inclusion-exclusion. This is done in the analogous situation of
elliptic curves instead of multiplicative groups in [9], in a representative
special case in [6] and is a standard technique in papers dealing with
the Artin conjecture and its function field analogues.

Finally we use, as above, the curve Y whose function field is an
appropriate cyclotomic function field Kf , which is an extension of Fq(t)
and naturally has the function t on, so the previous discussion with
f = t applies.
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