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Chebyshev [C] proved that the number of primes up to x was between multiples of

x/ log x. In the simplified form of Chebyshev’s method worked out by Erdös this can be

obtained by looking at the prime factorization of the binomial coefficients
(
2n
n

)
. Note that(

2n
n

)
= (−4)n

(−1/2
n

)
is the n-th coefficient of the Taylor expansion of (1− 4x)−1/2. In the

course of their work on Grothendieck’s conjecture on differential equations, by considering

Padé approximations to (1 + x)iα, i = 1, 2, . . . where α is an irrational algebraic integer,

D. and G. Chudnovsky proved that there are infinitely many primes which do not split

in Q(α) (which is of course a special case of Chebotarev’s density theorem). The proof

requires estimating complicated expressions in various binomial coefficients
(
iα+j
n

)
. In this

paper we show that, at least for Q(α)/Q Galois, we can very easily obtain not only that

there are infinitely many primes which split completely in Q(α), but that there are at least

a multiple of x1/d/ log x (d = [Q(α) : Q]) such primes up to x, by simple estimates of
(
α
n

)
.

We will also study the prime factorization of
(
α
n

)
in the light of the present knowledge

about the distribution of primes to analyse the scope of this method.

Lemma 1. Let α ∈ C, α /∈ N, then log |
(
α
n

)
| = o(n).

Proof: This is of course elementary and well-known. The function (1 + x)α is holo-

morphic on the unit disk and has a singularity at x = 1 so its Taylor expansion about zero

has radius of convergence 1, hence the result.

J. Vaaler pointed out that the o(n) can be improved to O(log n) but we won’t need

this sharper result.

For now on let α be an irrational algebraic integer such that Q(α)/Q is Galois and

denote by α = α1, . . . , αd the conjugates of α, so d = [Q(α) : Q]. Put f(x) =
∏

(x− αi),

the minimal polynomial of α over Q. Under our assumptions, f(x) ∈ Z[x]. Let An be the

absolute norm of
(
α
n

)
, which is a non-zero rational number. We denote by vp the p-adic

valuation associated to the prime p. We will often use that, since Q(α)/Q is Galois, for a
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prime p of Q, p splits completely in Q(α) if and only if there is a prime of Q(α) above p

which is split over Q.

Lemma 2. Assume that p does not ramify in Q(α). Then vp(An) ≥ 0, if p splits com-

pletely in Q(α) and vp(An) ≤ 0 otherwise.

Proof: If x ∈ Zp then
(
x
n

)
∈ Zp, so

(
α
n

)
∈ Zp if p splits, giving the first statement of the

lemma. For the second statement we note that there is no root of the minimal polynomial

of α in Z/pZ in that case for that would force p to split, so p does not divide the numerator

of An.

Lemma 3. Assume p does not split in Q(α). Then vp(An) ≤ −cn + O(log n), for some

c > 0 depending on p.

Proof: If vp denotes an extension of the p-adic valuation to Zp[α] then, since p does

not split, Zp[α] is strictly bigger than Zp so there exists an integer s ≥ 0 such that

vp(αj−k) ≤ s, j = 1, . . . , d, k ∈ Z. Given j, 1 ≤ j ≤ d, there are at most n/p+O(1) integers

k, 0 ≤ k < n with vp(αj − k) > 0. At most n/p2 + O(1) of those satisfy vp(αj − k) > 1

and so on, until at most n/ps + O(1) of those satisfy vp(αj − k) > s− 1 but none satisfy

vp(αj − k) > s. As

An =

∏n−1
k=0

∏d
j=1(αj − k)

n!d

we get vp(An) ≤ d
∑s
i=1 n/p

i + O(1)− dvp(n!) = −dn
∑
i>s 1/pi + O(log n), as was to be

proved.

Lemma 4. If p splits in Q(α) then vp(An)� log n/ log p.

Proof: Consider An, α as p-adic integers. We have that

An =

∏n−1
k=0

∏d
j=1(αj − k)

n!d
.

Given j, 1 ≤ j ≤ d, there are n/p + O(1) integers k, 0 ≤ k < n with k ≡ αj(mod p) and

n/p2 + O(1) of those satisfy k ≡ αj(mod p2) and so on. However, if pr|(αj − k) then

pr � kd ≤ nd, so r � log n/ log p. Therefore the p-adic valuation of the numerator of the
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above expression for An is at most dn/(p− 1) +O(log n/ log p). But the last expression is

also a lower bound for the p-adic valuation of the denominator of the above expression for

An, namely n!d. The lemma follows.

Theorem 1. If S is the set of primes splitting in Q(α) then #{p ≤ x | p ∈ S} �

x1/d/ log x.

Proof: For x sufficiently large, let y be the unique positive solution to f(y) = x and put

n = [y]. By lemma 1, log |An| = o(n). On the other hand, log |An| =
∑
p∈S vp(An) log p+∑

p/∈S vp(An) log p. Clearly, if vp(An) > 0 with p ∈ S, then p divides f(k) for some

k, 0 ≤ k < n, so p ≤ f(n) ≤ x and by lemma 4, vp(An) log p� log x, so

∑
p∈S

vp(An) log p� #{p ≤ x | p ∈ S} log x.

By lemma 2, for all but finitely many primes p not in S, vp(An) ≤ 0 and for any p /∈ S,

vp(An) ≤ −cn eventually. Therefore, provided there exists at least one prime p /∈ S,

−
∑
p/∈S vp(An) log p� n� x1/d, and the result follows. If S is the set of all primes then

the theorem follows from Chebyshev’s original argument.

Let’s stop pretending we don’t know anything about the distribution of primes. The

estimate #{p ≤ x | p ∈ S} ∼ x/d log x is equivalent to the prime ideal theorem for

Q(α). We will now discuss the limitations of the above method. The contribution of a

prime p that doesn’t split or ramify in Q(α) to the logarithm of the denominator of An is

d log pvp(n!) = d log p
∑∞
i=1[n/pi], so the logarithm of the denominator of An is

dn
∑

p≤n,p/∈S

log p

p− 1
+O(n)

and this is the same as (d − 1)n log n + O(n). Using lemmas 1 and 4 we get that, for

any c > 1,
∑
p∈S,p≤cn vp(An) log p = O(n). Therefore large primes must be contributing

to the numerator of An. Note that vp(An) > 0 for p > n if and only if there exists

a, 1 ≤ a < n, f(a) ≡ 0(mod p). Thus, large primes p which contribute to the numerator

of An are those for which there is a small solution to f(x) ≡ 0(mod p). In the case that
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α is imaginary quadratic, Duke et al. [DFI] have shown that the values of a/p, where

0 ≤ a < p, f(a) ≡ 0(mod p), are uniformly distributed in [0, 1] as p varies. No such result

is known for general α, but a weak statement about small values of a/p can be deduced

from the above and, replacing α by 2α we get values of a/p near 1/2 but is unclear how

far this can be pushed.

Here is a numerical example. Let, as usual, i2 = −1 and let A be the norm of
(
i
50

)
(A = A50 in the above notation). Its value is approximately A = 0.001441 . . .. The

numerator of A is

854218081627997551329338014368667786531797070390341286060736137662393252068140777,

which factors as 132173293 37 53261 73289 97 101 109 113 137 149 157 181 197 257 313 353

401 421 461 577 613 677 761 1013 1201 1297 1601 and we can see that indeed primes much

larger than 50 occur. The denominator of A is

592784436219772736387514437405254968475156860253773651024470394041201404156839985152,

which factors as 269344716118194234312432472.
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Villegas for helpful conversations. We also acknowledge the use of the software PARI

for the numerical calculations. The author would also like to thank the TARP (grant

#ARP-006) and the the NSA (grant MDA904-97-1-0037) for financial support.

References.

[C] P. L. Chebyshev, Memoire sur les nombres premiers, J. Math. pures et appl. 17(1852)

366-390.

[CC] D. Chudnovsky and G. Chudnovsky, Applications of Padé approximations to the
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