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1. Introduction

Let k be a Galois extension of Q with [k : Q] = d ≥ 2. The purpose of this paper is

to give an upper bound for the least prime which does not split completely in k in terms

of the degree d and the discriminant ∆k. Our estimate improves on the bound given by

Lagarias, Montgomery and Odlyzko [3]. We note, however, that with the assumption of

the generalized Riemann hypothesis much stronger bounds have been obtained by Murty

[7]. In fact the analytic method employed in [7] can be used to produce an unconditional

bound of the same general type as ours. The case of an abelian extension was considered

earlier by Bach and Sorensen [1] and Oesterlé [8].

Our method is essentially elementary. It is based on an application of the product

formula to the binomial coefficient
(

α
N

)
, where α is an irrational algebraic integer in k

and Tracek/Q(α) = 0. A similar idea has been used in [11] to give a lower bound on the

number of primes that do split completely in k. At one point in our argument we appeal to

the prime number theorem with an error term in which all constants are given explicitly.

Thus for each d we obtain a bound on the least prime which does not split completely

provided |∆k| is large compared with d. In the special case k = Q(
√
p) a somewhat
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simpler argument can be used which avoids the prime number theorem and leads to a

result valid for all discriminants. The simpler argument differs insignificantly from that

used by Gauss in the course of his first proof of quadratic reciprocity [2, art. 129].

THEOREM 1. If

exp(max{105, 25(log d)2}) ≤ 8|∆k|1/2(d−1), (1.1)

then there exists a prime p such that p does not split completely in k and

p ≤ 26d2|∆k|1/2(d−1). (1.2)

2. Nonarchimedean estimates

Throughout this section we assume that all primes p ≤ dN(d − 1)−1 split in k, where

N ≥ d is a positive integer parameter. We further assume that α is a nonzero algebraic

integer in k with [Q(α) : Q] = δ and Tracek/Q(α) = 0. Then we write α = α1, α2, . . . , αδ

for the distinct conjugates of α in k and

f(x) =
δ∏

i=1

(x− αi)

for the minimal polynomial of α over Q. Obviously f is a monic, irreducible polynomial

in Z[x] with 2 ≤ δ = deg(f) and δ | d. We also define

AN (α) = Normk/Q

{(
α

N

)}
= (−1)dN (N !)−d

{N−1∏
n=0

f(n)
}d/δ

, (2.1)

where
(

x
N

)
is the binomial coefficient. Clearly AN (α) is a nonzero rational number.

LEMMA 2. For each prime p with p ≤ dN(d− 1)−1, the congruence

f(x) ≡ 0 mod p

has at least one root in the set {0, 1, 2, . . . , [(δ − 1)p/δ]}.



THE LEAST NONSPLIT PRIME IN GALOIS EXTENSIONS OF Q 3

Proof. Let p be a prime with p ≤ dN(d−1)−1. All embeddings of k in an algebraic closure

Qp are contained in Qp. Hence all roots of f occur in Zp and therefore f splits in Z/pZ[x].

Let a1, a2, . . . , aδ be elements of {0, 1, 2, . . . , p− 1} such that

f(x) ≡
δ∏

i=1

(x− ai) mod p.

If p ≤ δ then the result is trivial, so we may assume that δ < p. Because Tracek/Q(α) = 0

we have
δ∑

i=1

ai ≡ 0 mod p. (2.2)

Now assume, contrary to the statement of the lemma, that (δ − 1)p/δ < ai ≤ p − 1 for

each i = 1, 2, . . . , δ. Then we get

(δ − 1)p <
δ∑

i=1

ai ≤ δ(p− 1),

which contradicts (2.2)

LEMMA 3. The number AN (α) is a nonzero integer.

Proof. Let p be a prime with p ≤ N . As before all roots of f occur in Zp. It follows that(
αi

N

)
belongs to Zp for each i = 1, 2, . . . , δ. In particular the p-adic absolute value of AN (α)

satisfies |AN (α)|p ≤ 1 for each p ≤ N , and of course for p > N the bound |AN (α)|p ≤ 1 is

trivial. Thus AN (α) is a nonzero integer.

LEMMA 4. For each prime p such that N < p ≤ dN(d− 1)−1, we have

log |AN (α)|p ≤ dδ−1(− log p). (2.3)
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Proof. As log |N !|p = 0 for N < p, we find that

log |AN (α)|p = dδ−1
{ N−1∑

n=0

log |f(n)|p
}
− d log |N !|p

= dδ−1
N−1∑
n=0

∞∑
m=1

pm|f(n)

(− log p)

≤ dδ−1(− log p)
N−1∑
n=0

p|f(n)

1.

(2.4)

By hypothesis we have d ≤ N < p ≤ dN(d− 1)−1, and therefore

[(δ − 1)p/δ] ≤ [(d− 1)p/d] < (d− 1)p/d ≤ N.

By Lemma 2 the sum on the right of (2.4) contains at least one nonzero term and this

verifies (2.3).

THEOREM 5. If exp(max{105, 25(log d)2}) ≤ N then

∑
p

log |AN (α)|p ≤ −Nδ−1. (2.5)

Proof. We use the explicit error term in the prime number theorem obtained by Rosser

and Schoenfeld [10, Theorem 2]. An easy consequence of their result is that

|
∑
p≤X

log p −X| ≤ (1/2)X exp{−(2/5)
√

logX}

for all X ≥ exp(105). It follows that

|
∑
p≤X

log p −X| ≤ X

d(2d− 1)
(2.6)
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whenever exp(max{105, 25(log d)2}) ≤ X. Now let exp(max{105, 25(log d)2}) ≤ N , set

X = dN(d− 1)−1 and ε = (d(2d− 1))−1. Then (2.3) and (2.6) imply that∑
p

log |AN (α)|p ≤ dδ−1
∑

N<p≤X

(− log p)

= dδ−1
{
(N −X) + (

∑
p≤N

log p−N) + (X −
∑
p≤X

log p)
}

≤ dδ−1{N −X + ε(N +X)}

= −Nδ−1.

3. Archimedean estimates

In this section we assume that f is a polynomial in R[x] with deg(f) = M ≥ 1. Then

we write α1, α2, . . . , αL for the distinct roots of f in C so that

f(x) = c0

L∏
l=1

(x− αi)e(l) with e(l) ∈ {1, 2, . . . } and c0 6= 0.

It follows that the Mahler measure µ(f) is given by

logµ(f) = log |c0|+
L∑

l=1

e(l) log+ |αl|.

We also require the norm

‖f‖∞ = sup{|f(z)| : z ∈ C, |z| ≤ 1}.

And we will use two well known inequalities (see [5, equation (4)], [6], or [9, Lemma 2])

2−M‖f‖∞ ≤ µ(f) ≤ ‖f‖∞ and log µ(f ′) ≤ logM + logµ(f). (3.1)

By the square free kernel of f we understand the polynomial

q(x) =
L∏

l=1

(x− αl).
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LEMMA 6. Let f be a polynomial in R[x], q the square free kernel of f , and

Bf = {β ∈ R : f ′(β) = 0 and f(β) 6= 0}.

Then we have

|Bf | ≤ L− 1 and
∑

β∈Bf

log+ |β| ≤ log ‖q‖∞. (3.2)

Proof. There exists a polynomial p(x) in R[x] uniquely determined by the identity

f ′(x)
f(x)

=
L∑

l=1

e(l)
x− αl

=
p(x)
q(x)

.

Clearly we have

Bf = {β ∈ R : p(β) = 0}.

¿From the identity f ′(x)q(x) = f(x)p(x) we find that deg(p) = L − 1 and the leading

coefficient of p is M . Therefore |Bf | ≤ L− 1 and

logM +
∑

β∈Bf

log+ |β| ≤ logµ(p). (3.3)

Then the basic inequalities (3.1) imply that

logµ(p) + logµ(f) = logµ(q) + logµ(f ′)

≤ log ‖q‖∞ + logM + logµ(f).
(3.4)

The remaining inequality in (3.2) follows from (3.3) and (3.4).

LEMMA 7. Let f be a polynomial in R[x] and q the square free kernel of f . Then we

have∫ V

U

∣∣ d
dx

log+ |f(x)|
∣∣ dx ≤M

{
log+ |U |+ log+ |V |+ 2 log+ ‖q‖∞

}
+ 2L log+ ‖f‖∞. (3.5)

Proof. Write Bf (U, V ) for the set of distinct roots of f ′ which occur in the interval (U, V )

and which are not roots of f . To begin with we will establish the inequality∫ V

U

∣∣ d
dx

log+ |f(x)|
∣∣ dx ≤ log+ |f(U)|+ log+ |f(V )|+ 2

∑
β∈Bf (U,V )

log+ |f(β)|. (3.6)
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Suppose that (u, v) ⊆ R is a bounded open interval such that

1 < f(x) whenever u < x < v. (3.7)

Then let

Bf (u, v) = {β1, β2, . . . βJ},

and write

u = β0 < β1 < β2 < · · · < βJ < βJ+1 = v.

Obviously J = 0 in case Bf (u, v) is empty. In view of (3.7) we have∫ v

u

∣∣ d
dx

log+ |f(x)|
∣∣ dx =

J∑
j=0

∫ βj+1

βj

∣∣f ′(x)
f(x)

∣∣ dx
=

J∑
j=0

∣∣∫ βj+1

βj

f ′(x)
f(x)

dx
∣∣

=
J∑

j=0

∣∣log f(βj+1)− log f(βj)
∣∣

≤
J∑

j=0

max
(
log+ |f(βj+1)|, log+ |f(βj)|

)
≤ log+ |f(u)|+ log+ |f(v)|+ 2

∑
β∈Bf (u,v)

log+ |f(β)|.

(3.8)

It is clear that (3.8) continues to hold if

f(x) < −1 whenever u < x < v. (3.9)

Next we write

{x ∈ R : U < x < V, 1 < |f(x)|} =
K⋃

k=1

(uk, vk),

where {(uk, vk) : k = 1, 2, . . .K} is a finite, disjoint collection of open intervals. Then we

have ∫ V

U

∣∣ d
dx

log+ |f(x)|
∣∣ dx =

K∑
k=1

∫ vk

uk

∣∣ d
dx

log+ |f(x)|
∣∣ dx (3.10)
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and so we can apply the estimate in (3.8) to each term in the sum on the right of (3.10).

In doing so we note that if U < uk < V then, since x→ log+ |f(x)| is continuous, we have

log+ |f(uk)| = 0, and similarly if U < vk < V . It follows then that

∫ V

U

∣∣ d
dx

log+ |f(x)|
∣∣ dx =

K∑
k=1

∫ vk

uk

∣∣ d
dx

log+ |f(x)|
∣∣ dx

≤ log+ |f(U)|+ log+ |f(V )|+ 2
K∑

k=1

∑
β∈B(uk,vk)

log+ |f(β)|

= log+ |f(U)|+ log+ |f(V )|+ 2
∑

β∈Bf (U,V )

log+ |f(β)|,

and this verifies the inequality (3.6).

In order to further estimate the terms on the right of (3.6) we employ the inequality

|f(z)| ≤ ‖f‖∞ max(1, |z|)M ,

which follows easily from the maximum modulus theorem (see [9, Lemma 4]). Also, we

have

log+ |w1w2| ≤ log+ |w1|+ log+ |w2|

for all pairs of complex numbers w1 and w2. Combining these observations we find that

log+ |f(z)| ≤ log+ ‖f‖∞ +M log+ |z|. (3.11)

Now we can combine (3.2), (3.6), (3.11) and so establish the bound:∫ V

U

∣∣ d
dx

log+ |f(x)|
∣∣ dx

≤M log+ |U |+M log+ |V |+ (2|Bf |+ 2) log+ ‖f‖∞ + 2M
∑

β∈Bf

log+ |β|.

≤M log+ |U |+M log+ |V |+ 2L log+ ‖f‖∞ + 2M log+ ‖q‖∞

(3.12)

This proves the lemma.
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LEMMA 8. Let f be a polynomial in Z[x], q the square free kernel of f , deg(f) = M

and deg(q) = L. Let N be a positive integer and assume that f has no roots in the set

{0, 1, 2, . . . , N − 1}. Then we have

∣∣N−1∑
n=0

log |f(n)|−
∫ N

0

log |f(x)| dx
∣∣

≤M(2 + logN) + (L+ 1
2 ) log ‖f‖∞ +M log ‖q‖∞.

(3.13)

Proof. From a standard application of Stieltjes integration we obtain the identity

N−1∑
n=0

log |f(n)| =
N−1∑
n=0

log+ |f(n)|

=
∫ N−

0−
log+ |f(x)| d{[x] + 1

2}

=
∫ N

0

log+ |f(x)| dx− 1
2 log+ |f(N)|+ 1

2 log+ |f(0)|

+
∫ N

0

B1(x)
d

dx
log+ |f(x)| dx.

(3.14)

Here

B1(x) = x− [x]− 1
2 when x /∈ Z, and B1(x) = 0 when x ∈ Z,

is the first periodic Bernoulli polynomial. We use the bound |B1(x)| ≤ 1
2 , the estimate

(3.5) from the previous lemma, (3.11) and (3.14). In this way we arrive at the inequality

∣∣N−1∑
n=0

log |f(n)| −
∫ N

0

log+ |f(x)| dx
∣∣

≤ 1
2 max

{
log+ |f(0)|, log+ |f(N)|

}
+ 1

2

∫ N

0

∣∣ d
dx

log+ |f(x)|
∣∣ dx

≤M logN + (L+ 1
2 ) log+ ‖f‖∞ +M log+ ‖q‖∞.

(3.15)
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Next we observe that

∣∣∫ N

0

log |f(x)| dx−
∫ N

0

log+ |f(x)| dx
∣∣

=
∫ N

0

log− |f(x)| dx

≤
L∑

l=1

e(l)
∫

R
log− |x− αl| dx

≤
L∑

l=1

e(l)
∫

R
log− |x−<(αl)| dx

=
L∑

l=1

e(l)
∫

R
log− |x| dx

= 2M.

(3.16)

Then we combine (3.15) and (3.16). We find that

∣∣N−1∑
n=0

log |f(n)|−
∫ N

0

log |f(x)| dx
∣∣

≤M(2 + logN) + (L+ 1
2 ) log+ ‖f‖∞ +M log+ ‖q‖∞.

(3.17)

To complete the proof we note that 1 ≤ ‖f‖∞ and 1 ≤ ‖q‖∞, because both f and q belong

to Z[x].

We define ρ : C → R by

ρ(z) = 1
2

∫ 1

−1

log |t− z| dt+ 1. (3.18)

If follows from the basic theory of logarithmic potential functions (see [3, Appendix 4, §1.])

that ρ is nonnegative, continuous, subharmonic, and the restriction of ρ to C \ [−1, 1] is

harmonic. For our purposes we require information about ρ in the closed unit disc.

LEMMA 9. For all complex z = x+ iy with |z| ≤ 1 we have

ρ(z) ≤ π|y|
2

+ (log 2)|z|2.
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Proof. Let ψ(z) be defined in the closed unit disc by

ψ(z) =
∞∑

n=1

z2n

2n(2n− 1)
.

In the upper half-disc {z ∈ C : 0 < =(z), |z| < 1} we find that

1
2

∫ 1

−1

log(z − t) dt+ 1 = 1
2 (1− z) log(z − 1) + 1

2 (1 + z) log(z + 1)

=
πi

2
− πiz

2
+

∞∑
n=1

z2n

2n(2n− 1)

=
πi

2
− πiz

2
+ ψ(z),

(3.19)

where we have used the principal branch of the logarithm. In the lower half-disc {z ∈ C :

0 > =(z), |z| < 1} the corresponding identity is

1
2

∫ 1

−1

log(z − t) dt+ 1 =
−πi
2

+
πiz

2
+ ψ(z). (3.20)

Then (3.19), (3.20) and the continuity of ρ imply that

ρ(z) = <
{

1
2

∫ 1

−1

log(z − t) dt+ 1
}

=
π|y|
2

+ <
{
ψ(z)

}
, (3.21)

at all points z in the closed unit disc. By the maximum modulus theorem

|ψ(z)| = |z|2
∣∣ψ(z)
z2

∣∣ ≤ |z|2‖ψ‖∞ = (log 2)|z|2 (3.22)

for all z in the closed unit disc. The lemma plainly follows from (3.21) and (3.22).

4. The existence of special numbers

Here we assume that k is an algebraic number field having degree d ≥ 2 over Q. Let

σ1, σ2, . . . , σd be the distinct embeddings of k into C. We assume that σ1, σ2, . . . , σr are

real, that σr+1, σr+2, . . . , σr+s are complex and not real, and that σr+j = σr+s+j for

j = 1, 2, . . . , s. We write Ok for the ring of integers in k and ∆k for the discriminant.
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THEOREM 10. There exists a nonzero algebraic integer α in k such that

Tracek/Q(α) = 0 and max
1≤i≤d

|σi(α)| ≤ 4|∆k|1/2(d−1). (4.1)

Moreover, if [Q(α) : Q] = δ and f in Z[x] is the minimal polynomial of α over Q, then

‖f‖∞ ≤ 8δ|∆k|δ/2(d−1). (4.2)

Proof. To begin with we observe that the set of algebraic integers in Ok which satisfy

max
1≤i≤d

|σi(α)| ≤ T

is finite for every positive T . Thus it suffices to prove that for every ε > 0 there exists an

algebraic integer α in k such that

Tracek/Q(α) = 0 and max
1≤i≤d

|σi(α)| ≤ (4 + ε)|∆k|1/2(d−1).

Let ω1, ω2, . . . , ωd be an integral basis for Ok. We write Ω for the d × d matrix Ω =

(σi(ωj)), where i = 1, 2, . . . , d indexes rows and j = 1, 2, . . . , d indexes columns. Then we

define W to be the d× d matrix which is organized into blocks as

W =

1r 0 0
0 1

21s
1
21s

0 1
2i1s

−1
2i 1s

 ,

where 1r and 1s are identity matrices. We note that (detΩ)2 = ∆k, detW = (−2i)−s and

the product WΩ is a d× d matrix with real entries. Next we define

Λk =
{
λ ∈ Zd :

d∑
j=1

Tracek/Q(ωj)λj ≡ 0 mod d
}
.

As Λk is the kernel of the group homomorphism λ →
∑d

j=1 Tracek/Q(ωj)λj from Zd into

Z/dZ, it follows that Λk ⊆ Zd is a sublattice of index at most d.
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We now assume that 1 ≤ r and let t denote a positive parameter. Then we define

Cr,s(t) =
{
y ∈ Rd : |y1| < 1, |yi| ≤ t if 2 ≤ i ≤ r,

and (yr+j)2 + (yr+s+j)2 ≤ t2 if 1 ≤ j ≤ s
}
.

(4.3)

It is clear that Cr,s(t) is a convex, symmetric subset of Rd, and a simple computation

shows that

Vold{Cr,s(t)} = 2d(π/4)std−1. (4.4)

Hence the linear image

Kr,s(t) = (WΩ)−1Cr,s(t) =
{
x ∈ Rd : WΩx ∈ Cr,s(t)

}
,

is also a convex, symmetric subset. And using (4.4) we find that

Vold
{
Kr,s(t)

}
= Vold

{
(WΩ)−1Cr,s(t)

}
= |detWΩ|−1Vold{Cr,s(t)} = 2d(π/2)std−1|∆k|−1/2.

(4.5)

Let 0 < η and set t = (2 + η)|∆k|1/2(d−1). Then

Vold
{
Kr,s(t)

}
= 2d(2 + η)d−1(π/2)s > [Zd : Λk]2d,

and so by Minkowski’s convex body theorem there exists a nonzero point ξ in Kr,s(t)∩Λk.

Using ξ we define β =
∑d

j=1 ξjωj , so that β is a nonzero point in Ok. ¿From the definitions

of W , Ω and Cr,s(t) we find that

|σ1(β)| < 1 and |σi(β)| ≤ (2 + η)|∆k|1/2(d−1) for i = 2, 3, . . . , d. (4.6)

It is clear from the first inequality on the left of (4.6) that β ∈ Ok \Z. ¿From the definition

of Λk we learn that

Tracek/Q(β) = md with m ∈ Z.

We conclude that α = β−m also belongs to Ok \Z and Tracek/Q(α) = 0. We also get the

estimate

|m| =
∣∣d−1

d∑
i=1

σi(β)
∣∣ ≤ max

1≤i≤d
|σi(β)| ≤ (2 + η)|∆k|1/2(d−1)
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and therefore

max
1≤i≤d

|σi(α)| ≤ (4 + 2η)|∆k|1/2(d−1).

In view of our previous remarks, this verifies the inequality on the right of (4.1).

Next we assume that r = 0 and define

C0,s(t) =
{
y ∈ Rd : (y1)2 + t−2(ys+1)2 < 1,

and (yj)2 + (ys+j)2 ≤ t2 if 2 ≤ j ≤ s
}
.

(4.7)

Clearly C0,s(t) is also a convex, symmetric subset of Rd, and again we have

Vold{C0,s(t)} = 2d(π/4)std−1. (4.8)

We set t = (2 + η)|∆k|1/2(d−1) and proceed as before to determine a nonzero point β in

Ok. In this case we find that

(<(σ1(β))2 + t−2(=(σ1(β))2 < 1,

and |σj(β)| ≤ (2 + η)|∆k|1/2(d−1) for 2 ≤ j ≤ s.
(4.9)

The first inequality on the left of (4.9) shows that β ∈ Ok \ Z. The rest of the argument

verifying (4.1) is essentially the same.

To complete the proof, let f in Z[x] be the minimal polynomial of α over Q. Then (4.1)

implies that the Mahler measure µ(f) satisfies the bound

µ(f) ≤ 4δ|∆k|δ/2(d−1), where [Q(α) : Q] = δ.

And from the inequality on the left of (3.1) we conclude that

‖f‖∞ ≤ 2δµ(f) ≤ 8δ|∆k|δ/2(d−1).
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5 Proof of Theorem 1

Let k be a Galois extension of Q with [k : Q] = d ≥ 2. As in section 2 we assume that

all primes p ≤ dN(d − 1)−1 split in k, where N ≥ d is a positive integer parameter. By

Theorem 10 there exists an algebraic integer α in Ok \ Z with Tracek/Q(α) = 0 and

max
1≤i≤δ

|αi| ≤ 4|∆k|1/2(d−1), (5.1)

where [Q(α) : Q] = δ and α = α1, α2, . . . , αδ are the conjugates of α in k. We assume that

exp(max{105, 25(log d)2}) ≤ 8|∆k|1/2(d−1) ≤ N. (5.2)

Then the minimal polynomial f of α over Q satisfies the bound (4.2) and therefore ‖f‖∞ ≤

N δ. Let AN (α) be defined as in (2.1). Then Theorem 5 and the product formula imply

that

0 = log |AN (α)|+
∑

p

log |AN (α)|p ≤ log |AN (α)| −Nδ−1. (5.3)

And from Lemma 8 we get the estimate

log |AN (α)| = dδ−1
N−1∑
n=0

log |f(n)| − d logN !

≤ dδ−1
{∫ N

0

log |f(x)| dx+ δ(2 + logN) + (2δ + 1
2 ) log ‖f‖∞

}
− d{N logN −N}

≤ dNδ−1
{∫ 1

0

log |N−δf(Nx)| dx+ δ
}

+ 6d2 logN

(5.4)

Combining (5.3) and (5.4) we obtain the inequality

1 ≤ d
{∫ 1

0

log |N−δf(Nx)| dx+ δ
}

+
(6d3 logN

N

)
. (5.5)

Next we derive (5.5) again but with −α in place of α, and then we combine the two bounds.

In this way we establish the estimate

1 ≤ d
{

1
2

∫ 1

−1

log |N−δf(Nx)| dx+ δ
}

+
(6d3 logN

N

)
. (5.6)
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¿From Lemma 9 and (5.1) we get

{
1
2

∫ 1

−1

log |N−δf(Nx)| dx+ δ
}

=
δ∑

i=1

{
1
2

∫ 1

−1

log |t−N−1αi| dt+ 1
}

=
δ∑

i=1

ρ(N−1αi)

≤ 3N−1
δ∑

i=1

|αi|

≤ 12δN−1|∆k|1/2(d−1).

(5.7)

Thus (5.2), (5.6) and (5.7) lead to the bound

1 ≤
(12d2|∆k|1/2(d−1)

N

)
+

(6d3 logN
N

)
≤

(12d2|∆k|1/2(d−1)

N

)
+

( 6d3 max{105, 25(log d)2}
exp(max{105, 25(log d)2})

)
≤

(12d2|∆k|1/2(d−1)

N

)
+ 10−40.

(5.8)

We select

N =
[
13d2|∆k|1/2(d−1)

]
,

use the hypothesis (5.2), and obtain a contradiction to (5.8). We have shown that if

exp(max{105, 25(log d)2}) ≤ 8|∆k|1/2(d−1), (5.9)

then there exists a prime number p with

p ≤ dN(d− 1)−1 ≤ 26d2|∆k|1/2(d−1)

such that p does not split completely in k.
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