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1. Introduction

In this note we will prove the following inequality for linear forms in p-adic roots

of unity (Theorem 2 below). For fixed a1, . . . , an ∈ Cp, the completion of the algebraic

closure of Qp, there exists a constant c > 0 such that for any roots of unity ζ1, . . . , ζn in

Cp either
∑
ζiai = 0 or |

∑
ζiai| ≥ c. The proof splits into two steps. First we show the

result is true if the roots of unity are restricted to have order prime to p and the ai are in

an unramified extension of Qp, and then we reduce the general case to that case. We will

be able to say a lot more in the situation of the first step and develop an analogy with a

similar problem in power series fields.

Let K = k((t)) be the field of formal power series over a field k. Let a1, . . . , an be

elements of K, not all zero. We can think of (a1 : . . . : an) as a branch of an analytic curve

in Pn−1, parametrized by t, in an infinitesimal neighbourhood of the point P0 = (a1(0) :

. . . : an(0)) (assuming that the ai are scaled so that they do not have a pole and not all

vanish at t = 0). There is a descending sequence Pn−1 = V0 ⊇ V1 ⊇ V2 ⊇ · · · of linear

subspaces of Pn−1 such that, for each m ≥ 0

Vm(k) = {(ζ1 : . . . : ζn) ∈ Pn−1(k) |
n∑
i=1

ζiai ≡ 0 (mod tm)}.

Indeed, the congruence in question amounts to m linear conditions on the indeterminate

constants ζ1, . . . , ζn. Geometrically, we view ζ1, . . . , ζn as the coordinates of the hyperplane∑
ζiXi = 0 and interpret Vm as the space of hyperplanes in Pn−1 which meet our branch

with multiplicity at least m at P0. The fact that the descending sequence V0 ⊇ V1 ⊇

· · · becomes stationary shows that there exists a positive constant c such that for any

ζ1, . . . , ζn ∈ k, either
∑
ζiai = 0 or |

∑
ζiai| ≥ c. Indeed, if Vm = Vm0

for m ≥ m0, then

|
∑
ζiai| ≤ |t|m0 implies

∑
ζiai = 0, so we can take c = |t|m0−1.
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We wish to consider a p-adic analogue of this inequality. So we will take an unramified

local field K of characteristic zero with perfect residue field k of characteristic p > 0, and

a1, . . . , an ∈ K. As K has no constant field, we take as replacement the set of Teichmüller

representatives of the elements of of k, which we denote by T (k). Denote the absolute

value on K by |.|.

Theorem 1. Let K be as above. Given a1, . . . , an ∈ K, there exists a positive constant

c such that for ζ1, . . . , ζn ∈ T (k), either
∑
ζiai = 0 or |

∑
ζiai| ≥ c.

Proof: Without loss of generality, we can assume that k is algebraically closed and

that a1, . . . , an are in the ring of integers of k, which we can identify with the ring of Witt

vectors of infinite length over k. For z ∈ k we let T (z) denote its Teichmüller representative

T (z) = (z, 0, 0, . . .), and we will often write ζ = T (z), using Greek letters for elements of

T (k) and the corresponding latin letters for their residue classes in k. Since the Witt vectors

of length m form a ring scheme and T is multiplicative, the condition
∑
ζiai ≡ 0 (mod pm),

for ζi = T (zi), translates into a set of m homogeneous polynomial equations in z1, . . . , zn

and therefore defines a closed subscheme Vm of Pn−1 over k. Moreover, the Vm form

a decreasing sequence, so must become constant. If Vm0 = Vm, for m > m0, then any

ζ1, . . . , ζn ∈ T (k) whose residues z1, . . . , zn define a point in Vm0
satisfies

∑
ζiai = 0 and

all others satisfy |
∑
ζiai| ≥ |p|m0−1. This completes the proof.

Remark: It was pointed out to us by Buium and Serre that Theorem 1 can be consid-

erably generalized. See §3, remark (iii).

By analogy with the power series case we will call (a1 : . . . : an) a p-adic curve germ

and think of the scheme Vm as parametrizing the hyperplanes
∑
ζiXi = 0 with ”constant”

coefficients ζi ∈ T (k) which intersect it with multiplicity at least m. The reader who is

interested only in the inequalities needs only to know the existence of the schemes Vm for

the proof of Theorem 1 and can skip §2, which is devoted to an investigation of some of

their properties. In contrast to the power series case, the p-adic Vm are in general not

linear, not irreducible, not smooth, not reduced and not equidimensional, although for m
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small relative to the number of ai not divisible by p, some of these properties do hold

(Proposition 1).

In §3 we carry out the reduction of Theorem 2 to a special case of Theorem 1, first

reducing to the case the ai are in Qp (even to ai = ±1), then to the case that, in addition,

the roots of unity are of order prime to p.

In §4 we discuss briefly the global sitution, in which the a1, . . . , an are in a number field

K. Thinking of K as the function field of a non-existent curve, we think of (a1 : . . . : an)

as a map of the curve to Pn−1. This point of view has been dubbed ”geometry over

the field of one element”. The interested reader may consult [D],[M] or [Sm] for more

on this. (See also [B1] and [I], which are perhaps in the same spirit.) This paper is

partly motivated by a question in [Sm]. There he treats the case n = 2, where the local

theory is trivial, and makes some global conjectures. He asks about a possible higher

dimensional generalization of his conjecture. Here we give a possible local theory towards

such a generalization. Although we stop short of making a higher dimensional conjecture

we discuss some global questions.

2. The unramified case

Let K be an unramified local field of characteristic zero and perfect residue field k of

characteristic p > 0. We identify the ring of integers of K with the ring of Witt vectors

W∞(k). If xi, 1 ≤ i ≤ n are integers in K with representations xi = (xi0, xi1, . . .), the Witt

vector of their sum is
∑n
i=1 xi = (f0(x), f1(x), . . .), where the sequence of polynomials fm

in the variables xij is defined inductively by

fp
m

0 + pfp
m−1

1 + . . .+ pmfm =
n∑
i=1

(
xp

m

i0 + pxp
m−1

i1 + . . .+ pmxim
)

for m = 0, 1, 2, . . . Thus,

f0(x) =

n∑
i=1

xi0, f1(x) =

n∑
i=1

xi1 +
1

p

( n∑
i=1

xpi0 − (

n∑
i=1

xi0)p
)
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and, in general, fm is a polynomial of degree pm in the variables xij , 1 ≤ i ≤ n, 0 ≤ j ≤ m,

with rational integer coefficients.

Suppose ai, 1 ≤ i ≤ n, are integers in K with representations ai = (ai0, ai1, . . .). For

variable z1, . . . , zn ∈ k with Teichmüller representatives ζi = T (zi) = (zi, 0, 0, . . .) we have

then ζiai = (ai0zi, ai1z
p
i , ai2z

p2

i , . . .) for each i and hence
∑n
i=1 ζiai = (F0(z), F1(z), . . .),

where the polynomials Fm(z) ∈ k[z1, . . . , zn] are defined by Fm(z) = fm(x), where xij =

aijz
pj

i .

Assume now that not all ai are divisible by p and let R be a local k-algebra. For

(z1 : . . . : zn) ∈ Pn−1(R) and ζi = T (zi) ∈ W∞(R) we have that
∑
ζiai is divisible by pm

if and only if Fj(z1, . . . , zn) = 0 for 0 ≤ j < m, which is equivalent to (z1 : . . . : zn) ∈ Vm(R)

where Vm is defined to be the scheme of common zeros of F0, F1, . . . , Fm−1. As explained

in the introduction, we view Vm as the scheme parametrizing hyperplanes meeting our

p-adic curve germ (a1 : . . . : an) with multiplicity at least m. Clearly Vm depends only on

the point (a1 : . . . : an) ∈ Pn−1(K).

In order to study the varieties Vm we will study their singularities.

Lemma 1. On Vm, the following identity holds: ∂Fm/∂zi = ap
m

i0 z
pm−1
i .

Proof: Differentiating the recurrence relation defining the fm, dividing by pm and

substituting xij = aijz
pj

i gives dFm(z) =
∑n
i=1 a

pm

i0 z
pm−1
i dzi on Vm as claimed, because

dxij = 0 for j > 0 and Fj(z) = 0 on Vm for j < m.

Proposition 1. With a1, . . . , an as above, let r = ]{i|ai ≡ 0 mod p}. Then,

(i) If m < (n+2−r)/3, Vm is irreducible and generically smooth, of dimension n−1−m.

(ii) If m < (n + 1 − r)/2, each irreducible component of Vm is generically smooth, of

dimension n−1−m; in fact, its singular locus is of codimension at least n+1−r−2m.

(iii) If m = (n + 1 − r)/2, each irreducible component of Vm is of dimension n − 1 −m

(but may not be reduced).

(iv) If m = (n + 2 − r)/2, each irreducible component W of Vm is of dimension

n−1−m unless, after some permutation of the indices there are non-zero Teichmüller

4



representatives ζi, 1 ≤ i ≤ m − 1, such that ai + ζiai+m−1 ≡ 0 (mod pm) for

1 ≤ i ≤ m − 1, and ai ≡ 0 (mod pm) for n − r + 1 ≤ i ≤ n, in which case,

Wred is the linear space of all z1, . . . , zn such that, after the permutation of indices,

ai0zi + ai+m−1,0zi+m−1 = 0, 1 ≤ i ≤ m− 1.

Proof: The Jacobian matrix of Vm, by Lemma 1, is proportional to
a10z1 a20z2 · · · an0zn

(a10z1)p (a20z2)p · · · (an0zn)p

...
...

. . .
...

(a10z1)p
m−1

(a20z2)p
m−1 · · · (an0zn)p

m−1


Let Zm be the variety of points in Pn−1 where this matrix does not have maximal rank.

The (m×m)-minors of this matrix are Moore determinants which factor as a product of

all (up to proportionality) non-trivial linear combinations of the elements of their first row

with coefficients in Fp ([Mo]).

The variety Zm is thus the union of finite set of linear subspaces W of Pn−1, one for

each assignment I 7→ LI which associates to each m-element subset I ⊂ {1, 2, . . . , n} a

non-zero linear form LI whose coefficients are in Fp and vanish for i /∈ I, the corresponding

W being the variety of common zeros of the forms LI(a01z1, . . . , a0nzn). The dimension

of W is at most m − 2 + r; otherwise, for some (m + r)-element subset J ⊂ {1, 2, . . . , n}

the projection of W onto the corresponding Pm+r−1 would be surjective. But this is

impossible, because J contains an m-element subset I such that ai0 6= 0 for i ∈ I, and the

corresponding LI would not vanish on W . Hence each irreducible component of Zm has

dimension at most m− 2 + r.

Since Vm is cut out by m equations, each irreducible component W of Vm is of dimen-

sion at least n− 1−m, with equality and W generically smooth if Wred 6⊂ Zm. However,

W ∩ Zm is of codimension at least n+ 1− r − 2m in W , by the above, which proves (ii).

If dimW > n− 1−m, then Wred ⊂ Zm, so n− 1−m < m− 2− r, i.e., 2m > n+ 1− r.

This proves (iii).

To prove (i), note first that V1 is a hyperplane. Suppose 1 ≤ m < (n + 2 − r)/3.
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then, by (iii), the codimension of each component of Vm in V1 is m − 1. If Vm has two

components, their intersection is of codimension at most 2m− 2 in V1 and is contained in

Zm, which is impossible if 3m < n+ 2− r. This proves (i).

To prove (iv), suppose 2m = n− r+ 2. Put h = m− 1 so that n = 2h+ r. Permuting

indices and dividing those ai 6≡ 0 (mod p) by their Teichmüller representatives, we can

suppose that ai ≡ 1 (mod p) for i ≤ 2h and ai ≡ 0 (mod p), otherwise. Suppose W is a

component of Vm of codimension less than m in Pn−1. Reasoning as above shows that

W is of codimension h = m − 1, and that Wred is a component of Zm, so is the set of

common zeros of h independent linear forms involving only the variables z1, . . . , z2h, with

coefficients in Fp. After another permutation of the first 2h indices we can suppose that the

linear forms have the shape Li = zi+
∑h
j=1 cijzj+h, 1 ≤ i ≤ h, with cij ∈ Fp. Thus Wred is

parametrized by homogeneous variables t1, . . . , th+r, via zi = −
∑h
j=1 cijtj , 1 ≤ i ≤ h and

zi+h = ti, 1 ≤ i ≤ h + r. The form Fh vanishes identically on W . Hence, by the lemma,

we have, putting N = ph − 1:

0 =
∂Fh
∂tj

=
n∑
i=1

∂Fh
∂zi

∂zi
∂tj

=
h∑
i=1

zNi (−cij) + zNj+h, 1 ≤ j ≤ h.

Consequently, for all t = (t1, . . . , th) ∈ F̄hp , whenever zi = −
∑h
j=1 cijtj for all i, then

tNj =
h∑
i=1

zNi (cij). (∗)

Putting tj = δjk (Kronecker δ) yields zi = −cik; hence, since (−1)N = 1 in Fp, δjk =∑h
i=1 c

N
ik(cij). This shows that (cij) is an invertible matrix. Let (bjk) be the inverse

matrix, so bjk = cNkj = 0 or 1 and tj = −
∑h
i=1 bjizi. Substituting this into (*) yields an

identity: (∑
i

bjizi
)N

=
∑
i

cijz
N
i .

We claim that (bjk) is a permutation matrix. Indeed, if for some j, bji = bji′ = 1, i 6= i′,

then h > 1 and, putting zi = x, zi′ = y, zs = 0, s 6= i, i′ in the above identity, yields an

identity (x+y)N = xN+yN , which is impossible since N is not a power of p. Therefore (cij)
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is also a permutation matrix. After applying this permutation to the indices h+i, 1 ≤ i ≤ h

we obtain Li = zi + zi+h for each i. Thus, keeping this permutation of the indices, but

going back to the original ai, the reduced and irreducible component W of Vm of dimension

at least n−m is the linear space given by the equations ai0zi + ai+h,0zi+h = 0, 1 ≤ i ≤ h.

By the definition of Vm, this means that ai+ζiai+h ≡ 0 (mod pm) for ζi = T (−ai0/ai+h,0),

1 ≤ i ≤ h, and ai ≡ 0 (mod pm) for 2h < i ≤ n. This concludes the proof of Proposition 1.

The group Gn = (T (k∗)n >/ Sn)/T (k∗) acts on Pn−1 and is the largest linear group

keeping our statements invariant. It allows us to assume that ai0 = 1 for 1 ≤ i ≤ n − r

and ai0 = 0 for i > n− r if that is convenient, as in the proof above. The symmetric group

Sn is sometimes said to be PGLn over the field with one element; we leave to the reader

a corresponding interpretation of Gn.

We define a p-adic curve germ to be non-singular, if there is a hyperplane with order

of contact exactly 1. That means that V1 6= V2. From the proposition, a p-adic curve

germ is non-singular unless r ≥ n − 2, i.e., r = n − 2 or r = n − 1. For those r’s, it

is easy to see that a p-adic curve germ is non-singular unless ai ≡ 0 mod p2 for each i

such that ai ≡ 0 mod p and, in the case r = n − 2, if aj , ak 6≡ 0 mod p, j 6= k, then

−aj/ak ≡ T (−aj/ak) mod p2. Another way to describe non-singularity when r ≥ n− 2 is

as follows. If we consider the point (a
1/p
11 : . . . : a

1/p
n1 ), then for r ≥ n− 2 the p-adic curve

germ is non-singular if and only if this point is well-defined in Pn−1(k) and is distinct from

the point (a10 : . . . : an0). Moreover, when this holds, V2 is the dual linear space to the line

joining these two points, with multiplicity p. This can proved using the explicit formulas

for F0, F1 at the beginning of this section. Note the similarity with the function field case.

Regardless of the value of r, if (a
1/p
11 : . . . : a

1/p
n1 ) is a well-defined point in Pn−1(k) and is

distinct from (a10 : . . . : an0), the line joining these points is invariant under the action of

Gn on (a1 : . . . : an), so is intrinsic to our problem. Surprisingly, this line does not seem

to play any role if r < n− 2.

If we are dealing with a p-adic plane curve germ , i.e., if n = 3, then we think of V2

as the set of tangents. A consequence of the above discussion is that if the curve germ is
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non-singular and r > 0 it has a unique tangent. The situation for r = 0, the generic case,

is quite different.

Proposition 2. A p-adic plane curve germ with r = 0 has at most p and, if p is odd, at

least (p+ 1)/2 tangents.

Proof: If n = 3, r = 0 then V1 6= V2, by Proposition 1. Since V1 is a line, it follows

that V2 is finite and thus has p elements counted with multiplicities, since degF1 = p. As

V2 is the set of tangents, the first assertion follows. Assume now that p is odd. Let C be

the plane curve defined by F1 = 0. Then V2 is the intersection of V1 and C and we wish

to study the intersection multiplicity at the points of V2. The intersection multiplicity is

one unless the Jacobian matrix below has rank less than two,(
a10 a20 a30

ap10z
p−1
1 ap20z

p−1
2 ap30z

p−1
3

)
If the multiplicity is at least two then V1 is tangent to C and this tangent is inflexional

if and only if the Hessian, det(∂2F1/∂zi∂zj), vanishes. By Lemma 1, the Hessian equals

−(a10a20a30)p(z1z2z3)p−2 and, since r = 0, it vanishes only if one of the zi’s vanishes. But

if that happens then the above Jacobian matrix has rank two, again since r = 0. It follows

that V1 cannot be an inflexional tangent to C and thus the points in V2 have multiplicity

at most two, proving the proposition.

Remark: The lower bound is sharp for small p, but a search for 11 ≤ p ≤ 100 failed

to produce any p-adic plane curve germs with ai ∈ Qp with (p+ 1)/2 tangents.

In the power series case, the Vm are a decreasing sequence of linear spaces, and either

Vm = Vm+1 or Vm+1 is of codimension 1 in Vm. In the p-adic case, however it can

happen that Vm is reducible and Vm+1 is a component of Vm. We will give some examples

now. Start with ai = 1, i = 1, . . . , 4 and assume p 6= 2. Then V∞ consists of three

lines (1 : −1 : z : −z), (1 : z : −z : −1), (1 : z : −1 : −z), z ∈ k and, if p 6= 3 and

ω is a primitive cube root of unity, the eight points in the S4-orbit of (1 : ω : ω2 : 0).

This follows from Mann’s Theorem ([Mn]). Now we perturb our curve a little. Take

ai = 1, i = 1, 2, ai = 1 + pm, i = 3, 4, where m is large. Then, the first line stays in V∞ but
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the other two are in Vm \ Vm+1. One can perturb further to make V∞ empty but the first

line to be Vn, for some n > m.

3. The general case

Theorem 2. For every integer n ≥ 1 and every family of n elements a1, . . . , an ∈ Cp there

exists a constant c > 0 such that for any ζ1, . . . , ζn roots of unity in Cp either
∑
ζiai = 0

or |
∑
ζiai| ≥ c.

Proof: First we show that by increasing n we can reduce to the case where the coeffi-

cients a1, . . . , an are equal to ±1. This reduction will be done by induction on the number

of non-zero coefficients a1, . . . , an which are distinct up to sign. If this number is 1 then

all coefficients are equal, up to sign, and upon dividing by a1 we get all coefficients equal

to ±1. For the general case, assume, without loss of generality, that a1 = 1 and write

X = (X1, . . . , Xn) and

A(X) =
∑

aiXi =
∑
ai 6=±1

aiXi +
∑
ai=±1

aiXi = B(X) + C(X),

say. Assume, by contradiction, that there is sequence (ζ(k)) of n-tuples of roots of unity

in Cp with A(ζ(k)) 6= 0 but A(ζ(k)) → 0 as k → ∞. Note that |B(ζ(k))| ≤ max{|ai|}. It

follows that

B(ζ(k))C(ζ(k+1))− C(ζ(k))B(ζ(k+1)) = B(ζ(k))A(ζ(k+1))−B(ζ(k+1))A(ζ(k))→ 0.

However, B(ζ(k))C(ζ(k+1))−C(ζ(k))B(ζ(k+1)) can be written as the value of a linear form

in roots of unity, namely,

∑
i,j

ai 6=±1
aj=±1

±aiζ(k)i ζ
(k+1)
j −

∑
i,j

ai 6=±1
aj=±1

±aiζ(k+1)
i ζ

(k)
j ,

the coefficients of which are equal to those of B, up to sign. Therefore this linear form

has fewer non-zero coefficients distinct up to sign than A. From the induction hypothesis,
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it follows that the sequence B(ζ(k))/C(ζ(k)) is eventually constant. Note that C(ζ(k)) =

A(ζ(k)) − B(ζ(k)) 6= 0 for large k, since the theorem holds for B(X) by the induction

hypothesis. Since the theorem also holds for C(X) by the induction hypothesis, it follows

that |C(ζ(k))| ≥ c > 0, for large k. Combining this with A(ζ(k)) → 0, we conclude that

B(ζ(k))/C(ζ(k)) → −1 as k → ∞. Hence B(ζ(k))/C(ζ(k)) = −1 for k large, which is a

contradiction, since A(ζ(k)) 6= 0.

Next we suppose ai ∈ Qp, 1 ≤ i ≤ n, and will reduce to the case the roots of unity ζi

are of order prime to p, which is taken care of by Theorem 1. Choose a primitive p-th root

of unity ξ and let N be a set of coset representatives for the p-power order roots of unity

modulo the p-th roots of unity. Then each root of unity of p-power order can be written as

ηξj , η ∈ N , 0 ≤ j ≤ p− 1. Also, it is clear that every root of unity ζ ∈ Q̄p can be written

as ζ ′η, where the order of ζ ′ is not divisible by p2 and η ∈ N . Let F denote the maximal

unramified extension of Qp.

Let ζ1, . . . , ζn be roots of unity. Write each ζi as ζ ′iηi, where ηi ∈ N and the order of

ζ ′i is not divisible by p2, so ζ ′i ∈ F (ξ). We write

A =
∑

aiζi =
∑

aiζ
′
iηi =

∑
η∈N

(
∑
ηi=η

aiζ
′
i)η.

Here N ⊂ N is a set of r elements, for some r ≤ n. Let M = {σ0, . . . , σr−1}, where σj is an

automorphism of Q̄p over F such that ησj = η1+pj for p-power order roots of unity η. Note

that each σj is the identity on F (ξ). The determinant ∆ := det(ησ) with η ranging in N

and σ in M is equal to
∏
η∈N η times det(ηpj). The latter is a Vandermonde determinant

in the ηp’s, for η ∈ N . Since these η’s are in distinct cosets modulo the p-th roots of

unity, their p-th powers are distinct. It follows from Lemma 2 below that |∆| ≥ |p|
n(n−1)
2(p−1) .

Conjugating the above equation for A by the σ ∈ M and applying Cramer’s rule, we can

express each sum
∑
ηi=η

aiζ
′
i as a combination of the conjugates of A, with coefficients

which are integers in Q̄p divided by ∆, so have p-adic absolute value bounded above by

|∆|−1. Since |∆|−1 is bounded above in terms of n alone, making A small will make each∑
ηi=η

aiζ
′
i small. If we show these cannot be small without being zero, we are done. Write

10



ζ ′i = ζ ′′i ρi, where the ρi are p-th roots of unity and the ζ ′′i have order prime to p. Again

break up each
∑
aiζ
′
i as

B =

p−1∑
j=0

(
∑
ρi=ξj

aiζ
′′
i )ξj =

∑
Bjξ

j ,

say. Since
∑p−1
j=0 ξ

j = 0 we can write B =
∑p−1
j=1(Bj − B0)ξj , and since (ξj), 1 ≤ j < p, is

a basis for F (ξ) over F , we can conclude that if B is small, then each Bj − B0 is small.

However, Bj − B0 =
∑
ρi=ξj

aiζ
′′
i −

∑
ρi=1 aiζ

′′
i is a linear combination of roots of unity

of the kind covered by Theorem 1. Hence if B is sufficiently small we get Bj −B0 = 0 so

B =
∑
Bjξ

j = B0

∑
ξj = 0. To complete the proof of the theorem, it suffices to prove

the following lemma.

Lemma 2. Let ∆ = det(ηji )i,j=0,...,r−1 where η0, . . . , ηr−1 are distinct p-power roots of

unity in Q̄p. Then |∆| ≥ |p|
r(r−1)
2(p−1) .

Proof: Since ∆ is an r×r Vandermonde determinant, the lemma follows from the fact

that if η, η′ are distinct roots of unity of p-power order then |η − η′| ≥ |p|
1

(p−1) .

Corollary. The set S = {
∑
ζiai} with the ζi varying through the roots of unity in Cp is

a uniformly discrete subset of Cp, in the sense that there exists a constant c > 0 such that

for any two distinct elements α and β of S, |α− β| ≥ c.

Proof: Apply Theorem 2 to a1, . . . , an,−a1, . . . ,−an.

Remarks: (i) If we replace Cp by C, then Theorem 2 is false, even for n = 2, with the

group of roots of unity replaced by an arbitrary infinite subgroup, because such a subgroup

is dense in the unit circle.

(ii) The argument in the reduction step applies more generally for a1, . . . , an in any

non-archimedian valued field and ζ1, . . . , ζn in a subset of the integers in the field closed

under multiplication. In particular we can apply the reduction step and prove the analogue

of Theorem 2 with Cp replaced by the completion of the algebraic closure of k((x)), for

any field k, and the roots of unity replaced by the elements of k∗.
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(iii) The theorem is a special case of the following conjecture: Let A be a semiabelian

variety over Cp and X a closed subvariety. There is a lower bound c > 0 for the p-adic

distance (in the sense of [Si]) of torsion points on A, not in X, to X. It is easy to see that

if ci is such a lower bound for a closed subvariety Xi of A for 1 ≤ i ≤ r, then c = min{ci}

is such a bound for the intersection X =
⋂r
i=1Xi. Hence it suffices to consider the case

of hypersurface sections X of A, in some given projective or affine embedding. For a

linear torus A = Spec Cp[x1, x
−1
1 , . . . , xn, x

−1
n ], the conjecture follows from our Theorem

2, since a monomial in roots of unity is a root of unity, so any polynomial in roots of

unity can be viewed as a linear form in roots of unity with one variable for each monomial.

If A/Q̄p has good reduction and the Frobenius endomorphism of the reduction lifts to

an endomorphism of A, Buium [B2] has proved the weaker version of this conjecture in

which one considers only those torsion points fixed by a power of the lift of Frobenius. In

particular, he recovers Theorem 1. Serre pointed out to us that, more generally, a similar

argument yields the following result: Let K be a non-archimedian local field with residue

field k and Y ⊂ X varieties over K, with Y closed in X. If Z is a finite-dimensional

k-subvariety of the Greenberg transform of X, then there is a lower bound c > 0 for the

p-adic distance of points in Z(k) (considered as a subset of X(K)) not in Y , to Y .

Surprisingly, if Qp(a1, . . . , an)/Qp is unramified and p > n(n − 1)/2 + 1, allowing

arbitrary roots of unity ζi does not make min |
∑
ζiai| smaller than allowing only roots

of unity of order prime to p. Indeed, if that minimum is not zero, then it is |p|m for an

integer m such that the Vm of §2 is finite, and we have the following result.

Proposition 3. Let a1, . . . , an ∈ Q̄p with Qp(a1, . . . , an)/Qp unramified and assume that

p > n(n− 1)/2 + 1. If Vm, associated to (a1 : . . . : an), is finite and ζ1, . . . , ζn are roots of

unity of arbitrary order with |
∑
ζiai| ≤ |p|m then there exists a root of unity η of p-power

order and ζ ′1, . . . , ζ
′
n, roots of unity of order prime to p, with ζi = ζ ′iη, i = 1, . . . , n.

Proof: Since p > n, there exist automorphisms σj , j = 1, . . . n, of Q̄p trivial on F , the

maximal unramified extension on Qp, and such that σj(η) = ηj if η is a p-power order
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root of unity. Suppose ζ1, . . . , ζn are roots of unity of arbitrary order with |
∑
ζiai| ≤ |p|m

and write ζi = ζ ′iηi, with ζ ′1, . . . , ζ
′
n, roots of unity of order prime to p, and η1, . . . , ηn

of p-power order. Let r be number of distinct η’s. Then we can apply the argument

in the proof of Theorem 2. Namely, we conjugate A =
∑
ζiai by the automorphisms

σj , 1 ≤ j ≤ r and apply Cramer’s rule, to express each sum
∑
ηi=η

aiζ
′
i as a combination

of the conjugates of A, with coefficients which are integers in Q̄p divided by ∆ = det(ησ),

so have p-adic absolute value bounded above by |∆|−1. It follows from Lemma 2 that

|∆| ≥ |p|
r(r−1)
2(p−1) ≥ |p|

n(n−1)
2(p−1) . Thus,

|
∑
ηi=η

ζ ′iai| ≤ |p|m|∆|−1 ≤ |p|
m−n(n−1)

2(p−1) < |p|m−1.

As |
∑
ηi=η

ζ ′iai| has to be an integral power of |p|, it follows that |
∑
ηi=η

ζ ′iai| ≤ |p|m. If

there are at least two distinct η, η′ among η1, . . . , ηn we conclude that, for all ζ ∈ T (k),

|
∑
ηi=η

ζ ′iai +
∑
ηi=η′

ζζ ′iai| ≤ |p|m.

This contradicts the finiteness of Vm and proves the proposition.

4. Some remarks on the global case

Let K be a number field and (a1 : . . . : an) ∈ Pn−1(K). Then for any non-archimedian

place w of K we have an embedding of K into Q̄p for some p and therefore we can consider

the p-adic curve germ given by (a1 : . . . : an) and study its behaviour as w varies. These

p-adic curve germs are the analogues of the local branches of the image of a curve under

a map to Pn−1. One could ask, following [Sm], for an analogue of the Plücker formulas

(and their higher dimensional extensions, also known as the Brill-Segre formula). At this

point, it is not clear what shape these would take but we will pose some questions in this

direction below. First notice that, due to Proposition 3, which applies to all but finitely

many places, it is not unreasonable to restrict our attention to roots of unity of order prime

to p at w|p in the following proposition.
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Proposition 4. Let K be a number field and (a1 : . . . : an) ∈ Pn−1(K). Assume

that a1, . . . , an are algebraic integers. For an unramified non-archimedian place w|p of K

with completion Kw and residue field Fw, consider the corresponding p-adic curve germ,

and let (Vm) be the associated sequence of Fw-subvarieties of Pn−1. Let q be the norm

of w and N = p(n−1)(n−2)/2. If Vn−1 is finite then ]Vn−1 ≤ N and either
∑
aiζi = 0 or

|
∑
aiζi|w ≥ C [K:Q]qN for roots of unity ζi of order prime to p , where C−1 =

∏
v|∞(

∑
|ai|v)

and the absolute values are normalized so that they restrict to the usual ones in Q.

Proof: Vn−1 is the intersection of the zero sets of the polynomials F0, . . . , Fn−2 and

degFi = pi, so the first statement follows from Bézout’s Theorem. It follows that each

point (z1 : . . . : zn) ∈ Vn−1 is defined over a field of degree at most N over the residue field

Fw of w. Hence ζ1, . . . , ζn are qk − 1-th roots of unity for some k ≤ N and are therefore

defined over a field L of degree at most qN over K. Applying the product formula to

α =
∑
aiζi ∈ L, if it is non-zero, gives:

1 = |α|dw/dw

∏
v 6=w

|α|dv/dv ≤ |α|dw/dw

∏
v|∞

|α|dv/dv ≤ |α|dw/dw

∏
v|∞

C−dv/d.

As dw ≥ 1 and d ≤ [K : Q]qN , the result follows.

The bound given by this proposition is very weak compared with the function field

case, where one can bound the valuation by the degree of the embedding of the curve in

projective space. In the case n = 3, the finiteness of V2 holds for all but finitely many w

by Proposition 2. For n = 4, part (iv) of Proposition 1 gives a criterion for the finiteness

of V3, but it does not follow automatically that it is finite for all but finitely many w. This

would follow, (assuming ai 6= 0 and ai/aj not a root of unity, for 1 ≤ i, j ≤ 4, i 6= j) if

we knew that there are only finitely many primes p with ap ≡ a mod p3 for fixed rational

a 6= 0,±1 and the natural number field analogue, which is implied by the conjecture in

[Sm]. For n ≥ 5 the situation is unclear, but it seems reasonable to expect that Vn−1

is finite for all but finitely many w in general. Assuming V∞ is empty, let us define the
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weight of w by

Mw =
1

p(n−1)(n−2)/2

∑
(z1:...:zn)∈Vn−1

(
w(
∑

aiT (zi))− (n− 1)
)
.

In the function field case, the Plücker formula gives an expression for the sum of the analo-

gous weights. As a first approximation to it we can ask if the infinite series
∑
wMw logNw

converges if n ≥ 3. There is no good reason to assume it is a finite sum, but the convergence

seems reasonable.
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Kurokawa), Astérisque 228 (1995) 121-164.

[Mn] H. B. Mann, On linear relations between roots of unity, Mathematika 12 (1965)

107-117.

[Mo] E. H. Moore, A two-fold generalization of Fermat’s Theorem, Bull. Amer. Math.

Soc. 2 (1896), 189-199.

[S] J-P. Serre, Local Fields, GTM 67, Springer, New York, 1979.

15



[Si] J. H. Silverman, Arithmetic distance functions and height functions in Diophantine

geometry, Math. Ann. 279 (1987) 193-216.

[Sm] A. L. Smirnov, Hurwitz inequalities for number fields, St. Petersburg Math. J. 4

(1993) 357-375.

Dept. of Mathematics, Univ. of Texas, Austin, TX 78712, USA

e-mail: tate,voloch@math.utexas.edu

16


