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Abstract. We give a short proof of the finiteness of the set of integral points on an

affine algebraic curve of genus at least one, defined over a function field of character-

istic zero.

Siegel [Si] has shown that an affine algebraic curve of genus at least one defined
over a number field, has only finitely many integral points. Lang [L] has proven an
analogous result for curves defined over a function field of characteristic zero, not
defined over the constant field. For curves of genus at least two, one even has the
Mordell conjecture (proved by Faltings [F] in the number field case and by Manin
[M] in the function field case) that there are only finitely many rational points.

For genus one, Manin [M] gave a proof of a strenghtening of Lang’s result as a by-
product of his work on the Mordell conjecture. Mason [Ms] then gave an effective
proof by more elementary considerations. In this note, we give a short proof of
Manin’s (and hence Lang’s) result for genus one. The proof can be adapted to
higher genus as well (see the remark below).

Let K be a function field with constant field of characteristic zero and E/K
an elliptic curve with non-constant j-invariant. The reader may consult [S] for
definitions and results about elliptic curves. In particular we shall use the following
results. The group E(K) is a finitely generated abelian group by the Mordell-Weil
theorem and there is a height function h : E(K)→ R with the property that there
are only finitely many points of bounded height ([L], Proposition 2). The height
can be written as a sum of local heights

∑
λv(P ), where v ranges through the

places of K. The local heights satisfy λv(P ) = max{0, v(t(P ))} + βv(P ), where
βv is bounded for all v and it is identically zero for all but finitely many v, and t
is a uniformizer at 0 ∈ E. For example, t = x/y, where x, y are coordinates of a
Weierstrass equation for E.

Now, Lang’s result for genus one can be reduced to the case of a Weierstrass
equation ([S], Corollary IX.3.2.2) and in this case we argue as follows. Let S be a
finite set of places of K. Then

∑
v/∈S λv(P ) is bounded independently of P , if P

is S-integral and, since there are only finitely many points of bounded height, if
there are infinitely many S-integral points, then λv is unbounded for some v ∈ S.
It suffices thus to prove the following result:
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Theorem (Manin). Let K be a function field with constant field of characteristic
zero and E/K an elliptic curve with non-constant j-invariant and v a place of K.
Then the local height function λv is bounded on E(K).

Proof. The points on E(Kv) that reduce to 0 mod v form a subgroup E1(Kv) iso-
morphic to the group of points of a formal group. Choosing an uniformizer t, as
above, on E at 0, then E1(Kv) = {P ∈ E(Kv)|t(P ) ∈Mv}, whereMv is the maxi-
mal ideal of the local ring at v. Moreover, λv(P ) differs from v(t(P )) by a bounded
amount. Hence, it suffices to show that v(t(P )) is bounded above on E(K). Suppose
not and choose Pn, n = 1, 2, . . . in E(K) such that v(t(Pn+1)) > v(t(Pn)) > 0. We
claim that P1, P2, . . . are linearly independent over Z. Recall that t induces a group
isomorphism between Er/Er+1, where Er = Er(Kv) = {P ∈ E(Kv)|t(P ) ∈ Mr

v},
and Mr

v/Mr+1
v . If niPi =

∑
j>i njPj , ni 6= 0 and r = v(t(Pi)) then niPi is 0 in

Er/Er+1, but t(niPi) ≡ nit(Pi) 6≡ 0 (mod Mr+1
v ), which proves the claim. On the

other hand, the claim contradicts the Mordell-Weil theorem and this completes the
proof.

Remark. On a curve of genus greater than one, if a sequence of points P1, P2, . . .
approach rapidly a point P∞, then a similar argument shows that the Pi −P∞ are
linearly independent over Z in the Jacobian of the curve, and Lang’s result follows
from this. The author and A. Buium [BV] have recently proved a conjecture of
Lang to the effect that an affine open subset of an abelian variety of any dimension
over a function field of characteristic zero has finitely many integral points.
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