
Class Groups - Outline of course
Ideal class groups in special case of imaginary quadratic
fields. All results true in greater generality.

Sketch proof of the Dirichlet class number formula,
and some bounds and estimates for the class number.

Two recent applications motivated by computational
number theory and cryptography.

Reading:

H. P. F. Swinnerton-Dyer, A brief guide to algebraic
number theory.

D. Cox, Primes of the form x2 + ny 2.

H. Cohen, A Course in Computational Algebraic
Number Theory
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Basic definitions for reference
Let R be a commutative ring with a multiplicative
identity 1, e.g., R = Z.
Let R be an integral domain (i.e., ab = 0 for a, b ∈ R
if and only if a = 0 or b = 0).
An ideal is a non-empty subset I ⊆ R such that I is a
group under addition and

m∑
i=1

ai ri ∈ I

for any m ∈ N, ai ∈ I and ri ∈ R for 1 ≤ i ≤ m.
A standard example of an ideal in Z is nZ.
The zero ideal is {0}.
An ideal I is called proper if I is non-zero and I 6= R .
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Basic definitions for reference

The ideal generated by a1, . . . , an ∈ R is the set
(a1, . . . , an) = {

∑n
i=1 ai ri : ri ∈ R}.

Such an ideal is called finitely generated.

An ideal I is called principal if I = (a) for some
a ∈ R .

A proper ideal I in a ring R is prime if, for any
a, b ∈ R , ab ∈ I implies a ∈ I or b ∈ I .

The product of two ideals I and J is

IJ =

{
n∑

i=1

aibi : ai ∈ I , bi ∈ J

}
.
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Imaginary quadratic fields

Let d ≥ 1 be a square-free integer such that d ≡ 1
(mod 4), and consider F = Q(

√
−d) and

R = Z[
√
−d ].

Exercise: R is an integral domain.

R is the ring of algebraic integers of F .

The discriminant of F is DF = −4d .

The norm of u + v
√
−d is N(u + v

√
−d) = u2 + dv 2.

Example: Let d = 5 then

I = (2, 1+
√
−5) = {2α+(1+

√
−5)β : α, β ∈ Z[

√
−5]}

is an ideal.
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Exercise

Let I be an R-ideal.

1 I ∩ Z is an ideal, and so is generated by some integer
a ≥ 0.

2 I = (0) if and only if a = 0.

3 I = (1) if and only if a = 1.

4 If a is non-zero and u + v
√
−d ∈ I then

a | N(u + v
√
−d).

5 I ⊇ (a).

6 I a prime ideal implies a is prime.

7 If there is some integer u > 1 such that I ⊆ (u), then
I = (u)I ′ for some ideal I ′ in R .
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Ideals in imaginary quadratic fields

If I is a non-zero ideal in R such that I 6⊆ (u) for any
integer u > 1 then there are integers a, b such that
I = (a, b +

√
−d).

Further, a | (b2 + d).

Exercise: Let I be a prime ideal (hence non-zero and not
R). Then either

I = (p,
√
−d) and p | d ,

I = (p) and (−dp ) = −1,

I = (p,±b +
√
−d) for some integer b such that

b2 ≡ −d (mod p).
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History of ideals in number fields

Originates in work of Gauss and Lagrange on
quadratic forms and number theoretical problems.

Also developed in attempt to prove Fermat’s last
theorem.

Kummer studied obstruction to unique factorisation
in cyclotomic rings and proved unique factorisation of
“ideal numbers”.

Dedekind developed the modern concept of ideals.

As with all good things, class groups found new
connections with other areas and took on a life of
their own.
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Ideal classes

Let I , J be ideals in R . We define the equivalence
relation I ∼ J if there exist α, β ∈ R such that
(α)I = (β)J .

Exercise: ∼ is well-defined under multiplication: If
I ∼ I ′ and J ∼ J ′ then IJ ∼ I ′J ′.

Consider an ideal I = (a, b +
√
−d) with

gcd(a, b) = 1. Define I−1 = (a,−b +
√
−d). Then

II−1 ∼ (1).

The ideal class group Cl(R) is the set of equivalance
classes of non-zero ideals with the group operation of
multiplication of ideals.
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Ideal class group

Unique factorisation of ideals into prime implies the
ideal class group is generated by prime ideals.

Lemma: Let d ≥ 1 be a square-free integer such
that d ≡ 1 (mod 4), and consider F = Q(

√
−d) and

R = Z[
√
−d ].

Let r be the number of (odd) prime divisors of d .
Then Cl(R)[2] = {x ∈ Cl(R) : x2 = (1)} has order 2r .

Proof omitted, but we will see an example later.
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Binary quadratic forms

A primitive binary quadratic form is
f (x , y) = ax2 + bxy + cy 2, where a, b, c ∈ Z satisfy
gcd(a, b, c) = 1.

The discriminant of the form is b2 − 4ac .

We will be concerned with positive definite forms,
meaning f (x , y) ≥ 0 for all x , y ∈ Z, and f (x , y) = 0
implies x = y = 0.

A form f (x , y) represents an integer m if there are
x , y ∈ Z such that f (x , y) = m.
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Binary quadratic form associated to an ideal

Reference: Theorem 7.7, Section 7.B of Cox.

Let d > 1 be a square-free integer such that d ≡ 1
(mod 4).

Consider an ideal I = (a, b +
√
−d) in R = Z[

√
−d ]

and let c = (b2 + d)/a.

Associate to I the binary quadratic form
ax2 + 2bxy + cy 2 of discriminant (2b)2 − 4ac = −4d .

The ideal (1) = Z[
√
−d ] corresponds to the form

x2 + dy 2 (i.e., (a, b, c) = (1, 0, d)).

The ideal I = (2, 1 +
√
−5) in Z[

√
−5] corresponds

to the form 2x2 + 2xy + 3y 2.
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Exercise

Define the norm of an ideal I to be N(I ) = [R : I ].

If I = (a, b +
√
−d) then show that

f (x , y) = N(ax+(b+
√
−d)y)/N(I ) = ax2+2bxy+cy 2

where c = (b2 + d)/a.

f (x , y) = 1
2(x , y)A(x , y)T where

A =

(
2a 2b
2b 2c

)
.
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Reduction of ideals

Let I = (a, b +
√
−d) with a ≥ 1 and c = (b2 + d)/a.

Associate to I the tuple (a, b, c).

I = (a, (b ± a) +
√
−d) has associated tuple

(a, b ± a, c + a ± 2b).

I

(
−b +

√
−d

a

)
= (c ,−b +

√
−d)

has associated tuple (c ,−b, a).

Applying these rules can reduce any tuple (a, b, c) to
satisfy |b| ≤ a/2 and a ≤ c .
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Reduction
In terms of the matrix

A =

(
2a 2b
2b 2c

)
these two reduction rules correspond to

(
1 0
±1 1

)
A

(
1 0
±1 1

)T

=

(
2a 2(b ± a)

2(b ± a) 2(c + a ± 2b)

)
(

0 1
−1 0

)
A

(
0 1
−1 0

)T

=

(
2c −2b
−2b 2a

)
.
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Reduced ideal/form

Ideal/form is reduced if |b| ≤ 1
2a and a ≤ c .

i.e., |2b| ≤ a ≤ c .

Exercise: Form reduced means a is the smallest
non-zero integer represented by the form.

Equivalent tuples correspond to forms that represent
the same set of integers.

Lemma: Ideal reduced implies a ≤
√

4d/3.

Proof: We have b2 ≤ (a/2)2 and
a2 ≤ ac = b2 + d ≤ (a/2)2 + d , and so a ≤

√
4d/3.

Theorem: The ideal class group is finite.

Its order is called the class number, denoted h(−d).
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Reduced principal ideals

Exercise: Let I = (a, b +
√
−d) be a reduced ideal.

Suppose I = (u + v
√
−d) is a principal ideal.

1 Show that a = u2 + v 2d .

2 Show that u2 + v 2d ≤ b2 + d ≤ 4d/3 and so |v | ≤ 1.

3 Show that v 6= 0, and so u + v
√
−d = b +

√
−d

4 Show that the tupe corresponding to I is (a, b, 1).

5 Hence show that an ideal I reduces to (1) if and only
if I is principal.
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Example: Compute h(−65)
Let d = 5 · 13 ≡ 1 (mod 4). Z[

√
−d ] has discriminant

−4d = −260.
We have |2b| ≤ a ≤

√
260/3 <

√
87 < 10 and so

|b| ≤ 4.
We are going to try each b in turn, and solve ac = b2 + d
subject to |2b| ≤ a ≤ c :

b = 0: ac = 65. Tuples
(a, b, c) = (1, 0, 65), (5, 0, 13). Order 1 and 2.

b = 1: ac = 66. Tuple
(a, b, c) = (2, 1, 33) ∼ (2,−1, 33) order 2.
Tuples (3,±1, 22), (6,±1, 11).

b = 2: ac = 69. Try (a, c) = (3, 23), but |2b| 6≤ a
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Example: h(−65)

b = 3: ac = 74. No solution with |2b| ≤ a ≤ c .

b = 4: ac = 81. Note
(a, b, c) = (9, 4, 9) ≡ (9,−4, 9), so ideal class has
order 2.

Hence the class number of d = −65 is 8.
Class group has 4 elements of order dividing 2, so is
C2 × C4.
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Exercises

h(−1) = 1

h(−5) = 2

h(−21) = 4
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Computing the class number

We have an algorithm to compute the class number,
which tests

√
d/3 choices for b, factors b2 + d and

counts the ideals.

This is an exponential-time algorithm in terms of the
input size.

There are better algorithms that exploit the group
structure (e.g., baby-step-giant-step or Pollard rho)
and factorisation of ideals (e.g., index calculus,
Hafner-McCurley).
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Class number one

Theorem: (Heegner/Baker/Stark) Let F be an
imaginary quadratic field of discriminant DF . Then
h(DF ) = 1 if and only if

DF ∈ {−3,−4,−7,−8,−11,−19,−43,−67,−163}.

See Section 12.E of Cox.

Rabinowicz Theorem: Let A ∈ N. All values
n2 + n + A are prime, for 0 ≤ n ≤ A− 2, if and only
if h(1− 4A) = 1.
See: https://dms.umontreal.ca/

∼andrew/Courses/Chapter4.pdf
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Back of envelope calculation of average class

number

Ideal classes correspond to tuples (a, b, c) with
1 ≤ a ≤

√
4d/3, |b| ≤ a/2, a ≤ c , and b2 + d = ac .

So
∑N

d=1 h(−d) is the number of all such tuples for
d ≤ N .

To estimate the sum consider all |b| ≤
√

N/3,
|2b| ≤ a ≤

√
4N/3, and all a ≤ c ≤ (N + b2)/a.

Rough count gives > cN3/2 for some constant c .

So h(−d) should on average be at least
√
d .
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Dirichlet class number formula

Let w be the number of units in Z[
√
−d ], so w = 2 when

d > 1.
Then

2πh(−d)

w
√
d

=
∞∑
n=1

(−4d
n )1

n .

For the proof I will follow Chapter 6 of Harold Davenport,
Multiplicative Number Theory, Springer GTM 74.
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Legendre symbol

Let p > 2 be prime and a ∈ Z.
Define ( ap) as:

0 if p | a,

1 if there exists a solution to x2 ≡ a (mod p),

−1 otherwise.

This is multiplicative: a =
∏

i p
ei
i implies

( ap) =
∏
i

(pip )ei .
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Kronecker symbol

Let n ≥ 1 and a ∈ Z.
Let n =

∏
i p

ei
i .

Define (an) as

(an) =
∏
i

( a
pi

)ei

where

(a2) =


0 if 2 | a,
1 if a ≡ ±1 (mod 8),
−1 if a ≡ ±3 (mod 8).
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Dirichlet L-series

Let χ : Z→ C be a non-constant periodic character
such as χ(n) = (−4d

n ).

Define the Dirichlet L-series

L(χ, s) =
∞∑
n=1

χ(n)
1

ns
.

Exercise:
∑|4d |

n=1 χ(n) = 0.

Since the sums
∑M

n=1 χ(n) are bounded, Dirichlet’s
test shows that the L-series converges for s > 0.
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More about binary quadratic forms
Let f (x , y) = ax2 + (2b)xy + cy 2 with
D = (2b)2 − 4ac .
Note: 4af (x , y) = (2ax + 2by)2 − Dy 2.
Lemma 2.5 of Cox: Let D = 0, 1 (mod 4) be an
integer and m be an odd integer relatively prime to
D. Then m is properly represented by a primitive
form of discriminant D if and only if D is a quadratic
residue modulo m.
Proof sketch: Let b be such that D ≡ b2 (mod m).
m odd implies b has same parity as D. So can ensure
D ≡ b2 (mod 4m). So D = b2− 4mc for some c and
mx2 + bxy + cy 2 is a form of discriminant D that
represents m.
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Sketch proof of Dirichlet class number formula
Fix d > 0 and set F = Q(

√
−d) and R = Z[

√
−d ].

Let f1, . . . , fh be quadratic forms corresponding to the
h = h(−d) ideal classes.
For n ∈ N define R(n, fi) to be the number of distinct
representations of n by fi .
So

R(n, fi) = #{(x , y) : x , y ∈ Z≥0, fi(x , y) = n}.
(“distinct” means counting solutions like (±x)2 once.)
Define R(n) to be

R(n) =
h∑

i=1

R(n, fi).
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Sketch proof of Dirichlet class number formula

Lemma: R(n) is multiplicative.

Proof: R(n) is number of factorisations of (n) as I Ī .

Lemma: Let p be an odd prime. If (DF

p ) = 1 then

R(p) = 2 and R(pk) = k + 1.
If (DF

p ) = −1 then R(p) = 0 and R(p2) = 1.

Proof: If (DF

p ) = 1 then by Lemma 2.5 of Cox above
there are two forms that represent p. These
correspond to the two non-equivalent ideals I1 and I2
such that (p) = I1I2.
Now for ideals of norm p2 there are three choices: I 2

1 ,
(p) = I1I2, and I 2

2 . So R(p2) = 3, etc.
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Sketch proof of Dirichlet class number formula

In summary, R(pk) =
∑k

j=0(DF

pj ).

Corollary:
R(n) =

∑
m|n

(DF

m ).
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Sketch proof of Dirichlet class number formula

The method of proof is to study 1
N

∑N
n=1 R(n) and

take a limit as N →∞.

Using the previous formulae we get

1
N

N∑
n=1

R(n) = 1
N

N∑
n=1

∑
m|n

(DF

m )

= 1
N

N∑
m=1

bNmc(
DF

m ) ≈
N∑

m=1

(DF

m ) 1
m .

(Meaning of ≈ is that there is an error term +O(
√
N).)

This converges to L((DF

· ), 1) as N →∞.
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Sketch proof of Dirichlet class number formula
On the other hand

∑N
n=1 R(n, fi) for

fi(x , y) = ax2 + 2bxy + cy 2 is counting the number of
solutions (x , y) ∈ Z2 such that fi(x , y) ≤ N .
It is the number of integer points in an ellipse of area
2πN/

√
|DF |.

This counts all solutions (not “distinct
representations”) so we get a factor w coming from
the units in the ring.
There are h different forms, so

w
N∑

n=1

R(n) ≈ 2πhN/
√
|DF |.

This completes the proof.
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Dirichlet class number formula

Let w be the number of units in Z[
√
−d ], so w = 2 when

d > 1.
Then

2πh(−d)

w
√
d

=
∞∑
n=1

(−4d
n )1

n .
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General statement of Dirichlet class number

formula
Let K be a number field of degree n = r1 + 2r2.
Let RK be the regulator, and wK the number of units of
finite order in OK .
Let DK and hK be the discriminant and class number.
Define the Dedekind zeta function

ζK (s) =
∑

(0)6=I⊆OK

N(I )−s .

Then

lim
s→1

(s − 1)ζK (s) =
2r1(2π)r2RKhK

wK

√
|DK |

.
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Lower bounds on class number

(From Ajit Bhand, M Ram Murt, Class Numbers of
Quadratic Fields.)

Hecke showed that a variant of Riemann hypothesis
for Dirichlet L-series implies there is some constant c
such that h(−d) > c

√
d/ log(d).

Deuring/Mordell/Heilbronn: falsity of variants of
Riemann hypothesis imply h(−d) tends to infinity.
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Upper bounds on class number

Suffices to upper bound
∑∞

n=1(−4d
n )1

n .

Exercise: Let S(x) =
∑x

n=1(Dn ). Then
|S(x)| ≤ |D|/2.
(There exist sharper bounds.)

Abel’s summation formula then allows to prove∣∣∣∣∣∣
∞∑

n=|D|

(−4d
n )1

n

∣∣∣∣∣∣ < 1
2 .
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Upper bounds on class number

Finally,

|D|∑
n=1

(−4d
n )1

n ≤
|D|∑
n=1

1
n ≈ log(|D|).

Hence we get the upper bound (taking w = 2)

h(−d) ≤ 1
π

√
4d log(4d).
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Which groups occur as class groups?

Recent survey “Missing class groups and class number
statistics for imaginary quadratic fields” by S. Holmin,
N. Jones, P. Kurlberg, C. McLeman and K. Petersen.

Watkins (2003) used the ideas of Goldfeld and
Gross-Zagier to give an unconditional resolution of
Gauss’ class number problem for imaginary quadratic
class numbers h ≤ 100 and found that none of the
groups C 3

3 ,C
4
3 ,C9 × C 2

3 occur.

F (h) = number of fundamental discriminants d < 0
of class number h.
Soundararajan has conjectured
c1h/ log(h) < F (h) < c2h log(h).
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Application to cryptography: Groups of unknown

order

Anyone can choose a large prime p ≡ 1 (mod 4) and
efficiently compute in Cl(Z[

√
−p]).

It seems to be hard to compute the class number,
which is the group order.

This has various applications that I probably won’t go
into, such as accumulators, delay functions, certain
digital signature schemes, etc.
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Computational assumptions
Gen(λ) outputs a “random group of unknown order”
in time polynomial in λ that requires O(λ) bits to
write down.
Low order assumption: There is no efficient
algorithm (running in time polynomial in λ) that
takes as input the description of a group G output by
Gen(λ), and outputs a pair (g , d) where the order of
g is d and 1 < d < 2λ.
Adaptive root assumption: There is no efficient
algorithm that takes as input the description of a
group G from Gen, outputs a group element g ,
receives a random “challenge” prime 1 < ` < 2λ, and
then outputs h = g 1/` (i.e., h` = g).
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Annoying fact about class groups

As we have seen, an ideal I = (a, b +
√
−d) is

represented as a pair of integers (a, b) with
|2b| ≤ a ≤

√
4d/3.

So it takes about log2(d) bits to represent an ideal.

But the group size is approx
√
d .

Ideally we would have a representation of ideal classes
that uses 1

2 log2(d) bits

Elliptic curves have same property, but there is an
efficient way to compress group elements.
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Compression of class group representations

Simple idea that doesn’t work: Just represent using a,
then compute b such that b2 ≡ −d (mod a).

New solution (Dobson-Galbraith-Smith, 2021): Using
continued fractions compute s, t ∈ Z such that
|s|, |t| ≤

√
a and bt ≡ s (mod a).

Send (a, t), which takes 3
4 log2(d) bits.

Receiver knows s2 ≡ (bt)2 ≡ −dt2 (mod a), but
0 ≤ s2 ≤ a so s can be computed and hence b.

There are a few special cases to deal with. See paper.
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Elliptic curves are class groups

Let y 2 = f (x) be the equation for an elliptic curve E
over a field K (e.g., f (x) = x3 + Ax + B).

Consider the ring
R = K [x , y ]/(y 2 − f (x)) ∼= K [x ][

√
f (x)], which is a

Dedekind domain.

We can consider the ideal class group of R .

A point P = (a, b) on E corresponds to the ideal
(x − a, y − b) = (x − a,−b +

√
f (x)).

I will now explain that the elliptic curve addition
formulae are multiplication and reduction of ideals.

This gives an “easy” proof of associativity of the
group operation.
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Elliptic curves are class groups

Let P = (a, b) and Q = (c , d).

(x − a, y − b)(x − a, y + b) = (x − a) expresses
(a, b) + (a,−b) = O.

The product (x − a, y − b)(x − c , y − d) is an ideal
representing P + Q. But it is not reduced.

First, write it in the form I = (a(x), b(x) + y).

Recall the ideal reduction rule:

I

(
−b +

√
−d

a

)
= (c ,−b +

√
−d).

The exact same idea reduces the ideal I to an ideal of
the form (x − u, y − v), where (u, v) = P + Q for the
elliptic curve group law.
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Lecture 3

Introduction to isogenies of elliptic curves.

Description of action of ideal class group on a certain
set, with detailed proofs for my students (that are
easier to understand than reading Waterhouse).

Brief description of the CSIDH isogeny based
cryptosystem.

Overview of the theory of complex multiplication, and
sketch explanation of one result needed for the ideal
class group action.
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Isogeny

Let E1,E2 be elliptic curves. Point at infinity always
denoted O.

An isogeny is a non-constant map φ : E1 → E2 that is
both a morphism in the sense of geometry and a
group homomorphism.

An isogeny φ : E1 → E2 has finite kernel G ⊆ E1(Fp).

Example (elliptic curves over C): The map z 7→ z on
C induces

C/〈1, τ〉 → C/〈1, 1
2τ〉

Kernel is {0, 1
2τ}.
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Example of an isogeny

Let E1 : y 2 = x3 + x and E2 : Y 2 = X 3 − 4X .

The point (0, 0) on E1 has order 2.

There is an isogeny φ : E1 → E2 with kernel
generated by (0, 0), given by the rational function

φ(x , y) =

(
x2 + 1

x
, y

x2 − 1

x2

)
.

φ(O) = φ((0, 0)) = O.
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Multiplication by [n] map

Example:
[n] : E1 → E1

maps P to [n](P) = P + P + · · ·+ P (n times).

Kernel is E1[n].

Note [0](P) = O is the point at infinity.
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Endomorphism ring

Let E be an elliptic curve over Fp.

Define
End(E ) = {isogenies φ : E → E over Fp} ∪ {[0]}.
This is a ring, under pointwise addition and
composition.

Additive identity is [0] and multiplicative identity is
[1].

We will work with EndFp
(E ).
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Frobenius Map on Elliptic Curves

Let E be an elliptic curve over Fp.

Define the Frobenius map π : E → E by
π(x , y) = (xp, y p).

Note that ker(π) = {O}.
Fact: The Frobenius satisfies a degree 2
characteristic polynomial π2 − tπ + p = 0.

Further t2 − 4p < 0.

So Z[π] ⊆ End(E ) is an imaginary quadratic ring.
To be precise (a + bπ)(P) = [a]P + [b]π(P).
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Frobenius Map on Supersingular Elliptic Curves

A supersingular curve E/Fp has p + 1 points.
Equivalently E [p] = {O}.
Example: When p ≡ 2 (mod 3) then y 2 = x3 + 1 is
supersingular.

If E over Fp is supersingular then t = 0 and
π2 = [−p].

If gcd(a, p) = 1 then (a + bπ) has kernel of size
a2 + pb2.

Technically there is a notion of degree of an isogeny,
and # ker(φ) = deg(φ) when φ is separable.
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Isogenies from kernels

Given a finite subgroup G ⊆ E1(Fp) there exists an
elliptic curve E2 and a (separable) isogeny
φ : E1 → E2 with ker(φ) = G .

the curve E2 and the isogeny φ are unique up to
isomorphism.

The pair (E2, φ) can be computed using Vélu’s
formulae.
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Action of ideal on supersingular elliptic curves

Let E over Fp be supersingular, so
Z[
√
−p] ∼= Z[π] ⊆ End(E ).

(Assume p ≡ 1 (mod 4) to be consistent with the
previous lectures.)

Let I ⊆ Z[
√
−p] be a non-zero ideal.

Define
E [I ] = ∩φ∈I ker(φ)

= {P ∈ E (F p) : φ(P) = O∀φ ∈ I}.
Exercise: If I = (α1, α2) then
E [I ] = ker(α1) ∩ ker(α2).
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Action of ideal on supersingular elliptic curves

Recall E [I ] = ∩φ∈I ker(φ) where I ⊆ Z[
√
−p].

Define φI : E → EI to be the isogeny with kernel E [I ].

Since φI is an isogeny we have [m] ◦ φI = φI ◦ [m].

Exercise: Show that if G is a finite subgroup of E
then I (G ) = {a + b

√
−d : (a + b

√
−d)(G ) = {O}}

is an ideal in Z[
√
−p].

Waterhouse defines I to be a kernel ideal if I (E [I ]) = I .
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Action of a principal ideal on supersingular elliptic

curves

Let E over Fp be supersingular, so
Z[
√
−p] ∼= Z[π] ∼= EndFp

(E ).

Let I = (α) ⊆ Z[
√
−p] be a non-zero principal ideal.

Then E [I ] = ker(α) and so φI : E → EI is the isogeny
with kernel ker(α).

Hence φI = α maps E to E .

In other words, principal ideals map the curve to itself.

Note that, when α is separable,
# ker(α) = N(α) = N(I ). This is called the degree of
the isogeny.
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Exercise: π ◦ φI = φI ◦ π

Suppose φ : E1 → E2 where E1 and E2 are defined
over Fp.

Write φ(P) = (φx(P), φy(P)).

In general it is not true that

(φx(P)p, φy(P)p) = (φx(xpP , y
p
P), φy(xpP , y

p
P)).

However, I ⊆ Z[π] and so (exercise) P ∈ E [I ] implies
π(P) ∈ E [I ].

Since E [I ] is Galois-invariant it follows that φI is
Galois-invariant.

Steven Galbraith Class groups January 2022 56 / 73



Consequences

Let φI : E → EI .
From π ◦ φI = φI ◦ π we deduce:

(a + bπ) ◦ φI = φI ◦ (a + bπ).

Z[π] ⊆ EndFp
(EI ).

(This is really just saying: EI is defined over Fp.)
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Products of ideals

Lemma: Let E over Fp be supersingular with
Z[
√
−p] ∼= Z[π] ∼= EndFp

(E ).
Let I , J ⊆ Z[

√
−p] be non-zero ideals.

Then φIJ = φJ ◦ φI .

Proof: Let I = (α1, α2) and J = (β1, β2). Then
IJ = (αiβj : 1 ≤ i , j ≤ 2).

Let P ∈ ker(φJ ◦ φI ).

Then φI (P) ∈ ker(φJ) so βj(φI (P)) = O for all j .

Then φI (βj(P)) = O for all j .

So αi(βj(P)) = O for all i , j .

Hence P ∈ ker(φIJ).
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Products of ideals

Lemma: Let E over Fp be supersingular with
Z[
√
−p] ∼= Z[π] ∼= EndFp

(E ).
Let I , J ⊆ Z[

√
−p] be non-zero ideals.

Then φIJ = φJ ◦ φI .
Proof: Let I = (α1, α2) and J = (β1, β2). Then
IJ = (αiβj : 1 ≤ i , j ≤ 2).

Let P ∈ ker(φJ ◦ φI ).

Then φI (P) ∈ ker(φJ) so βj(φI (P)) = O for all j .

Then φI (βj(P)) = O for all j .

So αi(βj(P)) = O for all i , j .

Hence P ∈ ker(φIJ).
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Rest of proof

The argument is reversible. Let P ∈ ker(φIJ).

Then αi(βj(P)) = O for all i , j .

So φI (βj(P)) = O for all j .

So βj(φI (P)) = O for all j .

So P ∈ ker(φJ ◦ φI ).

Since ker(φIJ) = ker(φJ ◦ φI ) it follows that
φIJ = φJ ◦ φI up to composition with an isomorphism.
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Action of a equivalent ideals on supersingular

elliptic curves
Let E over Fp be supersingular, so
Z[
√
−p] ∼= Z[π] ∼= EndFp

(E ).

Let I , J ⊆ Z[
√
−p] be non-zero ideals.

Suppose I ∼ J .

Then there are non-zero α, β ∈ Z[
√
−p] with

(α)I = (β)J .

So
E

φI−→ EI
α−→ EI

and
E

φJ−→ EJ
β−→ EJ

are the same isogeny.
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Degree of isogeny corresponding to an ideal

Already noted that when I = (α) is principal and α is
separable, then # ker(α) = N(I ).

This is true in greater generality: When φI is
separable then # ker(φI ) = N(I ).

Quick and dirty way to see this is to let
I = (a, b +

√
−p) and note that I I = (a) where

I = (a,−b +
√
−p).

It is clear that deg(φI ) = deg(φI ).
And N(I I ) = N(I )2.
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Action of ideal class group on supersingular elliptic

curves
Non-equal ideals I , J such that I ∼ J give
φI : E → E1 and φJ : E → E1. These are different
ideals, but to the same curve.

Hence Cl(Z[π]) acts on the set of supersingular
elliptic curves

{E/Fp : EndFp
(E ) ∼= Z[π]}

up to isomorphism.

An ideal I maps E to I ∗ E := EI , being the image
curve of φI .

(There is also quaternion stuff, but I am just talking
about abelian group action.)
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Abelian group action

This abelian group action is implicit in the theory of
complex multiplication.

It was stated in a computational context by Kohel
(1996), and proposed for cryptography by Couveignes
(1997, unpublished).

The idea was rediscovered by Rostovtsev-Stolbunov
(2006) and Stolbunov (2010) who specifically
mentioned it may resist attack by quantum
computers.
“Besides being interesting from the theoretical point of view, the

proposed cryptographic schemes might also have an advantage

against quantum computer attacks.”
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CSIDH (Castryck, Lange, Martindale, Panny,

Renes 2018)
Main point of CSIDH is the choice of prime.

Let p = 4`1 · · · `n − 1 where `i are small primes.
(The CSIDH paper suggests taking the first 73 odd
primes and then `74 = 587.)

Let X be the set of isomorphism classes of
supersingular elliptic curves E with j-invariant in Fp.
Each such curve has Z[

√
−p] in its endomorphism

ring.

The primes `i all split in Z[
√
−p].

To compute I ∗ E one writes I as a product of powers
of the 74 split primes.
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Generalised Diffie-Hellman

N(I ) =
∏n

i=1 `
ei
i

E

I ∗ E

J ∗ E

IJ ∗ E

N(J) =
∏n

i=1 `
fi
i
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Complex multiplication

Complex multiplication is an important theory. I am
not going to do justice to it in this lecture.

Usually credited to Kronecker, who was studying
abelian extensions of imaginary quadratic fields.

Consider an elliptic curve E as C/〈1, τ〉 with
Im(τ) > 0.

What is End(E )?

We know Z ⊆ End(E ).

Anything else should correspond to z 7→ αz such that
α1 ∈ 〈1, τ〉 and ατ ∈ 〈1, τ〉.
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Complex multiplication
Suppose α1 ∈ 〈1, τ〉 and ατ ∈ 〈1, τ〉.
We have α = a + bτ for some a, b ∈ Z, and

ατ = (a + bτ)τ = c + dτ

for some c , d ∈ Z.
Then τ satisfies the quadratic

bτ 2 + (a − d)τ − c = 0

and α satisfies

α2 − (a + d)α + (ad − bc) = 0.

It follows that τ lies in an imaginary quadratic field
and that α is an algebraic integer.
The map z 7→ αz is called a complex multiplication.
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Complex multiplication

Any element τ with Im(τ) > 0 in any imaginary
quadratic field gives rise to an elliptic curve C/〈1, τ〉
with complex multiplication.

Suppose C/〈1, τ〉 has endomorphism ring containing
Z[α] where α ∈ Z[

√
−d ].

Then r〈1, τ〉 ⊆ 〈1, τ〉 for all r ∈ R = Z[
√
−d ].

In other words, the lattice 〈1, τ〉 is a fractional ideal
for the ring R .

Every isomorphism class of elliptic curves over C with
complex multiplication corresponds to an ideal class
in an imaginary quadratic field.
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Complex multiplication

Fix an imaginary quadratic ring Z[
√
−d ] of class

number h.

Let I1, . . . , Id be ideals representing the ideal classes.

Then C/I1, . . . ,C/Ih are non-isomorphic elliptic
curves, all with endomorphism ring Z[

√
−d ].

If J is an ideal and InJ
−1 ∼ Im, then

C/In ←− C/InJ−1 ∼= C/Im

is an isogeny of degree N(J).
(You really have to think about fractional ideals here.)
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Complex multiplication

Fix an imaginary quadratic ring R = Z[
√
−d ] of class

number h.

Let I1, . . . , Id be ideals representing the ideal classes.

It follows that the ideal class group Cl(Z[
√
−d ]) acts

transitively on the set of elliptic curves
C/I1, . . . ,C/Ih.

Steven Galbraith Class groups January 2022 70 / 73



Field of definition, reduction, lifting, etc

Elliptic curves with complex multiplication are defined
over a number field (the Hilbert Class Field), and
hence can be reduced modulo p.

Let h be the class number of Z[
√
−p] (where p ≡ 1

(mod 4)).

Then there are h isomorphism classes of elliptic
curves over the Hilbert class field, all having
endomorphism ring Z[

√
−p].

Reducing modulo p gives h supersingular elliptic
curves over Fp.
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Field of definition, reduction, lifting, etc

Conversely (Deuring’s lifting theorem), there are not
more than h elliptic curves over Fp with
endomorphism ring Z[

√
−p].

Hence there are precisely h isomorphism classes of
supersingular elliptic curves over Fp with
EndFp

= Z[
√
−p].

It follows that the action of ideal classes on
supersingular elliptic curves is a group of size h acting
transitively on a set of size h.
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