Value sets of sparse polynomials

Felipe Voloch

Number Theory Web Seminar

June 2020

Abstract

We obtain a lower bound on the size of the value set $f\left(\mathbb{F}_{p}\right)$ of a sparse polynomial $f(x) \in \mathbb{F}_{p}[x]$ over a finite field of p elements when p is prime. This bound is uniform with respect to the degree and depends on the number of terms of f.

Joint work with I. Shparlinski

Value sets

If $f \in \mathbb{F}_{q}[x]$ has degree n, then $V(f):=\# f\left(\mathbb{F}_{q}\right) \geq\lceil q / n\rceil$ since each element of \mathbb{F}_{q} has at most n preimages under f.
Bound attained if $n \mid(q-1), f(x)=x^{n}$. For q prime and
$\geq\lceil q / n\rceil \geq 3$, these (up to obvious transformations) are the only examples where the equality is attained. If $q=p^{2}, p^{3}, p$ prime these "minimal value polynomials" are also classified.

Carlitz, Lewis, Mills, Strauss; Borges, Reis

We study the question of bounding $V(f):=\# f\left(\mathbb{F}_{q}\right)$ from below as a function of the number of terms in f, rather than its degree. Specifically, if $f(x)=a_{0}+\sum_{i=1}^{t} a_{i} x^{n_{i}}$, we want to estimate $V(f)$ in terms of t and q.

Main result

Theorem 1

For prime $p \geq 5$ and integers $1 \leq n_{1}, \ldots, n_{t}<p-1$ such that
(i) $\max _{1 \leq j<i \leq t} \operatorname{gcd}\left(n_{j}-n_{i}, p-1\right) \leq 2^{-t^{2}}(p-1)$,
(ii) $\operatorname{gcd}\left(n_{1}, \ldots, n_{t}, p-1\right)=1$,

If $f(x)=\sum_{i=1}^{t} a_{i} x^{n_{i}} \in \mathbb{F}_{p}[x], a_{i} \neq 0, i=1, \ldots, t$, then

$$
V(f) \geq \min \left\{\left(\frac{3 p}{t}\right)^{2 / 3}, \frac{1}{12} p^{4 /(3 t+4)}\right\}
$$

For $t=2, n_{1}=1$ we get $V(f) \geq \sqrt{p}$.

Counterexamples

Hypotheses (i) and (ii) necessary: If $n|(p-1), n| n_{i}, \forall i$, then $V(f) \leq p / n$.
Prime field is necessary: $x+x^{p}+\cdots+x^{p^{t-1}}$ maps $\mathbb{F}_{p^{t}}$ to \mathbb{F}_{p}.

Ideas of proof - I

First, reduce the degree of $f(x)$. Replace x by $x^{m},(m, p-1)=1$ (bijection on \mathbb{F}_{p}).
This replaces n_{i} by $m n_{i}(\bmod p-1)$ and, by (i) and (ii), can be made simultaneously small for some choice of m.

This alone already gives a bound for the number of solutions of $f(x)=a$ which gives a lower bound for $\# f\left(\mathbb{F}_{p}\right)$ (about $p^{1 / t}$). But we will do better.

Canetti, Friedlander, Konyagin, Larsen, Lieman, Shparlinski

Ideas of proof - II

If $\# f\left(\mathbb{F}_{p}\right)$ is small then the number of solutions of $f(x)=f(y)$ is large. We want to bound the number of irreducible factors of $f(x)-f(y)$ and their degrees.

For each irreducible factor $g(x, y)$ we use known bounds for the number of points on curves over finite fields to estimate the number of solutions of $g(x, y)=0$

Hasse, Weil; Stöhr, V.

Ideas of proof - III

Let K be the function field of the curve $g(x, y)=0$. The equation

$$
\sum_{i=1}^{t} a_{i} x^{n_{i}}-\sum_{i=1}^{t} a_{i} y^{n_{i}}=0
$$

is an S-unit equation on K where S is the set of zeros and poles of x and y. Use generalized abc bounds.

Zannier; Brownawell, Masser; V.

Ideas of proof - IV

K / F function field of genus g and characteristic $p>0$ and S finite set of places of K. If u_{1}, \ldots, u_{m} are S-units of K, linearly independent over F, with $\operatorname{deg}\left(u_{1}: \cdots: u_{m}\right)<p$ and

$$
u_{1}+\cdots+u_{m}=1
$$

then

$$
\max \left\{\operatorname{deg} u_{i}\right\} \leq \frac{m(m-1)}{2}(2 g-2+\# S)
$$

Exponential sums - I

We also bound some exponential sums. E.g. p prime, $n \mid(p-1)$,
$\mid \sum_{x=0}^{p-1} \exp \left(2 \pi i\left(a x+b x^{n}\right) / p \mid \ll p^{4 / 5}\right.$
Averaging reduces to estimate number of solutions of
$x^{n}+y^{n}-(x+y-1)^{n}=1$.
Same ideas as before then handles the number of factors and the number of solutions for each factor.

Exponential sums - II

Conjecture
$x^{n}+y^{n}-(x+y-1)^{n}-1 \in \overline{\mathbb{F}}_{p}[x, y]$ has unique irreducible factor besides $x-1, y-1, x+y$ if $2 \leq n<p, n \neq(p+1) / 2$.

True for $p<200$ or $n=(p-1) / 2$.
For $n=(p+1) / 2$ it is a product of linear and quadratics.
Popovych; Borges, Cook, Coutinho

THANK YOU

