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Classical transcendence theory began with the study of special values of the exponen-

tial function and later the study of special values of the logarithm and, more generally

elliptic and abelian logarithms, was added (see [B]). Characteristic p analogues have been

considered, firstly with the analogues of the exponential function arising from the theory

of Drinfeld modules (see [Y]) and also with p-adic exponentiation and its abelian analogue

([MP],[V]). Let us also note the general transcendence criterion obtained in [CKMR].

The purpose of this paper is to study the transcendence properties in positive char-

acteristic of the power series introduced by Tate which give a non-archimedian analogue

of elliptic functions. Let p be a prime number, k be the algebraic closure of Fp and q a

transcendental over k, i.e., a variable. The following series determine elements of k[[q]]:

a4 = −5
∑
n≥1

n3qn/(1− qn),

a6 = (−1/12)
∑
n≥1

(7n5 + 5n3)qn/(1− qn).

Swinnerton-Dyer has shown that a4 and a6 are algebraically dependent in positive charac-

teristic in contrast with characteristic zero [S-D]. Let K = k(a4, a6) and L = k((q)). Note

that K is a subfield of L. Our first result is:

Theorem A. q is transcendental over K.

We will prove this theorem below. First we will introduce some more notation and

state our second result. Consider the following series:

x = x(q, u) =
∑
n∈Z

qnu/(1− qnu)2 − 2
∑
n≥1

nqn/(1− qn),

y = y(q, u) =
∑
n∈Z

q2nu2/(1− qnu)3 +
∑
n≥1

nqn/(1− qn).

They converge for any u in L∗, not a power of q and satisfy y2+xy = x3+a4x+a6, therefore

giving an analytic parametrization of the elliptic curve E (the Tate curve), defined over K

by this equation.
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Theorem B. If u ∈ L is such that x(q, u), y(q, u) are algebraic over K and define a point

of infinite order in E then u is transcendental over K.

Note that theorem A is the analogue of transcendence of periods of an elliptic curve

with algebraic coefficients and theorem B the analogue of the transcendence of the elliptic

logarithm of algebraic points on such elliptic curves.

To prove these theorems we will need to develop some results on the arithmetic of

E/K, specially regarding higher p-descents. Let us recall some well-known facts first. The

Tate curve E : y2 + xy = x3 + a4x + a6 is indeed an elliptic curve with discriminant

∆ = q
∏∞
n=1(1 − qn)24 and j-invariant j = q−1 + 744 + · · ·. Moreover E is ordinary with

Hasse invariant 1. Indeed, this fact gives the algebraic relation between a4 and a6 when the

Hasse invariant is expressed as polynomial in a4 and a6. Let E(pn) be the image of E under

the n-th power of the Frobenius map Fn and Vn : E(pn) → E the dual isogeny, the n-th

order Verschiebung, which is separable since E is ordinary. Let Kn be the field of definition

of the points of kerVn, these fields were studied by Igusa ([I], see also [KM], theorem 12.6.1),

who showed that their degree over K grows with n. He actually showed much more but

that is all we will need. Note that x(qp
n

, u), y(qp
n

, u) parametrize E(pn) and that the

image of u = q gives a generator Pn of kerVn. Let E[pn] denote, as usual, the group scheme

which is the kernel of multiplication by pn on E. We have the following exact sequence 0→

kerFn → E[pn]→ kerVn → 0. OverKn, kerVn is isomorphic to Z/pnZ and one can choose

the isomorphism so that 1 corresponds to the image of q as above. By Cartier duality, we

get an isomorphism between kerFn and µpn . Thus, the above exact sequence gives a class

qn, the Serre-Tate parameter, in Ext1Kn
(Z/pnZ, µpn) = H1(Kn, µpn) = K∗n/(K

∗
n)p

n

where

here and elsewhere the cohomology groups are in the flat cohomology of group schemes.

The absolute Galois group G of K acts on this group, and we wish to describe its action on

qn. Firstly, G acts on kerVn by a p-adic character σ 7→ χ(σ), which is of infinite order by

Igusa’s theorem. The action of G on kerFn is by χ also. Let Ks be the separable closure

of K. Taking cohomology of the exact sequence 0 → kerFn → E[pn] → kerVn → 0, we

get qn as the image of 1 ∈ kerVn in H1(Kn, µpn). We will, more generally, consider the
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map βn : E(pn)(Ks)/F
n(E(Ks)) → H1(Ks, µpn) = K∗s /(K

∗
s )p

n

obtained from the exact

sequence 0 → kerFn → E → E(pn) → 0 and the identification of kerFn and µpn given

above.

Lemma 1. If P ∈ E(pn)(Ks) and σ ∈ G then σ(bn(P )) = (bn(σ(P ))χ(σ).

Proof: The map E(pn)(Ks) → H1(Ks, kerFn) commutes with the action of G, but

upon the identification of kerFn with µpn , there is the further action of G via χ, hence

the lemma.

Lemma 2. The class of u in L∗/(L∗)p
n

is equal to βn(x(qp
n

, u), y(qp
n

, u)).

Proof: The Tate parametrization gives that E(L) is isomorphic to L∗/qZ and that

E(pn)(L) is isomorphic to L∗/qp
nZ and that Fn is induced by u 7→ up

n

in L∗. The lemma

follows.

Proof of Theorem A: If Pn ∈ E(pn)(Kn) corresponds to u = q then bn(Pn) = qn. Also,

G acts on kerVn via χ. Therefore, applying lemma 1 to Pn yields σ(qn) = q
χ(σ)2

n . From

lemma 2, q = qn in L∗/(L∗)p
n

. If q is algebraic, then it follows that q = qn in K∗s /(K
∗
s )p

n

also. This is impossible since, on one hand, G would act on q by a finite quotient and, on

the other hand, G acts on qn by cyclic groups that grow with n, since χ is of infinite order.

Proof of Theorem B: The point with parameter u in E(pn) is a point Qn satisfying

Vn(Qn) = Q0, so is an algebraic point. By lemma 2 we get that βn(Qn) = u in L∗/(L∗)p
n

.

If σ ∈ G acts trivially on Q0, then σ(Qn)−Qn ∈ kerVn, therefore there exists an additive

p-adic character ψ such that bn(σ(Qn)) = bn(Qn)q
ψ(σ)
n . Assume now that u is algebraic

over K and assume also that σ fixes u. We get the following relation in K∗s /(K
∗
s )p

n

,

u = σ(u) = σ(bn(Qn)) = bn(σ(Qn))χ(σ), by lemma 1. Hence u = uχ(σ)q
χ(σ)ψ(σ)
n in

K∗s /(K
∗
s )p

n

. Finally choose σ satisfying the above conditions and such that χ(σ) 6= 1,

which exists by Igusa’s theorem. Since the above equation is valid for all n and the only

elements of L which are pn-th powers for all n are the elements of k, we obtain from this

equation an equation ur = αqm, where r,m are p-adic integers, r 6= 0 and α ∈ k∗. By

raising both sides of the equation to a suitable power, we can assume that α = 1 and
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without loss of generality we can further assume that m ∈ Z. It follows from corollary 2 of

[V] that u must represent a torsion point on E, which completes the proof of the theorem.

If u gives a torsion point in L∗/qZ then u = αqr, where α is in k and r is a rational

number. Therefore, u is transcendental over K if and only if r 6= 0.

Finally, one could ask for analogues of the classical statements dealing with linear

forms in logarithms. However, the only sense that apparently can be made of that is

through p-adic exponentiation, which makes sense for elements of 1 + qk[[q]]. It then

follows from the results of [V] that if u1, . . . , ur ∈ 1 + qk[[q]] give Z-linearly independent

points on E, algebraic over K, then u1, . . . , ur are Zp-multiplicatively independent.
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