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Abstract

We describe the valuations of the function field Gauss sums at the infinite
places, by relating them to Weierstrass gaps. This generalizes our previous
results for Fq[T ], in which case the valuations are all 1/(q − 1), in direct
analogy with the well-known classical result that all the absolute values of
Gauss sums are q1/2. We also investigate the sign of quadratic or higher
order Gauss sums, giving results in the direction of Gauss’ sign theorem and
the work of Cassels and Matthews.

Introduction

An analogue of Gauss sums taking values in function fields over finite
fields was introduced and studied in [8, 9, 10, 12]. In [8, 9], analogues
of various classical results about Gauss sums such as Stickelberger factor-
ization, Hasse-Davenport and Gross-Koblitz results were established, in the
case of Fq[T ]. The general case turns out to be interestingly different, in
view of the established analogies, and is discussed in [10, 12]. More rel-
evant to this paper is another well-known classical fact that the absolute
value of Gauss sum at any infinite place is q1/2. For Fq[T ] analogue, it was
shown in [8, 9] that the valuation at any infinite place is −1/(q − 1). Here
2 and q − 1 can be described as the cardinalities of Z∗ and Fq[T ]∗ resp.
or as the degrees of respective cyclotomic fields over their maximal ‘totally
real’ subfields. We will see (theorem 1.8) that even though these analogies
generalize, the valuation in the general case is closely related to Weierstrass
gaps.

We only deal with the case where the infinite place is of degree one. It
might be worthwhile to do the general case and the interested reader will
find the relevant cyclotomic theory developed in [5]. For the general case,
when the genus is zero, see [10, 12].

Next we consider the question of sign of Gauss sums and establish (the-
orem 2.5) an analogue of Gauss’ theorem on the sign of quadratic Gauss
sums. Then we consider signs of m-th order Gauss sums, in spirit of the
investigations of Cassels and Matthews (See [7]).

Acknowledgements: I am much obliged to José Felipe Voloch for his
help (see the appendix) with some questions about the exceptional primes.
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Section 0: Background

Notation:
Fq : a finite field of characteristic p containing q elements
K : a function field of one variable with the field of constants Fq
∞ : a place of K of degree one
H: maximal abelian unramified extension of K split at ∞
A : the ring of elements of K with no poles outside ∞
℘: a prime of A of degree d
K∞: the completion of K at ∞
Ω: the completion of an algebraic closure of K∞
h : the class number of K
g: the genus of K

Drinfeld modules, Gauss sums (See [2, 4, 10] for more details) :

0.1 Fix a local parameter t−1 at ∞. For x ∈ K∗∞, define deg(x) ∈ Z and
sgn(x) ∈ F∗q to be the exponent in the highest power of t and the coefficient
of the highest power respectively, in the expansion of x as Laurent series in
t−1, with coefficients in Fq.

0.2 Let L be a field containing A and let L{F} denote the noncommu-
tative ring generated by the elements of L and by a symbol F , with the
commutation relation Fl = lqF , for all l ∈ L. By a Drinfeld A-module
ρ over L (in fact ‘sgn-normalized, of rank one and generic characteristic’,
but we will drop these words) we will mean an injective homomorphism
ρ : A→ L{F} (a ∈ A 7→ ρa ∈ L{F}) such that, for all a ∈ A− {0},

ρa =

deg(a)∑
i=0

ρa,iF
i, ρa,i ∈ L ρa,0 = a, ρa,deg(a) = sgn(a)

Two Drinfeld A-modules ρ, ρ̃ are considered isomorphic (say over L′ ⊃ L)
if there is a nonzero l′ ∈ L′ such that l′ρa = ρ̃al

′ for a ∈ A.
0.3 Minimal L such that Drinfeld A-module over L exists is H up to

isomorphism. Note that the degree of the extension H of K is h. There are
h nonisomorphic Drinfeld A-modules over H, Galois conjugates over K to
each other.
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0.4 For a Drinfeld module ρ over K∞, define the exponential e(z) = eρ(z)
of ρ as the power series characterized by e(az) = ρa(e(z)), for all a ∈ A and
e(z) = z+higher order terms in z. Then e(z) is an everywhere convergent in
Ω, it has coefficients in H. The kernel of the function e is a rank one A-lattice
in Ω and hence can be described as π̃AA, for some π̃ = π̃A ∈ Ω and an ideal
A of A. The fundamental period π̃ (in fact it has been defined only upto
multiplication by element in F∗q ) of e(z) can be thought of as an analogue
of 2πi and is known to be transcendental [13]. We have π̃q−1 ∈ K∞, just as
(2πi)2 ∈ R. The nonarchimedean nature of Ω then gives the product formula
e(z) = z

∏
(1 + z/λ), where the product runs over the nonzero elements λ of

the lattice π̃A.
0.5 Let L be an algebraic closure of L. For a ∈ A, define ‘a-torsion of

ρ’ as Λa := {u ∈ L : ρa(u) = 0}. For an ideal I of A, we define ‘I-torsion
of ρ’ as ΛI := {u ∈ L : ρi(u) = 0, for all i ∈ I}. It is an A-module under
ρ. By adjoining ΛI (I nonzero) to K, we get another type of cyclotomic
extension of K. In analogy with the classical case, K(ΛI) = H(ΛI) has
Galois group (A/I)∗ over H and the decomposition (also inertia) group at
an infinite place of H is F∗q ⊂ (A/I)∗. Hence the degree of H(ΛI) over its
‘maximal totally real’ subfield H(ΛI)

+ is q − 1.
0.6 Let ℘ be a prime of A of degree d. Choose an A-module isomorphism

ψ : A/℘ → Λ℘ (an analogue of additive character) and let χj (jmod d) be
Fq-homomorphisms A/℘→ L where L is a field containing K(Λ℘), indexed
so that χqj = χj+1 (special multiplicative characters which are qj-powers of
‘Teichmüller character’, say χ0). Then we define the Gauss sums

gj := g(χj) := −
∑

z∈(A/℘)∗
χj(z

−1)ψ(z)

Section I: Valuations at ∞

1.1 Let ρ be a Drinfeld module over K∞ with the corresponding lattice
π̃A. Let ℘ be a prime of A of degree d. Consider the Gauss sums as defined
in 0.6. Note that Λ℘ = {e(π̃r) : r ∈ ℘−1A} and that gj ∈ π̃Fqd((t−1)).

1.2 Theorem: The degree of the Gauss sum is same as the maximum
possible degree of a ℘-torsion element

Proof: Let R ⊂ ℘−1A be a set of representatives modulo A of the lowest
possible degrees. It is easy to see that there is a Fq- basis {r1, · · · rd} of R
such that {r1 + r2θ1 + · · · + rdθd : θi ∈ Fq} is exactly the subset of monic
(i.e. of sgn 1) elements of R of maximal degree.
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We can assume that the torsion points ψ(r) are just e(π̃r), for r ∈ R. The
product formula in 0.4 shows that the degree of ψ(r) is maximal, when the
degree of r is maximal. Now ψ being additive, the maximal degree is degree
of ψ(r1). It is enough to show that this top degree does not get cancelled
in the summation. Since both ψ and χj are Fq-linear, and q − 1 = −1 in
characteristic p, we have gj =

∑
χj(z

−1)ψ(z), where now the sum is taken
over the monic representatives of ℘−1A/A. If we note that χj(ri) is a basis
of Fqd over Fq, the theorem then follows from the following lemma.

1.3 Lemma: If f1, · · · , fd is a basis of Fqd over Fq, then∑
:=

∑
θi∈Fq

1

f1 + f2θ2 + · · ·+ fdθd
6= 0

Proof: Let

M(x1, · · · , xk) :=
k∏
j=1

∏
θi∈Fq

(xj + xj+1θj+1 + · · ·+ xkθk)

Then with P (t) :=
∏

(t+f2θ2+ · · ·+fdθd), where the product is over all θi ∈
Fq, we have

∑
= P ′(f1)/P (f1) and P (f1) = M(f1, · · · , fd)/M(f2, · · · , fd).

As P (t) is an Fq-linear polynomial, P ′(t) is just the coefficient of t in
P (t) and hence equals

∏
(f2θ2 + · · · + fdθd), where now the product runs

through θi ∈ Fq not all zero. But this is just (−1)d−1M(f2, · · · , fd)q−1,
because

∏
θ∈F∗

q
θ = −1 and (−1)(q

d−1−1)/(q−1) = (−1)d−1. Hence
∑

=

(−1)d−1M(f2, · · · , fd)q/M(f1, · · · , fd) is nonzero, as it is product of terms
which are nonzero because fi are linearly independent over Fq. This finishes
the proof of the lemma and of the theorem.

1.4 Definition: Let 0 ≤ n1 < n2 · · · < ng be the integers n (‘gaps of A’)
so that there are no elements of A of degree n. (Here g is just the number of
gaps. It is the genus g when A = A, by the Riemann-Roch. Note ng − g is
an ideal class invariant and hence when g = 0 we take n0 = −1 to retain this
property.) Call ℘ exceptional with respect to A (or rather its ideal class) if
ng is a gap for fractional ideal ℘−1A (i.e. there is no element of degree ng
in ℘−1A.) We say that ℘ is exceptional, if it is exceptional with respect to
some A.

1.5 Theorem: (1) Principal primes are not exceptional; (2) Primes of
degree more than g are not exceptional. In particular, there are at most
finitely many exceptional primes. (3) Primes of degree one which are not
principal are exceptional.
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Proof: Let ℘ be a prime of degree d. Since ng is the largest gap of A,
there is an element, say e ∈ A of degree ng + d. If ℘ is principal, ℘ = (P )
say, then e/P ∈ ℘−1A has degree ng and (1) follows. In general, given ℘, let
d′ be the degree of the smallest degree element in the smallest degree ideal
℘ in the ideal class inverse to that of ℘. Counting the gaps of ℘, we see that
d′ ≤ deg ℘+g. If d > d′−deg ℘, then ℘−1 has an element of negative degree
and just as above we see that ℘ in that case can not be exceptional. (2)
follows. Now let ℘ be of degree one and not principal (equivalently g 6= 0).
Then 0 is a gap for ℘, but not for A. Hence the count of gaps shows that
the largest gap for A is also the largest gap for ℘ and hence ℘ is exceptional
for A = ℘. This proves (3) and hence the theorem.

1.6 Remarks: (i) If ℘ is a non-principal prime of the lowest possible
degree for A for an hyperelliptic K, then ℘ has 2g− 1 as a gap and hence is
exceptional for A = ℘.

(ii) When g = 1, the theorem shows that the exceptional primes are
exactly the primes of degree one and are hence h− 1 in number.

(ii) By 1.5, there are no exceptional primes when h = 1. (By [6], apart
from A = Fq[T ] (one for each q), there are only four such A’s.) On the
other hand, Voloch (see the appendix) has given a nice characterization of
exceptional primes and proved that they do exist when h > 1.

1.7 Lemma: If ℘ is (resp. is not) exceptional, the highest degree element
in R has degree less than (resp. equal to) ng.

Proof: If ℘ is not exceptional, ℘−1A has an element of degree ng, which
is not congruent to any element of lower degree modulo A, since ng is a gap
for A. On the other hand, any element of ℘−1A of degree more than ng is
congruent modulo A to one of lower degree as can be seen by subtracting
an element of same degree (which exists, as ng is largest gap) and opposite
sign.

Now we state the main theorem of this section.

1.8 Theorem: Let ρ be a Drinfeld module over H. Let ik : H ↪→ K∞
be the embedding corresponding to a infinite place ∞k of H and π̃A be the
corresponding lattice. Then (with the notation as in 1.4) the degree of the
Gauss sum is same at any prime above ∞k and is less than or equal to
qng−g+1/(q−1), with equality if and only if ℘ is not exceptional with respect
to A.

Proof: Let n(i) be the number of monic elements of A of degree i. Then
it is easy to see that n(i) is qi−j , if nj < i < nj+1, where for convenience we
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take ng+1 =∞. Then by [11] pg. 41, the degree of π̃ is (the sum is p-adic)∑
(q − 1)in(i) = Σ1 + Σ2, where Σ1 is the sum over i ≤ ng and Σ2 over

i > ng. Then

Σ2 = (q − 1)
∞∑
k=1

(ng + k)qng+k−g = −(ng + 1)qng−g+1 +
qng−g+2

q − 1

By 1.2 the degree of the Gauss sum is the degree of e(π̃r1) = π̃r1
∏

(1+r1/a),
where the product runs over nonzero a ∈ A. Let us compute the degree of
r1

∏
(1 + r1/a). Note that there are no terms of negative degree in the

product by the choice of R. It is clearly sufficient to consider only the case
where ℘ is not exceptional. Then the degree is easily seen to be

ng +
∑

i 6=nj ,i≤ng

(ng − i)(q − 1)n(i) = ng[1 +
∑

(q − 1)n(i)]−
∑

(q − 1)in(i)

Now the sum in the bracket telescopes to qng−g+1 by the determination of
n(i) above. Combining with the formula for the degree of π̃, the degree of the
Gauss sum then turns out to be−qng−g+1+qng−g+2/(q−1) = qng−g+1/(q−1)
as claimed. This proves the theorem.

1.9 Remark: Let D be the degree of a non-principal prime of A of
smallest possible degree. If the largest gap for A is smaller than D + g − 1
(for example, D > 1 and A with gaps 1 to g), then ℘ is not exceptional for
A = ℘ and hence for such A’s, every prime has ‘generic’ infinite valuation
for at least one ∞k by the theorem. The situation when A has a gap 2g− 1
gives another example of this, since then there are no exceptional primes
for A = A: The largest gap for ℘h−1 is ≤ 2g − 1 + (h − 1)d and hence the
largest gap for ℘−1 is ≤ 2g − 1 − d. In fact, for general A, Voloch (see the
appendix) shows how to find A with no exceptional primes with respect to
it.

Section II: Sign of the Gauss sum

2.1 In this section, we restrict to the case A = Fq[T ], with T of sgn one.
Then ρT = T + F . We begin by explaining what m-th order Gauss sum,
when m divides qd − 1, means in our context. For y ∈ 1

qd−1Z/Z − {0}, let

us write 0 < (qd − 1)y =
∑
yjq

j < qd − 1, with 0 ≤ yj < q. Then we put
g(y) =

∏
g
yj
j . Note that g(qj/(qd−1)) = gj corresponds to the multiplicative

characters χj of order qd − 1. Hence it is natural to consider the reduced
denominator of y as the order of the Gauss sum. (For more explanation,
see [8, 9]). In particular, if p 6= 2, we can talk about the ‘quadratic Gauss
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sum’ g(1/2) =
∏
g
(q−1)/2
j . Also, g(y)g(1− y) =

∏
gq−1j = (−1)d℘ (here and

below ℘ will be assumed to be monic) can be thought of as an analogue of
the well-known classical fact g(χ)g(χ) = χ(−1)q. (See [8]).

2.2 We can consider gj as an element of π̃K∞(ζqd−1) and can talk about
its ‘sign’ sgn. Carlitz [1] (but see [11] pg. 33 and 42 for our normalizations)
gives a formula for π̃, which implies that π̃q−1 ∈ K∞ and sgn(π̃q−1) = −1.
We write ε := sgn(π̃) and tj := χj(T ). Here j is considered modulo d. We
first give a formula for sgn(gj) in terms of ε and ti’s.

2.3 Theorem: We have

sgn(gj) = (−1)d−1ε
d−1∏
k=1

(tk − t0)−q
j

Proof: Consider the Fq-basis ri := T d−i, 0 < i ≤ d for the repre-
sentatives of A/℘. Then 1.2 shows that sgn(gj) is ε times χj(

∑
), where∑

:=
∑
θi∈Fq

(r1 + r2θ2 + · · ·+ rdθd)
−1. By [1], theorem 9.4 (there are some

sign mistakes in the theorem and proof, but these are easily correctable),

we have
∑

= (−1)d−1/
∏

(T q
k − T ) where k runs through 1 ≤ k < d. This

proves the theorem.
2.4 Now in general, as can be easily seen from this theorem, the depen-

dence of the sgn(gj) or even sgn(g(1/m)) on ℘ is quite complicated and not
just through d. But when m = 2, i.e the case of quadratic Gauss sums, we
have the following analogue of Gauss’ theorem.

2.5 Theorem: Let i := ε(q−1)/2. (Note i2 = −1.) Then s2 := sgn(g(1/2))
depends only on the congruence class of q and d modulo 4. In fact, we have

s2 = (−i)d+2 (q ≡ 1 mod 4) s2 = (−i)d2+2 (q ≡ 3 mod 4)

In other words, s2 is i, (−1)(q−1)/2, (−i)(−1)(q−1)/2 or −1 according as d
congruent to 1, 2, 3 or 4 modulo 4.

Proof: (We know by 2.1, g(1/2)2 = (−1)d℘ and hence s2 is a fourth
root of unity, a priori). By the theorem 2.3 and the formula for g(1/2)

in 2.1, we see that s2 = id
∏

(tk − t0)
−(qd−1)/2, with 0 < k < d. Now

(qd − 1)/2 = (qd−1 + · · ·+ q + 1)(q − 1)/2. Since tq
r

k = tk+r, we have∏
(tk − t0)q

d−1+···+1 =
∏

(tj − ti) = (−1)d(d−1)/2
∏

(tj − ti)2 (∗∗)
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where d > j 6= i ≥ 0 in the second product and d > j > i ≥ 0 in the third.
On the other hand,

∏
j>i

(tj − ti)q−1 =

∏
j>i(tj+1 − ti+1)∏
j>i(tj − ti)

= (−1)d−1

where the last equality follows from the fact that there are d − 1 rever-
sals of the sign, namely when j = d − 1. (Another way: the ‘discrimi-
nant’ is square exactly when d is odd). Putting this together, we see s2 =
id(−1)d(d−1)(q−1)/4(−1)d−1, which is equivalent to the formulae claimed.
This proves the theorem.

2.6 Now we turn to the question of sign, say sm, of the m-th order Gauss
sum g(1/m), when m > 2. Theorem 2.3 provides a formula. Now, for
the classical Gauss sums, Matthews [7] has given some interesting formulae
when m = 3 or 4, in terms of ‘1/m-th residue set, factorials and ‘torsion’
values of elliptic functions. Theorems 2.7 and 2.10 provide rough analogues
of these formulae, when m divides q2 − 1. Note that Q(ζ3) and Q(ζ4)
are quadratic cyclotomic extensions of Q, whereas K(ζq2−1) is a quadratic
cyclotomic extension of K. Results with weaker condition that m divides
qd − 1 would be more desirable. In our situation we do have ‘complex
multiplication’ as in [7], and the exponential for Fqd [T ] seems to be a good
function in the place of elliptic functions of [7], but we have not been able
to make a stronger analogy. On the other hand, in the general case, our
formulae can be considered to be in the spirit of Patterson’s simplification
(see [7]) of Matthews’ formulae. For history of the subject, various analogies
and comparison of complexities of different formulae, see [7].

Let S be a ‘1/(q−1)-th residue set modulo ℘’, i.e. a set of representatives
of (A/℘)∗/F∗q . Define α(S) ∈ F∗

qd
by α(S) ≡

∏
s∈S s mod ℘. Then by Fq-

linearity of e(z), µ :=
∏
s∈S e(sπ̃/℘)/α(S) is independent of the choice of S.

Then it is easy to see from the fact that product of all nonzero ℘-torsion
points is ℘, that g(1/(q − 1))q−1 = (−1)d℘ = −µq−1.

2.7 Theorem We have

sq−1 = (−1)d(d−1)/2ε−dsgn(µ)2

Proof: By theorem 2.3 and (**), we have sq−1 = (−1)d(d−1)/2εd
∏

(tj −
ti)
−2, where the product is over d > j > i ≥ 0. Hence it is enough to show

that sgn(µ) = ε(q
d−1)/(q−1) ∏(tj − ti)−1. We can choose S to be the set of

all monic elements of A of degree less than d. Let Dj denote the product
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of all monic elements of A of degree j. Then it is enough to show that
χ0(Dd−1 · · ·D1D0) =

∏
(tj− ti). Now Dj =

∏
i<j(T

qj −T qi), by [1] pg. 140.
The claim and the theorem now follow easily.

2.8 Remark: Let m divide q− 1. Choose a set S0 of representatives for
F∗q / < ζm > and let S′ be 1/m-th residue set. We can choose S′ to consist
of elements of degree less than d and with signs in S0. Let µ′ be defined in
analogous fashion to µ with S′ in place of S. Then sgn(µ′) = sgn(µ)(q−1)/m

and sm = s
(q−1)/m
q−1 . Hence the theorem provides a similar formula for sm.

2.9 Now consider m dividing q2 − 1. As in 2.8, it is enough to consider
m = q2 − 1. Let ℘ be such that the norm of ℘ (i.e. qd) be congruent to one
modulo m, so that d is even and ℘ splits in B := Fq2 [T ] as say ℘ = ℘1℘2. We
identify (A/℘)∗ with (B/℘1)

∗. By theorem 2.3, ignoring the explicit powers

of −1 and ε, the interesting part of sq2−1 is S :=
∏

(tj − t0)
(qd−1)/(q2−1).

Let α1 :=
∏

(tj − ti), where the product runs through d > j > i ≥ 0 and
let α2 :=

∏
(tj − ti), where the product runs through d > j > i ≥ 0 and

i, j are even. Then α1 and α2 are α(S)’s for S as in 2.6 for α1; but for S
corresponding to B and ℘1 in place of A and ℘ for α2.

2.10 Theorem: We have S = α1−q
2 α1.

Proof: It is easy to see that S =
∏

(tj − ti) where i is even and j 6= i.
Decomposing the product over i > j and i < j, we see that S = α2

∏
(tj−ti),

where now the product is over j > i and at least one of i or j is even. But
then this product is α1/α

q
2 and hence the theorem is established.

2.11 Remark: By [1] pg. 148, the sum
∑

in the proof of the theorem 2.3
can also be expressed as (−1)d−1Π(qd−1 − 1)/Π(qd−1), where Π is Carlitz’
factorial. (See [1], [11]). This gives a simple expression for the sign of Gauss
sums in terms of Carlitz factorials.
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Appendix to Dinesh S. Thakur’s ‘Behavior of function field
Gauss sums at ∞’
José Felipe Voloch

The notion of exceptional prime is introduced in [15], definition 1.4. We
characterize exceptional primes, show that they always exist when the class
number is bigger than one and make other remarks about them.

We shall use a more geometric language. Let X be an algebraic curve
defined over a finite field and P a rational point of X, which will play the role
of ∞ in [15]. Recall that there is a 1-1 correspondence between fractional
ideals of the ring of functions on X holomorphic away from P and divisors
on X with support disjoint from P . Proofs of results on orders of linear
system used below can be found in [14].

Denote by, for a divisor D, L(D) = {x ∈ K : (x) +D ≥ 0} and by l(D)
its dimension over the field of constants. The gaps of an ideal defined by a
divisor D are the integers for which L(nP - D) = L((n-1)P - D). Indeed, this
means that any function on the ideal with degree at most n has degree at
most n-1. Recall that a prime divisor P ′ is exceptional for D if the highest
gap for D is also a gap for D − P ′. Let K be a canonical divisor of X.

Theorem: If D is a divisor of X, let m be the biggest integer for which
K +D is linearly equivalent to mP +D′ for some divisor D′ ≥ 0. Then the
exceptional prime divisors for D are the prime divisors of D′.

Proof: Let n be a gap for D and apply Riemann-Roch to the above
equality, we get l(K + D − (n − 1)P ) = l(K + D − nP ) + 1. That implies
that K +D is linearly equivalent to (n− 1)P +D′ for some positive divisor
D′ which doesn’t have P in its support. That means that n− 1 is an order
at P for the linear system |K + D|. Conversely, if n − 1 is an order, n is
a gap. Finally, if n is the largest gap then no prime factor of D′ can move
in a linear system, for otherwise we would find a linearly equivalent divisor
passing through P and and n−1 wouldn’t be the maximal order. Let’s take
n maximal and P ′ a prime divisor of D′ and prove that P ′ is exceptional
for the ideal generated by D. It suffices to show that n is a gap for D− P ′.
First, by maximality of n, l(K +D − (n− 1)P ) = 1. On the other hand

l(K +D − (n− 1)P ) ≥ l(K +D − (n− 1)P − P ′) ≥ 1.

The last inequality is true since P ′ divides D′. Finally, l(K+D−nP−P ′) ≤
l(K +D − nP ) = 0, so n is a gap for D − P ′, as desired.
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Corollary 1: The exceptional primes are the primes P ′ satisfying dim|P ′| =
0.

Proof: As remarked above dim|P ′| = 0 if P ′ is exceptional. Conversely
if Q is a prime divisor with dim|Q| = 0, take n large so that nP + Q is
linearly equivalent to K+D for some positive D. It follows by reversing the
above argument that Q is exceptional for the ideal defined by D.

We can now give a quick proof of theorem 1.5 of [15]. Note that by
Riemann Roch, deg(D′) ≤ g above, which gives a proof that a prime of
degree at least g+ 1 is not exceptional. Also, principal primes have positive
dimension, so are not exceptional. Also, divisors of degree 1 have dimension
zero unless principal, so are principal or exceptional.

On the same vein, a divisor of degree 2 on a curve of genus at least two
has dimension zero unless the curve is hyperelliptic and the divisor is in the
g12 linear system, in which case it is principal if and only if the point at
infinity is a Weierstrass point on the hyperelliptic curve.

Corollary 2: If X has class number bigger than one, then it has excep-
tional primes.

Proof: By the theorem, given a divisor D, it will fail to have an excep-
tional prime if and only if D + K is linearly equivalent to mP for some m
(i.e. D′ = 0 in the proof of the theorem). If this is the case D− deg(D)P is
linearly equivalent to deg(K)P −K. If this happens for all D then X has
class number 1, as desired.

Let m be large enough so that mP is linearly equivalent to K + D, for
some positive D, then this D gives an example of a divisor that has no
exceptional primes with respect to it.
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