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Abstract

We describe the structure of the Tate-Shafarevich group of
constant elliptic curves over function fields by exploiting the
volcano structure of isogeny graphs of elliptic curves over finite

fields.
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E/F elliptic curve.

C/Fq4 curve and K = F4(C) its function field.
Base change E/K constant elliptic curve.
II(E/K) := ker (H}(K, E) — @, H'(K,, E))
Theorem (Tate-Milne)

BSD holds for E/K and III(E/K) is finite.



Isogeny graphs |

For k field and integer ¢, the (undirected) (-isogeny graph has
vertices E/k, elliptic curves and edges representing (-isogenies
between them.

Many computational techniques on elliptic curves and some

cryptographical constructions depend on navigating on this graph.



Isogeny graphs Il

Theorem (Kohel)

Let ¢ : E — E’ be an isogeny of ordinary elliptic curves over k.
Then End(E), End(E’) are isomorphic if and only if there exists an

isogeny E — E’ of degree relatively prime to deg ¢

From this, Fouquet and Morain, obtained that that a component
of the ¢ isogeny graph for a prime £ over a finite field k consisting

of ordinary curves has the structure of a volcano.



Volcano graphs

A graph with vertex set V is an f-volcano graph if there is a
partition V = V3 U V5 --- U V,, m is the height of the volcano, V4
the base and V,, the crater or top. In addition, the induced graph
on V), is a cycle (the edges on this subgraph are called horizontal),
the degree of all vertices not on Vj is £ 4+ 1, the degree of the
vertices in Vj is 1, for each vertex on V;,i < m, there is a unique
edge from it to a vertex in Vi1 (these are called upward edges)
and for each vertex on Vj,i > 1, the other edges go to vertices in
Vi_1 (these are called downward edges). The vertices in V; are

said to have height (or level) i.



Volcanos

Volcano with ¢ =3




Main results

E, Eq, F elliptic curves over k in the same component of the

(-isogeny graph, K = k(F) and h(E) is the level of E in the graph.

Theorem 1

Suppose ¢ : E — E;q is an isogeny of prime degree {. TFAE
1. h(E1) < h(E) < h(F);
2. E(K)/(E(K)) = Ex(k)/S(E(K));
3. II(E/K)[¢] = LI(E/K)[¢] has rank 2.



Main results I

Theorem 2

If E,F/k are ordinary and isogenous then, as abelian groups,
II(E/k(F)) =~ ((End(E) N End(F))/Z[r])?,

where m € End(E), End(F) is the k-Frobenius and the intersection
is taken in Q(m).



|dea of proof

Descent sequence
0 — Ei(K)/S(E(K)) — Sel*(E1/K) — LI(E/K)[¢] — 0

Suppose h(E1) < h(E) < h(F). Let a: F — E; isogeny. Factor «
as apoa’ with o/ : F — F’ of degree prime to £ and oy : F/ — E;
of ¢-primary degree. By Kohel's theorem h(F) = h(F’). So «y

factors through ¢ using the structure of the (-isogeny graph.
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