Ш versus the volcano

Felipe Voloch

NTOC

June 2020

Abstract

We describe the structure of the Tate-Shafarevich group of constant elliptic curves over function fields by exploiting the volcano structure of isogeny graphs of elliptic curves over finite fields.

W vs the Volcano

Joint work with B. Creutz

Ш

E / \mathbb{F}_{q} elliptic curve.
C / \mathbb{F}_{q} curve and $K=\mathbb{F}_{q}(C)$ its function field.
Base change E / K constant elliptic curve.
$Ш(E / K):=\operatorname{ker}\left(\mathrm{H}^{1}(K, E) \rightarrow \bigoplus_{v} \mathrm{H}^{1}\left(K_{v}, E\right)\right)$
Theorem (Tate-Milne)
$B S D$ holds for E / K and $\amalg(E / K)$ is finite.

Isogeny graphs I

For k field and integer ℓ, the (undirected) ℓ-isogeny graph has vertices E / k, elliptic curves and edges representing ℓ-isogenies between them.

Many computational techniques on elliptic curves and some cryptographical constructions depend on navigating on this graph.

Isogeny graphs II

Theorem (Kohel)

Let $\phi: E \rightarrow E^{\prime}$ be an isogeny of ordinary elliptic curves over k.
Then $\operatorname{End}(E), \operatorname{End}\left(E^{\prime}\right)$ are isomorphic if and only if there exists an isogeny $E \rightarrow E^{\prime}$ of degree relatively prime to $\operatorname{deg} \phi$

From this, Fouquet and Morain, obtained that that a component of the ℓ isogeny graph for a prime ℓ over a finite field k consisting of ordinary curves has the structure of a volcano.

Volcano graphs

A graph with vertex set V is an ℓ-volcano graph if there is a partition $V=V_{1} \cup V_{2} \cdots \cup V_{m}, m$ is the height of the volcano, V_{1} the base and V_{m} the crater or top. In addition, the induced graph on V_{m} is a cycle (the edges on this subgraph are called horizontal), the degree of all vertices not on V_{1} is $\ell+1$, the degree of the vertices in V_{1} is 1 , for each vertex on $V_{i}, i<m$, there is a unique edge from it to a vertex in V_{i+1} (these are called upward edges) and for each vertex on $V_{i}, i>1$, the other edges go to vertices in V_{i-1} (these are called downward edges). The vertices in V_{i} are said to have height (or level) i.

Volcanos

Volcano with $\ell=3$

Main results

E, E_{1}, F elliptic curves over k in the same component of the ℓ-isogeny graph, $K=k(F)$ and $h(E)$ is the level of E in the graph.

Theorem 1

Suppose $\phi: E \rightarrow E_{1}$ is an isogeny of prime degree ℓ. TFAE

1. $h\left(E_{1}\right)<h(E) \leq h(F)$;
2. $E_{1}(K) / \phi(E(K))=E_{1}(k) / \phi(E(k))$;
3. $\amalg(E / K)[\phi]=\amalg(E / K)[\ell]$ has rank 2 .

Main results II

Theorem 2
If $E, F / k$ are ordinary and isogenous then, as abelian groups,

$$
Ш(E / k(F)) \simeq((\operatorname{End}(E) \cap \operatorname{End}(F)) / \mathbb{Z}[\pi])^{2},
$$

where $\pi \in \operatorname{End}(E), \operatorname{End}(F)$ is the k-Frobenius and the intersection is taken in $\mathbb{Q}(\pi)$.

Idea of proof

Descent sequence

$$
0 \rightarrow E_{1}(K) / \phi(E(K)) \rightarrow \operatorname{Sel}^{\phi}\left(E_{1} / K\right) \rightarrow \amalg(E / K)[\phi] \rightarrow 0
$$

Suppose $h\left(E_{1}\right)<h(E) \leq h(F)$. Let $\alpha: F \rightarrow E_{1}$ isogeny. Factor α as $\alpha_{\ell} \circ \alpha^{\prime}$ with $\alpha^{\prime}: F \rightarrow F^{\prime}$ of degree prime to ℓ and $\alpha_{\ell}: F^{\prime} \rightarrow E_{1}$ of ℓ-primary degree. By Kohel's theorem $h(F)=h\left(F^{\prime}\right)$. So α_{ℓ} factors through ϕ using the structure of the ℓ-isogeny graph.

THANK YOU

