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Fermat’s little theorem states that ap−1 ≡ 1(mod p), if p is a prime number and a is

an integer coprime with p. The primes for which ap−1 ≡ 1(mod p2) are sometimes called

base-a Wieferich primes, or simply Wieferich primes if a = 2. This stems from a theorem

of Wieferich that asserts that the first case of Fermat’s last theorem holds if p is not a

Wieferich prime (similar results were obtained for a few other bases). This is of historical

interest only now, but Wieferich primes appear in other contexts, most notably they are

the primes for which ”the derivative of a vanishes”, when one pursues a number field-

function field analogy, such as in ([Bu],[I],[Sm]). Numerical evidence indicates there are

very few Wieferich primes for a given base, for instance p = 1093, 3511 are the only (base-

2) Wieferich primes less than 1012([CDP]). A naive heuristic argument suggests that there

should be about log log x Wieferich primes up to x, whereas the analogy with function fields

would suggest there are only finitely many Wieferich primes. These two possibilities (and

an unlikely third) are contrasted in [I]. However there are very few unconditional results on

Wieferich primes. For instance it is not known for any base a if there are infinitely many

non-Wieferich primes to base a, although Silverman showed that this follows from the

abc-conjecture and Johnson [J] showed that Mersenne primes are not (base-2) Wieferich

primes. About the only unconditional result is due to Granville [G] and asserts that if a

is prime (this condition may be removed, as we shall see) and ap−1 ≡ 1(mod p2) for all

sufficienly large primes p, then ap−1 ≡ 1(mod p3) for infinitely many primes. Replacing

the multiplicative group by the group of an elliptic curve one obtains an analogous notion

of elliptic Wieferich primes, introduced by Silverman [S], where it shown that the abc-

conjecture implies the existence of infinitely many non-elliptic Wieferich primes for some

special elliptic curves.

The purpose of this note is to investigate further the elliptic Wieferich primes, we

prove an analogue of Granville’s result in the number field case and prove some results in
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the function field case. We will also discuss Silverman’s result. In the process we will also

indicate simple proofs in the case of the multiplicative group.

Let K be a global field, that is, a number field or a function field in one variable over a

finite field. If v is a non-archimedian place of norm qv of K and a ∈ K, with v(a) = 0 then

v(aqv−1 − 1) ≥ 1. If v(aqv−1 − 1) > 1, we call v a Wieferich place for base a. If a is a root

of unity, all places will be Wieferich places, we exclude this case in what follows. Similarly,

let E/K be an elliptic curve and P ∈ E(K) a rational point. If v is a non-archimedian

place of K for which E has good reduction, let Nv be the number of rational points, over

the residue field of v, of the reduction of E at v. Then NvP belongs to the formal group

Ê of E at v, which admits a canonical filtration Ê = E1 ⊃ E2 · · · (see [S2]). We call

v an elliptic Wieferich place for base P ∈ E if NvP ∈ E2. Contrary to the case of the

multiplicative group, it can happen that (qv, Nv) > 1, which causes some complication.

We will call v a strong elliptic Wieferich place for base P ∈ E if nvP ∈ E2, where nv is the

order of P modulo v. We begin generalizing [G]. We say that an element x of an infinite

subset of K is almost an n-th power if there exists y ∈ K such that xy−n lies on a finite

set.

Theorem 1. Let K be a number field.

( i) Let a ∈ K∗, not a root of unity. If v(aqv−1 − 1) ≥ 2 for all but finitely many places

of K then v(aqv−1 − 1) ≥ 3 for infinitely many places of K.

( ii) Let E/K be an elliptic curve and P ∈ E(K) a rational point of infinite order. If

nvP ∈ E2 for all but finitely many of the places of K satisfying (nv, qv) = 1, then

nvP ∈ E3 for infinitely many places of K satisfying (nv, qv) = 1.

Proof: (i) Assume that v(aqv−1 − 1) = 2 for all but finitely many places of K. If r

is a prime number and v a place with v(ar − 1) > 0, but v(a − 1) = 0, it follows that

v(ar − 1) = 2, unless v is on a fixed finite set. Hence, there exists b ∈ K such that,

for infinitely many r ≡ 1(mod 5), say, we have ar − 1 = by2, for some y ∈ K. Writing

x = a(r−1)/5 we thus obtain infinitely many points on the curve ax5−1 = by2, contradicting

2



Faltings’ theorem!

(ii) Assume that nvP ∈ E2 \ E3 for all but finitely many places of K satisfying

(nv, qv) = 1. We may assume, enlargingK if necessary, that there existsQ,R ∈ E(K), 2Q =

P, 2R = 0. Let x be a function on E with divisor 2(R − 0). Then, since the divisor of

x is divisible by 2, x(T ) is almost a square for T ∈ E(K). If r is a prime number which

splits completely in K and v a place with v(x(rP )) < 0 then rP ∈ E1, then r = nv

and rP ∈ E2 \ E3, unless v is on a fixed finite set, provided that (qv, nv) = 1. If this

doesn’t happen, then r = nv|Nv, but also 2|Nv, since R is rational. However qv = r since

(qv, r) > 1 and r splits in K, but then 2r ≤ Nv ≤ r+ 1 + 2
√
r, which is a contradiction for

r large. We conclude then that v(x(rP )) = −4 for such r. If v is a place with v(x(rP )) > 0

then arguing with 2rP instead of rP as above we conclude that v(x(rP )) = 4. Therefore,

for infinitely many r, x(rP ) is almost a 4-th power. We have thus produced infinitely

many K-rational points on the cover of E defined by by4 = x, for some b ∈ K∗, again

contradicting Faltings’ theorem!

One can get by with Siegel’s theorem by being more careful. One can also make

similar arguments in the function field case but there much more is true. For instance, it

is easy to see that there are only finitely many Wieferich places to base a ∈ K∗, a not a

p-th power, (p being the characteristic of K). Indeed if v(aqv−1 − 1) > 1, then, applying

a non-trivial derivation D of K and using that qv = 0 ∈ K, we get v(aqv−2Da) > 0, so

v(aDa) > 0, which can only be satisfied by finitely many v, unless Da = 0, as desired.

Note that the heuristic argument that gives infinitely many Wieferich places in the number

field case also seem to apply to function fields.

As for the elliptic case, there can be infinitely many v’s with p dividing nv which

forces these places to be Wieferich. However we have:

Theorem 2. Let K be a function field of characteristic p, E/K an elliptic curve, P ∈

E(K), such that P /∈ pE(Ks), where Ks is the separable closure of K. Then there are

only finitely many strong elliptic Wieferich places to base P with p not dividing nv.
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Proof: We will assume p > 2 for simplicity but the proof can be modified to handle

p = 2. Suppose first that E is defined over Kp and choose a Weierstrass equation y2 = f(x)

with coefficients in Kp. The map µ : E(K)→ K, (x, y) 7→ Dx/y is a homomorphism with

kernel E(Kp) = E(K) ∩ pE(Ks), for any non-trivial derivation D of K. This is proved,

e.g., in [V]. Then µ(P ) 6= 0, so there are only finitely many v with v(µ(P )) > 0. If

nvP = (x, y) ∈ Em \ Em+1, then v(x) = −2m, v(y) = −3m and v(Dx/y) ≥ m− 1, if v is

outside a finite set. However, Dx/y = µ(nvP ) = nvµ(P ), and we are done. If E is not

defined over Kp, we use the map µ : E(K) → K, with kernel pE(K) constructed in [V]

and a similar argument gives the result.

If E is defined over a finite field k, we can refine further the notion of elliptic Wieferich

place, by saying that v is a very strong elliptic Wieferich place to base P ∈ E(K) if

P − Pv ∈ E2, where Pv is the unique point in E(k̄) with P − Pv ∈ E1. Now it is easy to

see there are only finitely many very strong elliptic Wieferich places to base P ∈ E(K)

under the assumption of theorem 2. Indeed, if C/k is a curve with function field K then

P corresponds to a map f : C → E and v is a very strong elliptic Wieferich place if and

only if df vanishes at v, so if df 6= 0, there are only finitely many such places, as desired.

In the hypotheses of theorem 2, it follows from a result of Scanlon [Sc] that there

exists m depending on E,P but not on v with P /∈ Em. It can be shown, along the lines

of Silverman, that in the number field case there exists m depending on E,P such that

P /∈ Em for infinitely many v, assuming the abc conjecture. Take x : E → P1 ramified

only above the 2-torsion E[2] of E. By an argument similar to the proof of theorem 1, it is

enough to show that P does not get v-adically close to E[2]. Now by Belyi’s theorem, there

exists f : P1 → P1 ramified only above {0, 1,∞} with f(x(E[2])) ⊂ {0, 1,∞}. Applying

abc to f(x(rP )) for primes r yields the result. The simple form of Belyi’s map f when

j(E) = 0, 1728 allowed Silverman to get m = 2 in those cases.
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