An analogue of the Weierstrass (-function in characteristic p

José Felipe Voloch
To J.W.S. Cassels on the occasion of his 75th birthday.

0. Introduction

Cassels, in [C], has noticed a remarkable analogy between an algebraic function in-
troduced by Deuring [D] in positive characteristic and the Weierstrass (-function in the
classical theory of elliptic functions. The purpose of this note is to take this analogy fur-
ther. One of our main goals is to use this function to give a very explicit description of the
universal vectorial extension of elliptic curves, which will give a characteristic p analogue
of results of Lang and Katz. Also, Mazur and Tate [MT] have defined, for an elliptic curve
defined over a local field of residue characteristic p with ordinary reduction, an analogue
of the Weierstrass o-function which is defined on the formal group of the curve. In char-
acteristic p their construction can be performed for an ordinary curve over any field and
it turns out, as in the classical theory, that the logarithmic derivative of the Mazur-Tate

o-function is the characteristic p (-function.
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1. Quick review of the classical case

Let E be an elliptic curve over C and w a non-zero holomorphic differential on FE.
By integrating w along closed paths on E(C) we get the period lattice A and E(C) is
isomorphic to C/A. If E has a Weierstrass equation y? = 23 + a4 + ag, and w = dx /2y
then this isomorphism is given by z mod A — (p(2), (1/2)¢’(2)), and w = dz, where p(z) is
the Weierstrass p-function attached to the lattice A. It is a periodic meromorphic function

with periods A, holomorphic in C \ A and having expansion p(2) = 272 + O(1) near
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z = 0. The Weierstrass (-function is, by definition, the unique odd meromorphic function
satisfying d(/dz = —p. It is quasi-periodic, i.e., it satisfies ((z + A) = {(z) + n(A), X € A,
where 7 is linear in A\. The values n(A), A € A are called the quasi-periods. Finally, it

satisfies

((z+w) =((2) + C(w) +

(See [A], Ch. 7 and [L], Ch. 18).

The universal extension of E by a vector group is a commutative algebraic group E'
which sits in a non-split exact sequence 0 = G, — ET — E — 0. It can be constructed as
the group of isomorphism classes of invertible sheaves on E with an integrable connection.
Lang ([L], 18.1) and Katz ([K], appendix C) describe ET in terms of ¢ as follows: ET(C)
is isomorphic to C2/A’ where A’ = {(\,n(\))|\ € A} and given (a,v) € C? it corresponds
to the integrable connection on Og((P) — (0)), where P = (p(a),1/2¢'(a)), given by the
differential ({(z —a) — ((2) + v)d=z.

2. The characteristic p (-function

Let K be a field of characteristic p and E/K an elliptic curve. Let E®) be the target
of Frobenius F : E — E® . Let V : E®) — E be the dual isogeny, i.e., the Verschiebung.

Fix a holomorphic differential w on E. Choose a Weierstrass equation
2 _ .3 2
Y-+ ar1xy + a3y = x° + axx” + a4 + ag,

such that w = dx/(2y + a1z + a3). If p # 2, assume further that a; = a3 = 0, put
f(x) = 23 + as2® + a4z + ag, and define polynomials U, T € K|z], with degU < p —2, and

an element A € K by:
yP = fla) P2 = U(x) + AzP™t 4 2PT ().

If p=2let A=a;. Then A is the Hasse invariant of E. Let B be the coefficient of zP~?2
of U(z) if p is odd and B =1 for p = 2.



Lemma. For p odd we have f'(z)T(x) 4+ 2f(x)T'(x) = — Az + B.

Proof. Since f(x)P~V/2 = U(x) + AzP~! + 2PT(z), it follows that
((p = 1)/2)f(2)P=V2f'(2) = U'(x) — Ax"7? 4 2P T' (),
hence
2 (f' ()T (2) + 2f (2)T"(2)) = —f'(2)(U(2) + A2P ™) = 2f () (U (2) — A2"7?).

But the last polynomial has degree at most p + 1, so comparing coefficients, the result
follows.

We will consider the function field of E as a subfield of the function field of E®) via
V.

Definition. The characteristic p Weierstrass (-function is the rational function z on E®
satisfying 2P — Az = —yT(z),p # 2 and 2? — Az = x +as,p = 2 and, if E is ordinary, such
that z + (y/x) vanishes at 0.

It is easy to check that, in the ordinary case, the equation defining z describes a cyclic,
étale cover of E of degree p, which has to be E®) (see [D], pg.254 or [V], lemma 1.1).

Let w® the differential on E() obtained from w on E by transport of structure.

Proposition 1 (Cassels [C]| §5,6). If E is ordinary, the function z satisfies z(P + Py) =
2(P) +n(Py) for all Py € ker V', where 1 is linear in Py and satisfies n(Py)? — An(Py) = 0.
Furthermore, if p # 2, z is odd and dz/w = —x + B/A.

Proof. (Sketch) Since zP — Az is invariant under translation by points of ker V', the
first part follows, except for the linearity, which is straightforward. From the definition of
z, Adz = d(yT'(z)) = (—Ax + B)w, by the lemma.

The values n(Fy), Py € ker V' are the analogues of the quasi-periods. The derivation
d/w corresponds to d/dz in the complex case, so z satisfies a similar differential equation as

(. We will discuss the discrepancy coming from the constant B/A in the next section. The
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analogue of Proposition 1 in the supersingular case is the equation dz = —BPw which is
easily verified. Superficially, this result is analogous to the differential equation satisfied by
z in the ordinary case, but is also an analogue of the quasi-periodicity of z. Namely, over
a ring with nilpotents, the map P — z(Q + P) — z(Q) induces an isomorphism 7 between
ker V' and oy, such that the differential dv on oy, (if v is a coordinate on «y,) corresponds
to dz = —BPw®),

The following result gives an addition theorem for z.

Proposition 2. z(P+ Q) = z2(P) + 2(Q) + —ZE%:ZEQ

Proof. Assume first that F is ordinary. Let @ be a fixed arbitrary point of E® and
consider z(P+@Q)—z(P)—z(Q) as a function of P. It is clearly invariant under translations
by points of ker V' and is therefore a function on E. As z has simple poles on the points
of ker V' and no others, it follows that z(P + Q) — z(P) — 2(Q), as a function on F, has

simple poles at 0 and —V (Q) and no others, thus

y(Q) —y(P)
(z(Q) — z(P))

2P+Q)—2(P) —2(Q) = ¢(Q) +d(Q)

where ¢(Q) and d(Q) are some constants depending on (). But interchanging the roles of
P and @, it follows that ¢(Q) = ¢,d(Q) = d are absolute constants. (I learned this trick
from A. Broumas in a analogous context). One can then easily check that ¢ = 1,d = 0
by making P, — 0 and looking at the formal group or by taking d/w and using the
addition formula for . An alternate proof can be given using the addition formula for the
¢ function and proposition 3 of the next section. The supersingular case follows from the

generic case by specialization.
3. The Mazur-Tate o-function

Let K be an algebraically closed field of characteristic p and F/K an ordinary elliptic
curve. Let E®") be the image of the n-th iterate of Frobenius F™ : E — E®"). Let
V, : E®") — E be the dual isogeny, so that V,, are separable, by hypothesis. We will
consider the function field of E as a subfield of the function field of E®") via V,,. We will
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also identify the formal groups of E and E(®") via V,,. Assume p # 2 and choose a function
sn on E®") with divisor Y- peyer v, (P) = p"(0). Choose a local parameter ¢ at 0 so that
w = (14 O(t))dt near 0. Mazur and Tate define the o-function to be the power series in
t given by o = lim,_, t? s, after normalizing s, = t*" ~' 4+ O(t?"). We refer to [MT]
for the many interesting properties of this function. Let, just as in the classical theory,

(=o0"ldo/w.
Proposition 3. With the above definitions ( = z.

Proof. Let ¢, = s, 'ds, /w, then ¢ = lim (,. Note that ¢, is odd and has simple poles
at the points of ker V,, and no others and that the residues of (,,w at the poles is 1. Clearly,
these properties uniquely determine ¢, as a function on E®"). But ¢y, as a function on
E®") has these properties also, so (; = (,,Vn. Finally, z was shown to have these same
properties (for n = 1) in [V], lemma 1.1. However, in [V], there is an inaccuracy, in that
the differential dz/y was used when it should have been dz /2y and leads to a factor of —2
being missing throughout the paper. This was pointed out to me by A. Broumas. Also,
what is denoted by z in [V] is what is denoted here by —z. Anyhow, this completes the
proof.

This result leads to an alternative definition of the quasi-periods, as follows. Given
P ckerV, let f be the function on E® with divisor p((P) — (0)). Then n(P) = —df/ fw.
To see this, let 7 be the operator 7h(Q) = h(Q + P) on functions h on E®). Then:

N(P)w = (T2 — 2)w = 72w — 2w = 7(ds1/s1) —ds1/s1 = d(1s1/s1)/(T81/51)-

Now, it is clear that (7s1/s1) has divisor p(0 — (—P)) and, therefore f(7s1/s1) = hP for
some function h on E® and the result follows.

Note that the function x in the Weierstrass equation for F is determined by w up to
the addition of a constant. Mazur and Tate then noted that a choice for z can be made
by letting x = —d({/w and called this a canonical eks-function (sic). It now follows from
propositions 1 and 3 that this canonical eks-function is characterized, in characteristic

p>2 by B=0.



If K is a local field and E has split multiplicative reduction then FE is a Tate curve, so
it admits a parametrization E = G,,/q%, where ¢ is in the maximal ideal of the valuation
ring of K and, if u is the parameter on G,, and we choose w = du/u, then o has the

following product expansion (See [MT] or [L], Ch. 18):

0 n n, —1
12 —1/2 (1—-¢"u)(1—¢"u")
o(u) = (u u :
(w) = ( L
By direct substitution one gets the functional equation o(qu) = —(¢*/?u)~'o(u). Loga-

rithmic differentiation of these formulas lead to a series expansion for (, namely,

C(uturt42) o "  q"u
=S 2 (o )

n=1

and to the equation ¢(qu) = ¢(u) — 1. Now, E®) is the Tate curve with multiplicative
period ¢P, and the Verschiebung is induced by the identity on G,,. Therefore q represents
a point in E®) which generates ker V and the last formula then reads 7(q) = —1, giving

the quasi-periods of the Tate curve in characteristic p.
4. The universal vectorial extension

The universal extension of E by a vector group is a commutative algebraic group ET
which sits in a non-split exact sequence 0 — G, — Ef — E — 0. It can be constructed
as the group of isomorphism classes of invertible sheaves of degree zero on F with an
integrable connection. In characteristic p > 0 it is known (Rosenlicht [R], pg. 704) that
ET splits up to isogeny and that the maximal abelian subvariety of Et is E(®). The next

result makes these facts explicit.

Theorem. ET is isomorphic to the quotient of E®) x G, by the subgroup-scheme given
by the graph of the homomorphism n : kerV' — G,. The isomorphism is obtained by
associating to each point (P,v) € E® x G, the connection on Op((V(P)) — (0)) given
by the differential (fp + v)w where fp(Q) = 2(Q — P) — 2(Q) is a function on E that has

simple poles at V (P) and 0 and the residues of fpw at these points are 1, —1 respectively.

Proof. Clearly fp is invariant by the action of ker V' so defines a function on E

and the statement about the poles and residues follow from the corresponding properties
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of z. Thus we have a map from E® x G, to ET, which is clearly surjective. Since
frep(Q) = fp(Q+ P)+ fp(Q) it follows that this map is a homomorphism. Finally its
kernel corresponds to P € ker V', so that fp = —n(P), and v = — fp = n(P), as desired.
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