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The Weil conjectures are a statement about the zeta function of varieties over finite fields.
The desire to prove them motivated the development of étale cohomology, a process begun by
Grothendieck and finished by Deligne. The hardest part is an analogue of the Riemann Hypothesis.
In section 1 we define the zeta function and state the conjecture. In section 2, we prove the
conjecture for elliptic curves following Hasse. Finally in section 3 we explain a proof due to Serre
of a complex analogue of the Weil conjectures which is a simplified model of the proof using étale
cohomology.

1. Zeta Functions of Varieties and the Weil Conjectures

In number theory, one studies the Riemann zeta function

ζ(s) =

∞∑
n=1

n−s =
∏

p prime

1

1− p−s

to prove facts about primes. The series converges only for Re s > 1, but there is an extension
to a meromorphic function on the entire complex plane. The location of the zeros controls the
distribution of primes, and the Riemann hypothesis states that all of the non-trivial zeros have real
part 1

2 .
Further work in algebraic number theory led to considering variants for number fields: if K is a

number field and OK is its ring of integers, the Dedekind zeta function is defined as

ζK(s) =
∑
I⊂OK

N(I)−s =
∏

p⊂OKprime

1

1−N(p)−s
.

Taking K = Q recovers the Riemann zeta function. The Euler products are readily reinterpreted
in terms of geometry: the prime ideals are the closed points of SpecOK and N(p) is the size of the
residue field. This generalization leads to the notion of an arithmetic zeta function.

Definition 1. Let X be a scheme of finite type over Z. Define

ζX(s) =
∏
x

1

1−N(x)−s

where x runs over all closed points with N(x) the size of the finite residue field.

As before, it is easy to show there is an Euler product obtained by grouping points above different
primes:

ζX(s) =
∏
p

ζXp(s)

These local zeta functions are the objects of interest in the Weil conjectures. In ζXp(s), the term
1

1−p−ns appears once for each point with residue of size exactly Fpn , so we see

log ζXp(s) = −
∞∑
n=1

|E(Fpn)| log(1− p−ns) =
∞∑
n=1

|E(Fpn)|p
−ns

n
.
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The last equality follows by expanding the logarithm in a power series and realizing that the Fpn
points include points with smaller residue fields. We wish to study this quantity: by convention,
we take T = p−s.

Definition 2. Let V be defined over Fq. Define the (local) zeta function of V over Fq as

Z(V, T ) = exp

( ∞∑
n=1

|V (Fqn)|T
n

n

)
.

We first calculate the zeta function of Pm over Fq. By decomposing projective space as Am ∪
Am−1 ∪ . . ., it is clear that |Pn(Fqn)| = 1 + qn + q2n + . . .+ qmn. Then we calculate

logZ(Pn, T ) =

∞∑
n=1

(1 + qn + q2n + . . .+ qmn)
Tn

n
=

m∑
j=1

∞∑
n=1

qjT

n
=

m∑
j=1

− log(1− qjT ).

Therefore we conclude

Z(Pn, T ) =
1

(1− T )(1− qT ) . . . (1− qmT )
.

Here are several features to note: the zeta function is a rational function, and it is almost symmetric
with respect to replacing T by 1

qmT :

Z(Pn,
1

qmT
) = (−1)m+1q

m(m+1)
2 Tm+1Z(Pn, T )

Taking T = q−s, this becomes

Z(Pn, q−(m−s)) = (−1)m+1q
m(m+1)

2
−(m+1)sZ(Pn, q−s)

which is a a functional equation of sorts.

Remark 3. The same sort of argument works for Grassmanians or any variety that can be paved
by affines.

There are other classes of varieties where it is possible to calculate the zeta function “by hand.”
For example, the computation of the case of diagonal hypersurfaces may be found in Chapter 11
and of Ireland and Rosen [1].

In the 1930’s, Hasse proved a conjecture due to Artin about the number of points on an elliptic
curve over Fq. It is now known as the Hasse bound, and is the key ingredient to describing the
zeta function of an elliptic curve defined over Fq. Weil generalized these conclusions to curves of
arbitrary genus and formulated the Weil conjectures for higher dimensional varieties.

Theorem 4 (The Weil Conjectures). Let V be a non-singular projective variety over Fq of dimen-
sion m with Euler characteristic χ(V ). Then

• (Rationality) Z(X,T ) is a rational function of T . Furthermore,

Z(V, T ) =
P1(T ) · P3(T ) · . . . · P2m−1(T )

P0(T ) · P2(T ) · . . . · P2m(T )

where P0(T ) = 1 − T , P2m(T ) = (1 − q2mT ), and all the polynomials Pi(T ) have integer
coefficients.
• (Functional Equation) Z(V, 1

qmT ) = ±qχ(V )m/2Tχ(V )Z(V, T ).

• (Riemann Hypothesis) Factor Pi(T ) = (1− α1T ) . . . (1− αkT ). Then |αi| = qi/2.
• (Betti numbers) If V is the reduction of a smooth variety over a field which embeds in C,

the ith Betti number of the complex points equals the degree of Pi.
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These were known for elliptic curves by the work of Hasse and for all curves by the work of Weil.
Dwork proved rationality using methods from p-adic analysis. All but the Riemann hypothesis
follow easily from the étale cohomology theory pioneered by Grothendieck. Deligne finally proved
the Riemann hypothesis using étale cohomology in 1974.

2. The Weil Conjectures for Elliptic Curves

In this section we review the classic proof, due to Hasse, that elliptic curves satisfy the Weil
conjectures. A canonical reference is Chapter V of Silverman [3].

Let E be an elliptic curve defined over Fq, with q = pf , and let l be a prime not equal to
p. Recall that an endomorphism ψ of E defines an endomorphism ψl of the l-adic Tate module
TlE = lim←−E[ln] and deg(ψ) = det(ψl) (use the Weil pairing). Recall that there is a Frobenius
endomorphism φ : E → E defined on points by raising to the qth power. The fixed points of φ are
exactly E(Fq). So to understand the point counts in the zeta function, we need to understand φ
and φl.

Proposition 5. The characteristic polynomial of φl is T 2 − (1 + q − |E(Fq)|)T + q.

Proof. It suffices to compute the trace and determinant of φl as an endomorphism of TlE ' Z2
l .

The determinant is the degree of φl, which is q. An elementary calculation with two by two matrices
shows that tr(φl) = 1 + det(φl) − det(1 − φl) = 1 + q − det(1 − φl). The endomorphism 1 − φ is
separable (use the invariant differential), so the size of the kernel is equal to its degree. In other
words,

|E(Fq)| = deg(1− φ) = det(1− φl).
Now express the characteristic polynomial in terms of norm and trace. �

Now define a = 1 + q− |E(Fq)|. It is commonly referred to as the trace of Frobenius. This gives
a way to count Fq-points using linear algebra. We can extend this to Fqn points.

Corollary 6. Let α and β be the complex roots of T 2− aT + q. Then |E(Fqn)| = qn + 1−αn−βn.

Proof. The characteristic polynomial of 1− φnl is (T + (αn − 1))(T + (βn − 1)). Therefore we see

|E(Fqn)| = deg(1− φn) = det(1− φnl ) = (αn − 1)(βn − 1) = qn + 1− αn − βn. �

We can now check that the Weil conjectures hold. The zeta function satisfies

logZ(E, T ) =
∞∑
n=1

|E(Fqn)|T
n

n
=
∞∑
n=1

(qn + 1− αn − βn)
Tn

n

= − log(1− qT )− log(1− T ) + log(1− αT ) + log(1− βT ).

Therefore the rationality statement holds:

Z(E, T ) =
(1− αT )(1− βT )

(1− T )(1− qT )

Since an elliptic curve is a complex torus, the Betti zeroth, first, and second Betti numbers are 1,
2, and 1 which match the degrees.

The functional equation is simple algebra plus the fact that the dimension is 1, the Euler char-
acteristic is 0, and αβ = q:

Z(E,
1

qT
) =

(1− α
qT )βT (1− β

qT )αT

(1− 1
qT )αβT (1− q

qT )T
= Z(E, T ).

For the Riemann hypothesis, notice that for m
n ∈ Q

det(
m

n
− φl) =

det(m− nφl)
n2

=
deg(m− nφl)

n2
≥ 0
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Therefore the characteristic polynomial T 2 − aT + q is non-negative on Q, and hence it has a pair
of complex conjugate roots or a double real root. In either case, α = β and hence |α| = |β| = √q.
We conclude

Theorem 7. The Weil conjectures are true for elliptic curves.

3. Complex Analogues

The above argument with the Tate module looks a lot like a cohomological argument. Any
reasonable “topological” cohomology theory should have the first cohomology group of an elliptic
curve be of rank 2, with rank one degree zero and two cohomology groups. The Frobenius has
degree q, so on the top cohomology it should be multiplication by q, while on the degree zero
cohomology it should be the identity. This accounts for the 1−qT and 1−T terms. The numerator
is related to the characteristic polynomial of φ acting on the Tate module.

Of course, a topological cohomology theory like singular cohomology doesn’t work on an elliptic
curve over Fq, and coherent sheaf cohomology doesn’t deal with cohomology with constant coef-
ficients, so there are serious obstacles to this approach. Ultimately, the étale cohomology theory
developed by Grothendieck succeeded in this quest. A big piece of evidence that suggested this
would work was an analogue in complex geometry proven by Serre in a letter to Weil [2]. We will
prove this analogue of the Weil conjectures.

Let V be a complex projective variety of dimension n. We will abuse notation and also use V
to denote its complex points. Suppose f is an endomorphism, E a hyperplane class, and q > 0 an
integer such that f−1(E) is algebraically equivalent to qE. The endomorphism f is supposed to
play the role of Frobenius. Recall that the Lefschetz number of an endomorphism g is defined to
be

L(g) =

2n∑
j=0

(−1)jtr
(
g∗|Hj(V,C)

)
If g has non-degenerate fixed points, this counts the number of fixed points.1 If there was a
meaningful way to apply this to the q-power Frobenius, this would be the number of Fq points.
This leads us to define the Lefschetz zeta function as a complex version of the local zeta function
by

Zf (V, T ) := exp

( ∞∑
m=1

L(fm)

m
Tm

)
We will prove the analogue of the Weil conjectures for the Lefschetz zeta function. We define
Pj(T ) = det(1− f∗T |Hj(V,C)), and will use fj to denote the endomorphism of Hj(V,C) induced
by f .

Proposition 8. The Lefschetz zeta function is a rational of the form

Zf (V, T ) =

2n∏
j=0

Pj(T )(−1)
j+1

where Pj(T ) has integer coefficients and its degree equals the jth Betti number of V .

1As g is holomorphic, all of the signs are positive.



THE WEIL CONJECTURES AND ANALOGUES IN COMPLEX GEOMETRY 5

Proof. We calculate using the definitions that

logZf (V, t) =

∞∑
m=1

L(fm)

m
Tm =

∞∑
m=1

2n∑
j=0

(−1)jtr
(
fmj |Hj(X,C)

) Tm
m

=
2n∑
j=0

(−1)jtr

( ∞∑
m=1

fmj T
m

m

)

=

2n∑
j=0

(−1)jtr

(
log

(
1

1− fjT

))

=
2n∑
j=0

(−1)j+1 log det(1− fjT )

Using cohomology with integer coefficients it is clear Pj(T ) has integer coefficients. The statement
about Betti numbers is immediate. �

Next we analyze the eigenvalues of fk on Hk(V,C). We do this by using Hodge theory to decom-
pose the cohomology and analyze the intersection pairing on the pieces. All of this material may
be found in Part II of Voisin [4]. Recall the Hodge decomposition says that Hk(V,C) decomposes
as

(1) Hk(V,C) =
⊕
p+q=k

Hp,q(V ).

Remember that elements of Hp,q(V ) can be represented by equivalence classes of closed differential

forms of type (p, q), which makes it clear that Hp,q(V ) = Hq,p(V ). Furthermore, the cup product
is given by the wedge product and Poincaré duality identifies Hp,q(V ) with Hn−q,n−p(V ). Note
that the class [ω] of the hyperplane section is of type (1, 1) since it is a Kähler class. Then define
the Lefschetz operator

L : Hk(V )→ Hk+2(V )

to be given by cupping with [ω]. This obviously restricts to L : Hp,q(V,C)→ Hp+1,q+1(V,C).
The Hard Lefschetz theorem says that there is an isomorphism

Ln−(p+q) : Hp,q(V ) ' Hn−q,n−p(V )

In particular, this implies L is injective, so Hp,q decomposes as a sum of the image of Hp−1,q−1(V )
under L and a “primitive” complement. More formally, a class α ∈ Hp,q(V ) is primitive if

Ln−(p+q)+1α = 0. Denoting the subspace of primitive classes by Hp,q
prim(V ), there is a Lefschetz

decomposition

(2) Hp,q(V ) =
⊕

0≤2r≤p+q
LrHp−r,q−r

prim (V )

Remark 9. Using Poincaré duality which identifies Hp,q(V ) with Hn−q,n−p(V ), we can define the
dual operator Λ : Hp,q(V )→ Hp−1,q−1 of L. A calculation shows that [L,Λ] = (k−n) Id on Hk(V ),
so the total cohomology of V is a representation of sl2 with raising and lowering operators L and
Λ. The lowest weight spaces of this representation are the primitive cohomology.

To prove the analogues of the functional equation and the Riemann hypothesis for Zf (V, T ), we
need to understand the eigenvalues of f∗ : H∗(V )→ H∗(V ). It is more convenient to work instead

with gk := q−k/2f∗|Hk(V ). We observe:

• gk respects the Hodge decomposition (1) because f and g are algebraic (and holomorphic).
• f∗[ω] = q[ω] because f−1(E) is equivalent to qE, and hence g2([ω]) = [ω].
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• The gk respect the cup product: if α ∈ H i(V ) and β ∈ Hj(V ), then

gi+j(α ∪ β) = q−(i+j)/2f∗(α ∪ β) = q−i/2f∗(α) ∪ q−j/2f∗(β) = gi(α) ∪ gj(β).

• The gk respect the Lefschetz decomposition (2) since they respect the cup product and fix
[ω].

The cup product defines a sesquilinear form on all cohomology groups, not just the middle one:
for [α], [β] ∈ Hk(V,C), define

Hk([α], [β]) = ik
∫
V
α ∧ β ∧ ωn−k.

The gk respect this form: since g2 fixes [ω] and [ω]n is a non-zero element in the one dimensional
H2n(V,C), g2n is the identity map on top cohomology. Therefore

Hk(gk[α], gk[β]) = ik
∫
V
gkα ∧ gkβ ∧ ωn−k

= ik
∫
V
gkα ∧ gkβ ∧ g2n−2kωn−k

= ik
∫
V
g2n(α ∧ β ∧ ωn−k)

= ik
∫
V
α ∧ β ∧ ωn−k = Hk([α], [β]).

We now need one further fact from Hodge theory, which is part of the technical content of the
Hodge index theorem: the Hodge decomposition and the Lefschetz decomposition are orthogonal
decompositions with respect to Hk, and is definite on LrHp−r,q−r

prim (V ) (see [4, II.6.3.2]).
Now let v be an eigenvector for gk. As gk respects the Hodge and Lefschetz decomposition, it

lies in a particular LrHp−r,q−r
prim (V ) on which Hk is definite. Therefore the standard calculation from

linear algebra shows that

Hk(v, v) = Hk(gkv, gkv) = Hk(λv, λv) = |λ|2Hk(v, v).

But as Hk is definite, we can cancel and conclude |λ| = 1. In terms of the eigenvalues of fk
on Hk(V,C), this implies all of the eigenvalues have absolute value |q|k/2. Hence all the roots of

Pk(T ) = det(1 − fkT ) have absolute value |q|−k/2. This is exactly the analogue of the Riemann
hypothesis.

Remark 10. This argument can be phrased in terms of correspondences on the cohomology and
the positivity of a certain trace map: see Theorem 2 of Serre [2]. This is an analogue of a formula
of Castelnuovo that is used in an algebraic proof of the Weil conjectures for curves. Exactly the
same argument uses the complex analogue to deduce the Riemann hypothesis for the Lefschetz zeta
function.

Finally, the functional equation follows easily using Poincaré duality. In particular, duality shows
that the set of roots of Pk(T ) is in bijection with the set of roots of P2n−k(T ) under the map α 7→ qn

α .

Remark 11. Serre’s argument suggests that constructing a “topological” cohomology theory in
characteristic p would provide an effective attack on the Weil conjectures. Grothendieck developed
the theory of étale cohomology as an answer to this challenge. This succeeded in proving all
of the Weil conjectures except for the Riemann hypothesis. Grothendieck formulated his standard
conjectures to give analogues of the Hodge theory used in order to mimic the above argument. They
remain an open problem. Deligne used a slightly different approach, proving the Weil conjectures
(and also Grothendieck’s version of the hard Lefschetz theorem).
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