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1 Introduction

Multi-layer shear flows arise in at least 3 general ar-

eas of industrial application. (i) Co-extrusion processes,
in which several fluid streams are combined in a feed-

block, from where the combined melt stream flows to

a die and the layers take their final dimensions. Co-

extrusion processes are extensively used in the produc-
tion of bilayer and multi-layer sheets and pipes in the

plastics industry and the production of conjugate fi-

bres in the fibre industry. Interest in multi-layer extru-

sion has also grown due to its potential for producing

composite products with improved material properties.
(ii) Lubricated pipelining, in which an outer layer of

low viscosity fluid is used to enhance the flow of an in-

ner fluid. The outer fluid occupies the regions of high-

est shear adjacent to the walls of the duct. Such pro-
cesses are used for example where a heavy crude oil
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is transported along pipelines with the addition of a
small amount of water. Similar methods are used in

coal-water slurry transport. (iii) Coating flows, in which

an additional layer of fluid is applied to the outside of

another fluid stream, e.g. in the concentric coating of
two or more polymers.

In many of these processes the rate of production
(i.e. the flow rate), is limited by flow instabilities and

especially by instabilities at the interfaces between ad-

jacent layers. These instabilities can result in high scrap

rates, in an economically infeasible process, or in fi-

nal products with substandard mechanical, optical or
barrier properties. This is the essential motivation for

study of these instabilities and of methods to remove

or avoid them. This paper presents one such method.

At large Reynolds number, Re, multi-layer flows of

viscous fluids are usually unstable. This arises in any

case due to the emergence of shear instabilities, i.e. tur-
bulent transition, but linear interfacial instabilities are

also found for quite low Re. Dating from the late 1960’s,

there are a number of studies involving both immiscible

and miscible fluids, e.g. [11,12]. An extensive review can
be found in the text [13], and the physical mechanisms

governing short and long wavelength instabilities have

been explained by [14,15]. These studies generally refer

to the situation where there is a jump in the viscos-

ity at the interface between two fluids. If the change in
viscosity is instead gradual, e.g. due to a diffuse inter-

facial region, then the stability characteristics appear

to mimic those of the system with the viscosity jump,

see [16].

A number of authors have considered the stability

of multi-layer flows of non-Newtonian fluids. For exam-
ple, linear stability of multi-layer Couette and Poiseuille

flows of power law fluids have been treated extensively

in [17–20], both by developing the analogous analytic
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expressions to the Newtonian fluid problems, and by

numerical solution of the linear stability problems. In

general terms, these flows suffer from interfacial insta-

bilities of similar nature to those for Newtonian fluids.

Although the non-Newtonian rheology can positively
influence the stability, it is not effective in wholly elim-

inating interfacial instabilities. If the physical mecha-

nism of short wavelength instability described in [14]

is accepted, then sufficiently close to the fluid-fluid in-
terface, the non-Newtonian character of these fluids is

simply not recognised, (i.e. the dominant feature at the

interface is a discontinuity in a finite constant viscosity

between the two fluids), and we should therefore expect

similar behaviour with respect to the short wavelength
instabilities as for 2 Newtonian fluids. Long wavelength

instabilities can be analysed by using regular perturba-

tion methods, from the linearised stability equations for

each generalised Newtonian fluid, (e.g. as in [19]). This
methodology is analogous to that used in the Newto-

nian fluid studies and hence the qualitative similarity

is not surprising. Pinarbasi and Liakopoulos [21] have

considered the stability of a two-layer Poiseuille flow

of both Carreau-Yasuda and Bingham-like fluids. How-
ever, Pinarbasi and Liakopoulos do not model a true

Bingham fluid (i.e. with a yield stress). Instead, they

choose a form of regularised viscosity model in which

the effective viscosity attains a Newtonian limit at zero
shear-rate. This modified constitutive model is there-

fore qualitatively similar to the Carreau-Yasuda model

that is also studied in [21].

First studies of multi-layer viscoelastic flows were
performed by Li [22] and Water and Keeley [18]. They

studied plane-Couette-flow of two superposed Oldroyd-

B fluids and four-constant Oldroyd-B fluids respectively.

They found that elasticity stratification affects stabil-

ity only if a jump in viscosity is present. Later studies
showed that in the absence of viscosity and density dif-

ference, elasticity stratification is sufficient to cause in-

terfacial instability, even at zero Reynolds number, see

[23–29]. The reason of this discrepancy is the use of an
incorrect interfacial stress boundary condition in [18,

22]. In board terms, all studies show that when the less

elastic fluid occupies more than half of the channel, the

jump in the first normal stresses at the interface has a

destabilising effect; otherwise it is stabilizing. Evidence
for the existence of purely elastic interfacial instability

was provided experimentally by Wilson and Khomami

[30]. They showed that this is due to a coupling be-

tween the perturbation velocity field and the polymeric
stress gradient across the interface in the base flow. An

excellent review of non-Newtonian flow instabilities can

be found in [31,32].

In this paper we study multi-layer flows that are

linearly stable even at infinite Re. In view of the above

results, this may seem unlikely. However, our approach

is straightforward. First we eliminate interfacial insta-

bilities by ensuring that for the base flow configurations
studied we maintain an unyielded plug region at the in-

terface. Secondly we eliminate linear shear instabilities

by ensuring a strong enough Couette component in the

lubricated fluid layer. The fluids that we consider are a
lubricating layer of a yield stress fluid (for simplicity a

Bingham fluid), adjacent to a lubricated layer of either

a Carreau fluid or a modified Chilcott-Rallison FENE

fluid (MCR fluid).

Elimination of interfacial instabilities via the pres-
ence of an unyielded plug was first studied by Frigaard

[36], who studied a linear stability problem involving

two Bingham fluids. The main idea is that in a Poiseuille-

like configuration the stress at the interface will be a
finite amount below the yield stress. In consequence an

infinitesimal disturbance cannot cause the fluid to yield

and therefore the interface is not deformed. The base

linear stability of such flows is therefore determined by

the underlying shear flow instability, not by interfa-
cial modes, and such flows may indeed be more stable

than the corresponding single fluid flow. In [2] it was

shown that this interfacial stability in fact carries over

to bounded nonlinear perturbations and in [3] these sta-
ble multi-layer flows were demonstrated experimentally.

This flow methodology has been termed visco-plastic

lubrication.

Elimination of shear instabilities via introduction

of a Couette component was first studied by [39,40],
who considered plane Couette-Poiseuille (PCP) flows.

Plane Poiseuille flow becomes unstable at Re ≈ 5772,

[9], whereas plane Couette flow is linearly stable at

Re = ∞, [10]. Potter [39] and Hains [40] showed that
for a sufficiently strong Couette component PCP flows

would also become stable at Re = ∞, i.e. when the

lower wall velocity exceeded a critical cut-off value, ap-

proximately equal to 0.7 times the maximal velocity of

the plane Poiseuille flow. The mechanism of stability
was further elucidated by [41] who studied a long wave

limit to compute the cut-off velocity.

PCP flows of both Carreau fluids and of MCR flu-

ids have been studied by the authors in [42,38]. In both

cases we have shown that the same cut-off mechanism
is present for these non-Newtonian fluids and may be

computed via the long wavelength limit of [41]. The

plan of the paper therefore is to combine the methodol-

ogy of visco-plastic lubrication with the stabilising ef-
fects of a strong Couette component. Below, in section

2 we describe the underlying base flows that we study.

Section 3 presents the linear stability problems and re-
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Fig. 1 Schematic of the flow geometry.

sults of our analysis. The paper concludes with a length

discussion in 4.

2 Problem statement

The 2D flow geometry we consider is described in Fig. 1.
Two fluids of identical density ρ̂ flow in a plane channel,

oriented with the x̂-axis. The interface position of the

base flow is used to fix the ŷ-axis, at ŷ = 0. The upper

fluid occupies the region between the interface and the
upper wall at ŷ = ĥ, while the lower fluid occupies

the region between the interface and the lower wall at

ŷ = −â. The flow is driven by an imposed constant

axial pressure gradient, (−dp̂/dx̂, 0, ).

The upper fluid will be either shear-thinning or visco-

elastic. For definiteness and to take advantage of pre-

vious results, we consider either a Carreau fluid or a
modified FENE Chilcott-Rallison fluid, (MCR fluid).

The lower fluid has a yield stress, and for simplicity

we select the classical Bingham fluid model. We do not

believe that the essence of our results changes much if

other similar fluid models are chosen. As explained in
Sect. 1, our objective is to observe how the yield stress

fluid layer may enhance the flow of the upper fluid, both

in terms of increasing the volumetric flux of the upper

fluid and in improving the (linear) stability. Therefore
conceptually, we base our scaling on the pressure driven

flow of the upper fluid, traveling alone in a plane chan-

nel of width ĥ.

Throughout this paper we adopt the convention of

denoting dimensional variable with a ·̂ symbol and di-

mensionless variables without. We make the equations

of motion dimensionless by using ĥ as length-scale, Ûmax

as velocity-scale, ĥ/Ûmax as timescale, ρ̂Û2
max as pres-

sure scale, and µ̂0Ûmax/ĥ as viscous and elastic stress

scale. The velocity Ûmax is defined to be the maximal

(centreline) velocity of the upper fluid, traveling alone

in a plane channel of width ĥ, driven by the pressure

gradient (−dp̂/dx̂, 0, ). The viscosity µ̂0 is either the low

shear viscosity of the Carreau fluid or the total viscos-

ity of the MCR fluid, as discussed below. As we do not
combine these models, no confusion need arise. With

these scalings, the equations of motion in the lower and

upper fluid layers are as follows.

2.0.1 Lower fluid layer, y ∈ (−a, 0)

In the Bingham fluid the following dimensionless equa-
tions are satisfied

∇ · u = 0, (1)

∂u

∂t
+ (u · ∇)u = −∇p+

m

Re
∇ · τB, (2)

The modified pressure and the deviatoric stress ten-

sor are denoted p and τB = τB,ij , respectively. The

two dimensionless parameters appearing above are the

Reynolds number Re and the viscosity ratio m. These

are defined as follows:

Re ≡
ρ̂Ûmaxĥ

µ̂0
, m ≡

µ̂p

µ̂0
, (3)

where µ̂p is the plastic viscosity of the Bingham fluid.

The Bingham fluid is described by the following
scaled constitutive laws:

γ̇(u) = 0 ⇐⇒ τB(u) ≤ B, (4)

τB,ij(u) =

[

1 +
B

γ̇(u)

]

γ̇ij(u) ⇐⇒ τB(u) > B. (5)

The 3rd dimensionless parameter appearing above is

the Bingham number B:

B ≡
τ̂Y ĥ

µ̂pÛmax

, (6)

where τ̂Y is the yield stress of the lubricating fluid.

Physically, B is the ratio of yields stress to viscous

stress, but also represents the dimensionless yield stress

of the fluid. The rate of strain and deviatoric stress sec-

ond invariants, γ̇ and τB respectively, are defined by:

γ̇ =





1

2

2
∑

i,j=1

[γ̇ij ]
2





1/2

τB =





1

2

2
∑

i,j=1

[τB,ij ]
2





1/2

where x ≡ x1, y ≡ x2, u ≡ u1, v ≡ u2 and

γ̇ij =
∂ui

∂xj
+

∂uj

∂xi
, i, j = 1, 2. (7)
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2.0.2 Upper layer, y ∈ (0, 1): MCR fluid

In the case that the upper layer contains an MCR fluid,

(1) is satisfied, coupled with

∂u

∂t
+ (u ·∇)u = −∇p+

β

Re
∇ · γ̇ +

1

Re
∇ · τ (8)

where β denotes the solvent to total viscosity ratio and

Re is defined via (3), using the total viscosity of the

MCR fluid, µ̂0. The constitutive equation for the elastic

stress tensor τ is:

τ +
We

f(τ )

▽

τ= (1 − β)γ̇ (9)

where f(τ ) describes the spring law. The function f(τ )
is given by

f(τ ) =

b+
We

(1− β)
trτ

b− d
. (10)

Here “tr” is the trace operator, We is the Weissenberg

number which is the ratio of a relaxation timescale of
the fluid, say t̂r, to the advective timescale of the flow,

ĥ/Ûmax, and b is the extensibility parameter that mea-

sures the size of the polymer molecule in relation to

its equilibrium size. Values for b used in the litera-

ture are in the range of 102 to 103 and following the
work of Remmelgas et al. [33], we take as a base value,

b = 100. The dimensionless parameter b is often de-

noted L2 in the literature. Note that we recover the

Oldroyd-B model as a special case if we take b → ∞,
when f(τ ) → 1. The parameter d is the dimension of

the configuration space. For brevity, we refer to [34] for

a discussion of these parameters in a more general con-

text. Later when we consider the high Re limit of these

flow, in place of We we shall use the alternative dimen-
sionless elasticity parameter, ǫ = We/Re, which is the

ratio of kinematic viscosity and relaxational diffusivity.

Note that ǫ depends on the properties of the fluid and

the flow geometry, but not the velocity scale. In the
case of an MCR fluid, the velocity scale is simply:

Ûmax =
−dp̂/dx̂

8µ̂0ĥ2
. (11)

2.0.3 Upper layer, y ∈ (0, 1): Carreau fluid

In the case that the upper layer contains a Carreau
fluid, (1) is satisfied, coupled with

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇ · τC , (12)

The deviatoric stress τC satisfies the constitutive equa-

tion

τC =

(

µ∞ + [1− µ∞]
[

1 + (λγ̇)
2
](n−1)/2

)

γ̇. (13)

The Reynolds number Re is as defined in (3), using

the low shear Carreau viscosity µ̂0. The other rheologi-

cal parameters are µ∞ = µ̂∞/µ̂0, denoting the ratio of

high to low shear viscosities, (typically µ∞ < 1), the

dimensionless power-law index n ≤ 1, and λ = λ̂Û0/ĥ.
Here λ̂ is the dimensional time constant of the Carreau

model and 1/λ̂ is indicative of the dimensional rate of

strain at which shear-thinning effects become signifi-

cant. Thus, λ is the ratio of this strain rate to a rep-
resentative strain rate of the flow. It is a combination

of n and λ that govern the degree of shear-thinning.

Note that the Newtonian fluid is recovered in any of

the limits: λ = 0, n = 1 or µ∞ = 1.

The velocity scale Ûmax needs to be found from a

plane channel Poiseuille flow problem, which is straight-

forward to solve. Dispensing with the details, we find

that

Ûmax =
1

g

−dp̂/dx̂

µ̂0ĥ2
: g =

∫ g/2

0

γ̇(τ) dτ. (14)

The function γ̇(τ) is found by inverting the constitutive

law, i.e.

τ =

(

µ∞ + [1− µ∞]
[

1 + (λγ̇)
2
](n−1)/2

)

γ̇,

and g is found iteratively using any simple numerical

solver. Since the constitutive law depends upon the di-

mensionless groups (µ∞, n, λ), it is evident that g =
g(µ∞, n, λ). In any of the Newtonian limits of the Car-

reau model, γ̇(τ) = τ , leading to g = 8. Figure 2 ex-

plores the variation of 8/g(µ∞, n, λ), which indicates

the ratio of Ûmax for the Carreau fluid to Ûmax for a

Newtonian fluid with equal low shear viscosity. We ob-
serve that this ratio increases significantly for large λ

and small n, for which shear-thinning effects are preva-

lent.

2.1 Boundary and interfacial conditions

The interface of the base flow has been positioned at
y = 0. In the case that the flow is unsteady, the interface

position will be denoted y = yi(x, t) and is governed by

the kinematic equation:

∂yi
∂t

+ u
∂yi
∂x

= v. (15)

Across the interface both the velocity and traction vec-

tors are continuous. At the solid walls of the flow, no

slip boundary conditions are satisfied.
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Fig. 2 The function 8/g(µ∞, n, λ): a) µ∞ = 0.01; b) µ∞ = 0.1.
In each figure: λ = 0.1 − �, λ = 1 − �, λ = 10 − •.

2.2 Base flows

Before computing the base flows directly, we may con-

sider some general features. First of all, considering the

full channel, y ∈ [−a, 1], it is evident that the base

velocity U(y) is Poiseuille like, i.e. the shear stress in-

creases linearly with distance from the lower wall, and
must be zero somewhere in the interior; also there will

be a single maximum value of U(y). Secondly, consid-

ering only the lower Bingham fluid layer and the linear

increase of shear stress, we may have one of 4 possibil-
ities: (1) the interfacial stress is below the yield stress

but the stress at the lower wall exceeds the yield stress;

(2) the interfacial stress is below the yield stress and the

stress at the lower wall is also below the yield stress; (3)

the magnitude of the interfacial stress is above the yield
stress and the interfacial stress is positive; (4) the mag-

nitude of the interfacial stress is above the yield stress

and the interfacial stress is negative. Schematically, the

base velocity profiles corresponding to (1)-(4) are as il-
lustrated in Fig. 3. We refer to these as solutions of

types 1-4, and will only be interested in solutions of

type 1.

y=1

U(y)

y=-a

d)

y=1

U(y)

b)

y=-ay=1

U(y)

a)

y=-a

y=1

U(y)

c)

y=-a

Fig. 3 Different types of base solution: a) type 1; b) type 2; c)
type 3; d) type 4.

2.2.1 Bingham fluid & MCR fluid

For the MCR fluid in the upper layer, the base solution

satisfies the following 1D system:

−8 = m
d

dy
τB,xy, y ∈ (−a, 0), (16)

−8 = U ′′(y), y ∈ (0, 1), (17)

U(y) = 0, at y = −a, 1, (18)

U(0+) = U(0−), (19)

U ′(0+) = mτB,xy(0
−), (20)

where

|U ′(y)| = 0 ⇐⇒ |τB,xy| ≤ B, (21)

τB,xy =

[

1 +
B

|U ′(y)|

]

U ′(y) ⇐⇒ |τB,xy| > B. (22)

This system can be solved analytically for the 4 different

types of solution, but the reader is spared the details of
these lengthy calculations.

We may note that U(y), depends only on (m,B, a).

Our interest is exclusively in the type 1 solutions, which

may be found in a region of the positive (a,mB/4)-

plane, defined by the following bounds:

a ≥
1

2

[

mB

4
− 1

]

, Type 1-2, (23)

a ≥ m1/2

[

1−
mB

4

]1/2

, Type 1-3, (24)

a ≤
mB

4
+m1/2

[

1 +
mB

4

]1/2

, Type 1-4, (25)

as illustrated in Fig. 4 for various m. We should note

that although this region is unbounded in a, for an ap-
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Fig. 4 Regimes for the solution types: a) m = 0.1; b) m = 1.

plication in which the lower fluid layer is used as a lu-

bricant, large a implies an increasing consumption of
lubricant so that practical bounds will exist.

For each type 1 solution, the thickness of the plug

region is denoted yp, which may be found as the solution

of the quadratic:

4

m
(a− yp)

2 = 4−mB + 8yp.

Having found yp, the interfacial shear stress is denoted
by: τi = mB − 8yp, and the velocity at the interface

is denoted U0 = 4 − τi. For completeness, the velocity

profiles in the two layers are:

U(y) =















U0
(a+ y)(a− y − 2yp)

(a− yp)2
y ∈ [−a,−yp],

U0 y ∈ (−yp, 0],

U0(1− y) + 4y(1− y), y ∈ (0, 1],

(26)

and the dimensionless pressure gradient is simply P ′(x) =

−8/Re. The elastic stresses of the base flow are denoted

Tij and are found in terms of U(y):

Txx = Λ(U ′(y);We, β, b, d), (27)

Txy = (1 − β)U ′(y), (28)

Tyy = 0, (29)

where Λ is the positive root of

Λ2 +
b(1− β)

We
Λ − 2(1− β)(b − d)[U ′(y)]2 = 0.

From the form of (26) we can see that the areal flux

in the MCR layer is increased from 1/2 to (1+U0)/2 by

the lubricating layer. The form of the velocity solution

in the upper layer divides into the original Poiseuille

component, i.e. in the absence of the lower layer, and
what might be termed a Couette component, due to the

moving interface. It is the Couette contribution that

increases the flux. We may also calculate the flux of

lubricant straightforwardly.

2.2.2 Bingham fluid & Carreau fluid

With the Carreau fluid in the upper layer, the base

solution satisfies the following 1D system:

−g = m
d

dy
τB,xy, y ∈ (−a, 0), (30)

−g =
d

dy
τC,xy, y ∈ (0, 1), (31)

U(y) = 0, at y = −a, 1, (32)

U(0+) = U(0−), (33)

τC,xy(0
+) = mτB,xy(0

−), (34)

where

τC,xy =

(

µ∞ + [1− µ∞]
[

1 + (λ|U(y)|)
2
](n−1)/2

)

U(y).

(35)

We recall that g = g(µ∞, n, λ). It is not possible to
solve analytically for the base flow, except in the lim-

iting cases for which the Carreau fluid is Newtonian.

However, numerical integration is straightforward.

For any fixed (µ∞, n, λ) the parameter region in

which type 1 solutions are found can be determined
and plotted in the plane (a, 2mB/g), as we illustrate

in Fig. 5. The bounds of the regions in Fig. 5 may be

determined semi-analytically, and are given by:

a ≥
1

2

[

2mB

g
− 1

]

, Type 1-2, (36)

a ≥

[

2m

g
U0,C(µ∞, n, λ,mB)

]1/2

, Type 1-3, (37)

a ≤
2mB

g
+

[

2m

g
U0,C(µ∞, n, λ,−mB)

]1/2

, Type 1-4,

(38)

where U0,C(µ∞, n, λ, τi) is the velocity at y = 0 ob-
tained by solving (31) with τC,xy = τi at y = 0 and

U(y) = 0 at y = 1. We observe that the location of the

different solution type regions are qualitatively similar
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Fig. 5 Regimes for the solution types: a) (µ∞, n, λ) =
(0.01, 0.5, 1); b) (µ∞, n, λ) = (0.01, 0.5, 10). In both figures m =
0.1 is marked with the shaded regions and the dashed lines mark
the shift in the region boundaries for m = 1.

to those of the Bingham-MCR pairing. In general terms,

we find that increasing the shear-thinning characteris-
tics of the Carreau fluid layer tends to increase the re-

gion of Type 1 flows, as viewed in terms of (a, 2mB/g).

Note that in the absence of the lubricating layer, g/2

would denote the shear stress at y = 0. Thus, the sig-
nificance of the quantity 2mB/g is the ratio of the yield

stress to the wall shear stress in the absence of lubrica-

tion.

3 Linear stability

We now consider a linear perturbation of multi-layer
type 1 flow. We proceed in the usual fashion, assuming

an x-periodic modal disturbance to the base flow and

using domain perturbation for both the yield surface,

in the Bingham fluid layer, and the interface.

Type 1 base flows are characterised by an unyielded

plug region of width yp, lying in [−yp, 0]. The plug
width yp vanishes only at the boundary with the type

3 velocity region, but is otherwise of finite width. The

yield stress is attained at y = −yp, and consequently

the interfacial stress τi is always a finite amount below

the yield value mB whenever yp is finite. In contrast

the stress and velocity perturbations are infinitesimal

in a linear stability analysis. It follows that for a type 1

flow (or indeed also a type 2 flow), the linear perturba-
tion is unable to exceed the yield stress at the interface.

Consequently the interface remains undeformed.

A careful analysis of the yield surface perturbation

and plug motion follows that in e.g. [35,36]. the con-

clusion of this analysis is that although a modal per-

turbation of the yield surface occurs, the plug itself is

not moved by the perturbation. The reason for this is
that the modal stresses are periodic in the x-direction

and thus the net traction on the plug over one period

is zero. The perturbations with zero wavenumber may

be shown to be stable. The key consequence of this fea-
ture, unique to yield stress fluids in such configurations,

is that the linear stability eigenvalue problems for the

different fluid regions decouple, linked only by the pa-

rameters of the base flow.

For 2 dimensional perturbations, we introduce a stream

function and cross differentiate to eliminate the pres-

sure. The resulting eigenvalue problem in the yielded

Bingham fluid region, y =∈ (−a,−yp), is:

iαc(α2 −D2)φ =
m

Re

[

(α2 −D2)2φ− 4α2BD

(

Dφ

|DU |

)]

+iα[D2U + U(α2 −D2)]φ. (39)

φ = Dφ = 0, at y = −a, − yp, (40)

y′p = −
D2φ(−y−p )

D2U(−y−p )
(41)

Here D = d
dy . The linear perturbations of the velocity

(u′, v′) are related to the stream function Ψ by u′ =

Ψy, v′ = −Ψx, and the modal form of perturbation is

then:

Ψ ∼ φ(y)eiα(x−ct). (42)

The yield surface perturbation is y′pe
iα(x−ct).

If the upper layer contains an MCR fluid, the modal

form of the elastic stress perturbation is τij(y)e
iα(x−ct),

ij = xx, xy, yx, yy, and eigenvalue problem for y ∈
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(0, 1) is:

iαc(α2 −D2)φ = iα[D2U + U(α2 −D2)]φ

+
1

Re
[iα(τxx − τyy) + (D2 + α2)τxy ]

+
β

Re
(α2 −D2)2φ (43)

iαcF (y)τxx =

[

1 + iαF (y)U +
F (y)Txx

(1− β)(b − d)

]

τxx

−2F (y)DUτxy +
F (y)Txx

(1− β)(b − d)
τyy

−iαF (y)DTxxφ− 2F (y)TxyD
2φ

−2iα [F (y)Txx + (1 − β)]Dφ (44)

iαcF (y)τxy = [1 + iαF (y)U ] τxy − F (y)DUτyy

−(1− β)D2φ− α2(1− β)φ

−
[

iαF (y)DTxy + F (y)α2Txx

]

φ (45)

iαcF (y)τyy = 2iα(1− β)Dφ − 2F (y)α2Txyφ

+ [1 + iαF (y)U ] τyy. (46)

with boundary conditions:

φ = Dφ = 0, at y = 0, 1. (47)

The function F (y) is:

F (y) =
We(b− d)

b+WeTxx/(1− β)
. (48)

Finally, if instead the upper layer contains a Carreau

fluid, the eigenvalue problem for y ∈ (0, 1) is:

iαc
(

α2 −D2
)

φ = iα
[

U
(

α2 −D2
)

+D2Ub

]

+
1

Re

(

D2 + α2
) [

µt

(

D2 + α2
)

φ
]

−
4α2

Re
D (µDφ) . (49)

with

φ = Dφ = 0 at y = 0 and y = 1, (50)

and where µ and µt are respectively the effective vis-
cosity and tangent viscosity, for the Carreau fluid:

µ(γ̇) =

(

µ∞ + [1− µ∞]
[

1 + (λγ̇)2
](n−1)/2

)

(51)

µt(γ̇) = µ (γ̇) +
dµ

dγ̇
. (52)

These are evaluated at γ̇ = |DU |.

3.1 Stability of the Bingham layer

On introducing the mapping y = −yp − ξ(a − yp),

c = U0c̃, U = U0(̃U)(ξ) = U0(1 − ξ2), α̃ = α(a − yp),

R̃e = ReU0(a − yp)/m, B̃ = BU0(a − yp), ỹp = y′pU0,

this eigenvalue problem assumes the following standard

form for ξ ∈ (0, 1):

iα̃c̃(α̃2 − D̃2)φ =
1

R̃e

[

(α̃2 − D̃2)2φ− 4α̃2B̃D̃

(

D̃φ

|D̃Ũ |

)]

+iα̃[D̃2Ũ + Ũ(α̃2 − D̃2)]φ, (53)

φ = D̃φ = 0, at ξ = 0, 1, (54)

ỹp = −
D̃2φ(0+)

D̃2Ũ(0+)
, (55)

where D̃ = d
dξ .

This eigenvalue problem is precisely that derived by
[35] for plane channel flow of a Bingham fluid and the

mapping used is similar to that in [36]. In [35] the au-

thors analysed the even extensions of the above eigen-

value problem, in fact replacing the above boundary

conditions at ξ = 0 with Dφ = D3φ = 0. In this way
they were able to compute marginal stability results

that vary continuously from the Newtonian results as

B̃ is increased from zero. However, splitting into odd

and even components is not justified here.
Instead, with the conditions φ = D̃φ = 0, no un-

stable modes have ever been found. This case has been

extensively studied by [37] and although there is no an-

alytical proof of the unconditional linear stability, the

arguments are strong. In particular, in examining the
spectra of (53)-(55) the Bingham fluid term is observed

to have a stabilising effect. If one sets B̃ = 0 we recover

the Newtonian Orr-Somerfeld problem for a plane chan-

nel Couette-Poiseuille flow, in which the wall velocity
matches with the maximal velocity of the channel. This

case is known to be stable for all R̃e and on this basis

we infer that the Bingham fluid layer is also linearly

stable for all R̃e.

3.2 Results: stability of the MCR layer

The eigenvalue problem (43)-(48) is identical to that

studied by the authors in [38], with “lower wall veloc-

ity” V in [38] replaced by the interfacial velocity U0 here

(for type I flows). For both fixedWe and fixed elasticity
number ǫ = We/Re it was shown that as U0 increases

significantly from zero, the stability increases and the

branches of the marginal stability curve in the (Re, α)

become parallel with lines Re ∼ α−1 as Re → ∞. This

picture qualitatively follows that for a Newtonian plane
Couette-Poiseuille (PCP) flow, as studied by [39–41].

The observed behaviour along the branches of the

marginal stability curves prompts consideration of the

long-wave limit of [41], in which α → 0 with Reα fixed.
This distinguished limit leads to a simplified eigenvalue

problem for which it is found that there are no unsta-

ble eigenvalues with U0 above a certain “cut-off” value,
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Table 1 Cut-off velocity values U0 for different ǫ and extensibil-
ity b; from [38].

ǫ b = 100 b = 1000 b = 10000 b = ∞

2× 10−8 0.7075 0.7074 0.7074 0.7074
2× 10−7 0.7081 0.7081 0.7085 0.7084
4× 10−7 0.7087 0.7086 0.7095 0.7094
10−6 0.7087 0.7111 0.7119 0.7100

i.e. essentially when the Couette component becomes
strong enough. In [41] this cut-off value is determined

for Newtonian fluids to be U0 ≈ 0.7. In [38] we have

considered the same limit for MCR fluids. Surprisingly,

for both fixed We and fixed ǫ, this distinguished limit
is identical to that for Newtonian fluids. This cut-off

value is also computed directly from (43)-(48) in [38]

(see Table 1) and this confirms numerically that the

cut-off limit is independent of the elastic parameters of

the flow.

We now observe that for any parameters m, a, B,
such that the base flow is of type I, we may compute

the interfacial velocity U0. If we find that, for exam-

ple conservatively, U0 > 0.72, then it appears that the

MCR fluid layer is linearly stable for all Re. Since the
Bingham fluid layer is also stable for all Re, multi-layer

flows for these parameters are linearly stable for all Re.

With reference to Fig. 4, the boundary between type I

and type II solutions is characterised by U0 = 0. Thus,

the region of linearly stable flows at all Re is located
away from this boundary.

3.3 Results: stability of the Carreau layer

As in the previous section, for a type I solution the
Carreau fluid layer eigenvalue problem (49) & (50) has

been studied by the authors in [42], for a PCP flow.

Qualitatively the results are as for the Newtonian fluid,

with the cut off velocity determined by the longwave

distinguished limit, α → 0 with Reα fixed. The only
difference is that the cut off values of U0 vary signifi-

cantly with (µ∞, n, λ), as shown below in Fig. 7. Sam-

ples of parameter regions that are linearly stable at all

Re are shown in Fig. 8.

4 Discussion

In this paper we have shown that it is possible to achieve

multi-layer parallel flows that are stable at Re = ∞ for
a wide range of fluids, including both shear-thinning

and visco-elastic fluids. The key principles of this tech-

nique are as follows.

a)
mB/4

a

Type 1: Stable, Re = ∞

Type 2

Type 3

Type 4

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

b)
mB/4

a Type 1: Stable, Re = ∞

Type 2
Type 3

Type 4

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 6 Regimes where the multi-layer Bingham-MCR flow is lin-
early stable for all Re: a) m = 0.1; b) m = 1.

1. Lubricate the fluid layer with a layer of yield stress

fluid, whilst ensuring that the base flow retains an

unyielded plug at the interface, (type I flows). This

has the effect of stabilizing interfacial instabilities.
2. Select the flow and rheological parameters so that

the interfacial velocity (equivalently plug velocity)

exceeds a critical cut-off velocity. This cut-off veloc-

ity is determined from study of the PCP flow of the
lubricated fluid on alone, in a channel with mov-

ing lower wall. The cut-off velocity is that at which

the Couette component becomes strong enough to

stabilize all long wavelength instabilities, which are

typically the least stable.

As we have seen, there are relatively large parame-

ter regimes in which these effects can be achieved. Al-

though for simplicity we have only identified the regime
where Re = ∞ is stable, note that as this boundary is

approached, i.e. from within the black shaded area of

Figs. 6 & 8, the stability typically increases from that

of the plane Poiseuille flow as soon as the interfacial
speed exceeds the wave speed of the least stable modes

(this is found to be when long wavelengths become the

least stable). In contrast, at the boundaries of the sta-
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Fig. 8 Regimes where the multi-layer Bingham-Carreau flow is linearly stable for all Re: (µ∞, n) = (0.01, 0.5), a) λ = 1, m = 0.1; b)
λ = 1, m = 1; c) λ = 10, m = 0.1; d) λ = 10, m = 1.

ble type I region with the type III and type IV flows,
the interface becomes yielded, so the stability is lost.

Before considering practical limitations of these re-
sults, let us first discuss their generality. We have cho-

sen the Carreau fluid as a generic shear-thinning gen-

eralised Newtonian fluid. Other models, e.g. power law,

might be easier to handle analytically, i.e. in terms of

computing the base flows, but are sometimes limited in
their range of applicability. In particular it is common

to have shear-thinning behaviour dominant over a range

of lower shear rates coupled with an asymptotic ap-

proach to some high shear plateau. We suspect that the
stability behaviour is qualitatively similar for all such

fluids, e.g. that the PCP flow will have a cut-off veloc-

ity, and therefore that our results are quite generic. On

the other hand, the visco-elastic model we have chosen

is less generic. This model includes the Oldroyd B and
is closely related to other FENE type models. There-

fore, we would not be surprised to find similar cut-off

behaviour for the PCP flow of similar fluids and hence

regions of stability at Re = ∞. This remains however
to be investigated. The MCR fluid has Newtonian shear

viscosity and could be varied to include more realistic

shear-thinning effects. We do not expect that this will

change the qualitative nature of our results. Lastly, we
could of course extend these flows to different types of

yield stress fluid and again do not expect significant

qualitative differences.

There are different arenas for the application of the

technique put forward here. Firstly, if either of the flu-

ids is interpreted as a coating and/or if a multi-layered

structure is the end goal, then the method implies sta-

ble flows at high throughput. Alternatively, the yield
stress fluid may be thought of as a lubricant. In this

setting one augments the volumetric flux at the cost of

the lubricating fluid layer. Although we can of course

calculate the consumption of the lubricant as a function
of the increase in flow rate this is not the main focus

here. For the MCR fluid, where the base flow is New-

tonian, the increase in flow rate is simply due to the

moving interface, (i.e. found by superimposing a Cou-

ette component), so that increased flow stability coin-
cides with an increased flow rate! For shear thinning

fluids the additional shear results in relatively larger

Couette components.

There are many practical limitations to be acknowl-

edged. First, the domain is a geometric idealisation of a

planar geometry of large aspect ratio. Depending on the
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Fig. 7 Cut-off values of U0, above which the Carreau PCP flow
is linearly stable for all Re, from [42]: a) µ∞ = 0.01; b) µ∞ = 0.1.
In each plot: λ = 0.1 (◦); λ = 1 (×); λ = 10 (�).

actual geometry it becomes necessary to consider other

effects, e.g. entry/start-up effects of the flow, curvature

or imperfections of the walls, etc.

Secondly, even allowing for the geometric limita-

tions, linear stability at Re = ∞ needs interpreting

cautiously. Linearly stable flows frequently are unsta-

ble to finite perturbations at significantly lowerRe than
their linear limit, e.g. plane Poiseuille flow and Hagen-

Poiseuille flow for Newtonian fluids. The same is proba-

bly true for inelastic shear-thinning models. Regarding

the lubricating yield stress fluid layer, there are rela-
tively few studies of nonlinear instability for these flu-

ids, e.g. [1,4], and fewer still with an interface and mul-

tiple fluids, e.g. [2]. In the visco-elastic context Pakdel

and McKinley have advanced an argument that relates

the critical Weissenberg number for instability to the
characteristic curvature of the flow streamlines, [5]. Whilst

apparently irrelevant to planar flows such as here, Saar-

loos and co-workers have recently advanced the notion

that the critical curvature may be related to the ampli-
tude of a finite perturbation. Thus, both plane Couette

flow and (pipe) Poiseuille flow have been shown to ex-

hibit weakly nonlinear subcritical instabilities; see [7,

6,8]. The critical amplitude at which instabilities are

found decreases with increasing Weissenberg number.

On the other hand in the experimental setting, for

flows that are linearly stable at Re = ∞ the point at

which instability is actually observed is very sensitive to
control of apparatus imperfections and the level of flow

perturbations. For example, in Hagen-Poiseuille flow of

Newtonian fluids one typically observes transition to

turbulence starting for Re & 2000. However, an ex-
perimental flow loop in Manchester UK produces sta-

ble laminar flows for Re ≈ 24, 000, [43,44], and stable

flows have even been reported up to Re ≈ 100, 000, [45].

This suggests that enhanced stability may be achieved

experimentally, where predicted by the linear theory.
The other experimental aspect where our theoreti-

cal predictions may fail is if the unyielded plug region

at the interface is disturbed by some means. Although

we have not conducted experiments in the configuration
considered, those in [3] utilised Xanthan and Carbopol

solutions in a core-annular configuration and observed

no disruption of the interface until the onset of shear in-

stabilities in the core fluid. Current experimental work

is focused at a PEO-Carbopol system in the same ap-
paratus.

A more serious barrier to linear stability at Re =

∞ comes with remaining within the correct parameter

regime. Increased Re often implies an increased velocity
Umax, but the Bingham number then decreases, poten-

tially moving out of the Type I base solution regime.
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