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S

Structural vector autoregressions allow contemporaneous series dependence and assume errors
with no contemporaneous correlation. Models of this form, that also have a recursive structure,
can be described by a directed acyclic graph. An important tool for identification of these models
is the conditional independence graph constructed from the contemporaneous and lagged values
of the process. We determine the large-sample properties of statistics used to test for the presence
of links in this graph. A simple example illustrates how these results may be applied.
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1. I

We consider the structural pth-order vector autoregressive model,  ( p), of a stationary,
m-dimensional time series x

t
= (x
t,1
, . . . , x

t,m
)∞, of the form

W
0
x
t
=d+W

1
x
t−1
+W
2
x
t−2
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p
x
t−p
+a
t
. (1)

We require that the variance matrix A of a
t
be diagonal and that W0 represent a recursive, i.e.

causal, dependence of each component of x
t
on other contemporaneous components. This is equival-

ent to the existence of a reordering of the elements of x
t
such that W0 is triangular with unit

diagonal. We also require that W
p
has at least one nonzero element.

A given process x
t
generated by such a model has in general many statistically equivalent

representations of the same form, corresponding to different causal orderings of the contempor-
aneous dependence. It may also be represented uniquely by a standard  ( p) model, and we shall
assume that the order p has been previously determined by fitting such a model.
We are interested in the structural form (1) because it is reasonable to suppose that in the true
process generating the data each contemporaneous variable may depend only on a smaller number
of lagged or contemporaneous variables. This will be reflected in one representation which is sparse
in the sense that many of the elements of the coefficient matrices are zero. This sparseness may be
represented by a directed acyclic graph with nodes corresponding to the m(p+1) series elements
which appear in (1). The only links in this graph are to, and between, contemporaneous values of
x
t
, in the direction of causality, corresponding to the nonzero elements of W

i
.

In a previous paper (Reale & Tunnicliffe Wilson, 2001), we advocated a way of identifying a
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sparse form of the model (1) using a conditional independence graph on the same nodes, estimated
using a sample of x

t
of length N. In that paper we only considered tests for links to, and between,

contemporaneous values of x
t
. We made brief reference to a standard result of Anderson (1971,

p. 211) to justify these tests. This is that ordinary least squares regression can be used in large
samples for inference about autoregressive coefficients. In § 2 of the present paper we derive the
sampling properties of the test for a link in the conditional independence graph between any pair
of nodes x

t−r,i
and x

t−s,j
for lags r and s from zero to some maximum lag K�p. In general this

test is nonstandard, in that the variance of the statistic is not the same as that for the conditional
independence graph of independent samples from a multivariate normal distribution. The exception
is that in large samples the variance is the same if one node has zero lag. In § 3 we present a simple
illustrative example.

2. S     

Following Whittaker (1990) the conditional independence graph of the Gaussian variables x
t−k,i
,

for lags k=0, 1, . . . , K and series i=1, 2, . . . , m, is determined by the matrix of pairwise partial
correlations of the variables conditional upon all the remaining variables. The nodes corresponding
to a pair of variables are linked if and only if their partial correlation is nonzero. We will develop
a test for whether or not each single partial correlation is zero, and use this to estimate the
conditional independence graph. This estimate will be an exploratory tool, used to indicate sparse
forms of (1) which can be efficiently estimated and compared. We will not consider multiple tests,
although the theory we present could be extended in that direction.
The starting point for estimation of these partial correlations is the data matrix X consisting of

the collection of contemporaneous and lagged data vectors (x
K+1−k,i

, . . . , x
N−k,i

)∞. The sample
values of the partial correlations may then be derived from the estimated covariance matrix of the
variables, VC =X∞X/T , where T=N−K. We assume here that the time series or data vectors have
been mean-corrected. Our test is to reject r=0, for the partial autocorrelation r between a particu-
lar pair of variables, if |r |>c, where r is the sample value of r and c is some critical value. To
determine c we use the relationship between r and the t coefficient on n degrees of freedom of one
member of the pair of variables, in the regression of the other member of the pair upon that and
all the remaining variables. This relationship is r=t/√(t2+n); see Greene (1993, p. 180). We deter-
mine the large-sample properties of t, and in practice we shall apply the test of significance to the
t value rather than the partial correlation. The important point here is that ordinary least squares
regression does not in general furnish the correct standard error of the regression coefficient in this
time series context. This is because the regression will, in general, be upon variables which are in
both the past and the future, and consequently the regression errors are not white noise.
Let y, in the set x

t−k,i
, be the variable selected as the regressor, and let w be the remaining

variables in this set. Let Y and W be the corresponding subsets of the data matrix X. Let M=
var (w), P=cov (w, y), MC =T −1W ∞W and PC=T −1W ∞Y, the elements of MC and PC being sample
covariances of x

t
. We assume that x

t
does follow the model (1) so that the necessary conditions

apply (Priestley, 1994, pp. 324–30) for consistency of these sample values: plimMC =M and
plim PC=P. The solution of the least squares equations W ∞Wb@=W ∞Y for the vector of regression
coefficients therefore satisfies plim b@=M−1P=b.We use this to define the asymptotic error series
of the regression, e

t
=y−wb, which may be expressed in the form of the finite sum

e
t
=∑
i,r
y
i,r
x
t−r,i
. (2)

By construction, cov (w, e)=0 and we may reformulate the least squares equations as

MC {T 1/2(b@−b)}=T 1/2(T −1W ∞E), (3)

where E is the data vector corresponding to e
t
. The elements of D=T −1W ∞E are the sample

estimates of cov (w, e). Being finite linear combinations of the sample covariances of x
t
, they therefore
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satisfy (Priestley, 1994, pp. 337–9)

T 1/2D�N(0, Q), (4)

where we use E(D)=0 and Q is lim
T�2

var (T 1/2D). The elements of Q are

lim
T�2
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), (5)

where c
i,j,k
=cov (x

i,t
, x
j,t−k
).

We require a consistent estimator QC of Q, and the central point of this paper is to propose one
that is practicable. The last expression in (5) is an infinite sum over m that may not be directly
estimated because it contains covariances for which no sample value is available. We suggest that
these covariances are instead derived from the estimation of any one of the equivalent saturated
forms of model (1), represented as W(B)x

t
=a
t
. It is convenient to express (5), using the components

of the spectrum S of x
t
, as

P 1/2
f=−1/2

[y(B)Sy(B−1 )∞Bw−uS
l,j
+{y(B)S}

l
{y(B)S}

j
B−w−u] df. (6)

Here we use the backward shift operator B to aid interpretation, substituting B=exp (2pif ) to
evaluate the integral. The operator y(B) is defined by e

t
=y(B)x

t
and is consistently estimated

using the regression coefficients b@ . The spectrum S is given by

S=W(B)−1A{W(B−1 )−1}∞, (7)

which is consistently estimated by ordinary least squares estimation of (1). It is straightforward to
evaluate the integral numerically. An important practical point is that the estimated model must
be stationary. This may be ensured by padding the observed series x

t
, following mean correction,

with K zeros at the start and finish. The regression estimators then become the multivariate Yule–
Walker estimators, which are known to be stationary (Reinsel, 1993, pp. 89–91).
Again using plimMC =M we have from (3) that

T 1/2(b@−b)�N(0, M−1QM−1 ), (8)

where M is consistently estimated by MC .
For comparison, the limiting variance matrix from ordinary least squares regression is M−1s2

e
,

which will in general be different from that in (8). However, in the particular case that the chosen
regressor is a contemporaneous variable, they are the same, so that the regression standard errors
may be used. This may be seen from (6), in which y(B)Sy(B−1 )∞ reduces to s2

e
and y(B)S to an

operator with no positive power of B, so that the second component of the integral becomes zero.
Then Q reduces to Ms2

e
. In practice, when the chosen regressor is a contemporaneous variable,

the estimator of the variance matrix in (8) is also identical in finite samples to the estimator from
ordinary least squares regression if the order p used to estimate (1) is set equal to the maximum
lag K. This is a consequence of Yule–Walker estimation, which ensures that the model autocovari-
ances, derived here via the model spectrum, are equal to the sample autocovariances up to lag K.
This finite-sample coincidence is a reassuring aspect of the method we have proposed.
Now let b@ be the estimator of the coefficient relating to a particular link in the conditional

independence graph, and let s@
b
be the consistent estimator of its true standard error. We therefore

reject the presence of a link if |z |=|b@ |/s@
b
exceeds the appropriate critical value of a standard

normal variable. We evaluate the performance of this ‘correct’ test in § 3 for a simple illustrative
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example and compare it with the ‘incorrect’ t test using the wrong standard error from the ordinary
least squares regression.

3. A    

Consider the bivariate structural autoregression of order two given by

x
t,1
=0·7x

t−1,1
+a
t,1
, x
t,2
=1·5x

t,1
−0·5x

t−2,2
+a
t,2
. (9)

This model is purposely chosen to be simple, in order to illustrate the point of the paper. It is
represented in Fig. 1(a) by a directed acyclic graph linking nodes up to lag 2. Figure 1(b) shows
the conditional independence graph which may be deduced from this. We show no link between
the nodes at lags 1 and 2. For the general  ( p)model, many, if not all, of the nodes corresponding
to the earliest p lags will be linked in both the directed acyclic graph and the conditional indepen-
dence graph. These links could be determined under the assumption of stationarity. For a univariate
 ( p) the conditional independence graph is symmetric under time reversal, but that is not true
in the multivariate case.

(a)

xt,1

xt,2

xt-1,1

xt-1,2 xt-2,2

(b)

xt,1

xt,2

xt-1,1

xt-1,2 xt-2,2

Fig. 1. (a) shows the directed acyclic graph representation
of model (9) to lag 2, and (b) its corresponding conditional

independence graph.

For this example, with the links as shown, the conditional independence graph contains an extra
link corresponding to the moralisation rules (Whittaker, 1990, pp. 75–7). From this conditional
independence graph alone we are not able to rule out the possibility that the original model
contained a directed link, x

t,1
÷x
t−2,2
, in the place of this new link.

Consideration of the conditional independence graph with nodes up to lag 3 does rule this out.
Figure 2(a) shows the directed acyclic graph extended to this lag by simply shifting the structure
backwards. The solid lines of Fig. 2(b) show the conditional independence graph derived from this;
the broken line on Fig. 2(b) is that of a link x

t−1,1
−x
t−2,2

which would not arise if the link
x
t,1
÷x
t−2,2

were not present in the original model. A test which confirms the absence of the broken
line therefore identifies the correct model.

(a)

xt,1

xt,2

xt-1,1

xt-1,2 xt-2,2 xt-3,2

xt-2,1

(b)

xt,1

xt,2

xt-1,1

xt-1,2 xt-2,2 xt-3,2

xt-2,1

Fig. 2. (a) shows the directed acyclic graph representation of model (9) to lag 3,
and (b) its corresponding conditional independence graph, with the broken line

showing the link to be tested.

We simulated samples of length 200 from (9) and applied the tests of § 2 for the presence of the
link x

t−1,1
−x
t−2,2
. Using 1000 samples and a nominal size of 5%, we found the correct test rejected
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the null hypothesis, that no link is present, for 4·8% of samples. The incorrect test rejected the null
hypothesis for 10·9% of them. In this example the variance of the z statistic based on the correct
value for s@

b
was 0·96, and that of the t statistic based on the incorrect variance was 1·47. The

importance of using the correct test is clearly demonstrated.

R

A, T. W. (1971). T he Statistical Analysis of T ime Series. New York: Wiley.
G, W. H. (1993). Econometric Analysis, 2nd ed. Englewood Cliffs, NJ: Prentice Hall.
P, M. B. (1994). Spectral Analysis and T ime Series. London: Academic Press.
R, M. & T W, G. (2001). Identification of vector AR models with recursive structural
errors using conditional independence graphs. Statist. Meth. Applic. 10. To appear.
R, G. C. (1993). Elements of Multivariate T ime Series Analysis. New York: Springer-Verlag.
W, J. C. (1990). Graphical Models in Applied Multivariate Statistics. Chichester: Wiley.

[Received August 2000. Revised November 2001]


