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Abstract

In this paper graphical modelling is used to select a sparse structure for a multivariate time series model of New Zealand interest
rates. In particular, we consider a recursive structural vector autoregressions that can subsequently be described parsimoniously by
a directed acyclic graph, which could be given a causal interpretation. A comparison between competing models is then made by
considering likelihood and economic theory.
© 2008 IMACS. Published by Elsevier B.V. All rights reserved.

Keywords: Graphical models; Directed acyclic graphs; Term structure; Causality

1. Introduction

Technology has impacted extensively on the operations of financial markets which are inhabited by a rich array of
fixed-income securities, each bearing a particular rate of interest. The relationship between the yields on these various
securities is the province of the term structure of interest rates literature which has a long history and can be traced-back
formally to [19]. The more recent literature has been reviewed in [23].

With the popularity of cointegration and VAR/SVAR approaches to estimation in econometrics, a separate literature
using these approaches to estimate and test term structure models and implications can be identified and includes
[2,5,9,10,15,16,24]. The papers are typically motivated by a concern to understand the term structure for the “related
monetary policy control” issues and focus either upon technical estimation issues and often the validity of inferences
derived including, importantly, causal inference, the effects of structural change or the testing of various hypotheses.
Causality is a particularly important and popular issue given the role of monetary policy intervention.

In this paper we wish to add a significant extra dimension to the debate by using graphical modelling to identify
causal mechanisms within multivariate time series models. There is a small, but growing literature which uses directed
acyclic graphs in economics and includes [28], which examines the impact of monetary policy on agricultural prices
in four Asian economies [7], which examines relationship between money, income, nominal prices and wheat prices
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Fig. 1. Directed acyclic graph.

[8], which examines causal relationship between trade, government savings, natural resource exports and GDP in
79 world economies and [6], which examines the dynamics of regional, export-wheat, railroad rates linking several
central US regions to Texas Gulf ports. This paper considers for the first time, an application to the term structure
of interest rates where little consensus seems to exist on the causal nexus and direction between long and short rates
of interest. In particular, there are three alternative views on causality; short rates “cause” long rates (broadly the
traditional “Expectations Hypothesis” view); long rates “cause” short rates (here rational inflation expectations have
a role); or the “market segmentation” [11], or “preferred habitat” approaches, where causality is discontinuous across
maturity periods. The outcome in an empirical sense will be crucial for the efficacy of monetary policy design and
implementation.

2. Graphical modelling

Graphical modelling (GM) is a relatively new statistical approach, whose initial ideas were proposed by Dempster
[14] and later developed by Darroch [12]. The major attraction of the approach in empirical research is its convenient
way to present pairwise relationships between random variables taken from a multivariate context.

The initial step in the approach is the computation of the partial correlations between the variables in the particular
multivariate system under study. Once the numerical values are known we can test their significance by using an
opportune statistic. Finally the results are presented as a graph, where the random variables are represented by nodes
and a significant partial correlation between two random variables is denoted by a line that links them named edge. If
the variables in the graph are jointly distributed as a multivariate Gaussian distribution, a significant partial correlation
implies the presence of conditional dependence. For this reason the graph is called a conditional independence graph
(CIG).

A more informative object in GM is the directed acyclic graph (DAG). This is a directed graph where there are
arrows linking the nodes and where the joint distribution of the variables can be expressed as a sequence of marginal
conditional distributions. By way of example, consider the graph in Fig. 1: its joint density function can be defined as
f (a, b, c) = f (a|b, c)f (b)f (c).

Although the DAG and the CIG represent a different definition of the joint probability, there is a correspondence
between the two which is embodied by the moralization rule [22]: because of this result we can obtain the CIG from
the DAG by transforming the arrows into lines and linking unlinked parents with moral edges. By way of example
consider the graph in Fig. 2: A and B are the parents of C. The moralization of the DAG on the left is obtained by
transforming the existing arrows into edges and by adding a moral edge which links the parents.

Fig. 2. Moralization of a directed acyclic graph.
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While the CIG represents the associations among the variables either in terms of conditional dependence or simply
in terms of partial correlation if the joint distribution is not Gaussian, the DAG has a natural interpretation in terms of
causality. As it is not the aim of this paper to enter into philosophical debate about the definition of causality, we refer
to the main contributions on the causality implied by directed acyclic graphs [30,17,20,25,31,21].

The DAG is very attractive because of its causal implications but in practice all we can observe is the CIG constructed
by the sample partial correlations. In order to obtain the DAG from the CIG we have to apply the inverse operation of
the moralization, we name it demoralization. Unfortunately while the transformation of a DAG into a CIG is unique,
the inverse operation of identification and removal of moral edges is not. To this end we need to use all the information
we have about the relationships among the random variables in the system.

In this paper we apply this process within the context of multivariate structural VAR models considering first its
saturated specification, where there are links between every pair of variables (including the contemporaneous variables),
with the aim of finding a parsimonious model of the transmission mechanism between interest rates in New Zealand.

3. Multivariate time series

The relationship between several autoregressions can be modelled via the vector autoregression

xt = c + �1xt−1 + �2xt−2 + · · · + �kxt−k + et (1)

of order k, VAR(k), where xt, . . . , xt−k are n-dimensional vectors of observations with coefficient vectors �1, . . . , �k,
c is the constant and et is the error vector, which is assumed IID. If the covariance matrix, H, of et is not diagonal,
the set of linear Eq. (1) corresponds to a system of seemingly unrelated regressions [33] where the relations among
the components of xt are hidden in H. To highlight such relations we can represent the canonical VAR(k) in (1) in its
structural form (SVAR):

�0xt = d + �1xt−1 + �2xt−2 + · · · + �kxt−k + ut (2)

where �i = �0�i for i = 0, . . . , k, d = �0c and ut = �0et with covariance matrix �0H�′
0 = D, which is diag-

onal.
If there are no zeros in the coefficient vectors, the SVAR is saturated, but in many cases some variables do not play

any significant role in explaining the current variables, xt . In this case the value of the corresponding coefficient is zero
and hence the SVAR is sparse. An examination of the covariance matrix of the variables involved, both current and
lagged, can assist in identifying the sparse structure by the computation of the partial correlations. Their significance
can be tested using the appropriate sampling properties [27,26,32]. The model (2) may be represented by a DAG in
which the components of xt , xt−1, . . . , xt−p form the nodes, and causal dependence is indicated by arrows linking
nodes. The nature of the model is that all arrows end in nodes representing the contemporaneous variables on the left
hand side of (2). Some arrows will start from past values, and some from other contemporaneous variables.

The coefficients can be estimated by single equation ordinary least squares (OLS) regression which is fully efficient
under the assumption that the vector series is Gaussian but is also applicable and the properties of the estimates reliable,
under wider conditions, such as et being I.I.D.

Next consider the exploratory tools used to identify the model. The first step is to identify the overall order p of a
VAR model for the series. The second and central step is to construct a sample conditional independence graph (CIG)
for the variables xt, xt−1, . . . , xt−p which form the nodes of the graph. At this stage the only causality we can assume is
the one indicated by the arrow of time. Nevertheless, it may serve well to suggest the direction of dependence between
contemporaneous variables. Such dependence can be simply interpreted in terms of predictability. If we wish to go
beyond the concurrence of realizations of different time series, from our point of view of observers of aggregated
data, we can use the statistical evidence to support a causal belief. This leads to the connection between causality and
probability discussed by De Moivre [13]. A discussion of this argument and of the debate around it, although at the very
foundation of this work as well as many others in statistics and econometrics, cannot be contained in an article and we
point the interested reader to two recent monographs by Shafer [30] and Pearl [25]. Causal beliefs can be implemented
in our procedure when we hypothesize possible directed subgraphs for the edges between contemporaneous variables.
The corresponding structural VAR models are then fitted and refined by regression and a model selection criterion such
as AIC [1], used to select the best in terms of likelihood.
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The statistical procedures are based on a data matrix X which in the general case consists of m(P + 1) vectors
of length n = N − P , composed of elements xi,t−u, t = P + 1 − u, . . . ,N − u, for each series i = 1, 2, . . . , m, and
each lag u = 0, 1, . . . , P , for some chosen maximum lag P. In the first stage of overall order selection, for each
order p we fit, by OLS, the saturated structural VAR regressions of the m contemporaneous (lag 0) vectors on all the
vectors up to lag p. Using the sums of squares Si from these regressions we form the AIC as n

∑
log Si + 2k, where

k = pm2 + m(m − 1)/2 is the total number of regression coefficients estimated in the regressions. For the saturated
model the causal order of the contemporaneous variables does not affect the result, each one is included only as a
regression variable for a subsequent variable in the chosen ordering. Then select the order p which minimizes the AIC.

The next step is to construct the sample CIG for the chosen model order p. In general a CIG is an undirected
graph, defined by the absence of a link between two nodes if they are independent, conditional upon all the remaining
variables. Otherwise the nodes are linked. In a Gaussian context this conditional independence is indicated by a zero
partial autocorrelation:

ρ(xi,t−u, xj,t−v|{xk,t−w}) = 0, (3)

where the set of conditioning variables is the whole set up to lag p, excluding the variables on the left.
The set of all such partial correlations required to construct the CIG is conveniently calculated from the inverse W,

of the covariance matrix V of the whole set of variables, as

ρ(xi,t−u, xj,t−v|{xk,t−w}) = − Wrs√
(WrrWss)

(4)

where r and s respectively index the lagged variables xi,t−u and xj,t−v in the matrices V and W.
In the wider linear least squares context, defining linear partial autocorrelations as the same function of linear

unconditional correlations as in the Gaussian context, the absence of a link still usefully indicates a lack of linear
predictability of one variable by the other given the inclusion of all remaining variables.

To estimate the CIG we replace V with the sample covariance matrix V̂ formed from the data matrix X, but
including only lags up to p. From here we need a statistical test to decide which links are absent in the graph. We are
only concerned with links between contemporaneous variables and between contemporaneous and lagged variables,
because these are the only ones that appear in the structural model DAG. The test we use is to retain a link when
|ρ| > z/

√
(z2 + ν) ≈ z/

√
n − p, where z is an appropriate critical value of the standard normal distribution. This

derives from two results. The first is the standard, algebraic, relationship between a sample partial correlation ρ̂ and a
regression t value given by ρ̂ = t/

√
(t2 + ν) (see Greene [18, p. 180]). The second is the asymptotic normal distribution

of the t value for time series regression coefficients, given for example by Anderson [3, p. 211]. Generally, we might
wish to apply multiple testing procedures when applying the test simultaneously to all sample partial autocorrelations,
but that is not a practical option. The application of GM to VAR systems has been extended by demonstrating that the
sampling properties of GM’s for stationary VAR’s are still valid for for I(1) VAR processes [32].

We then specify the DAG’s as recursive equation systems which can be estimated by ordinary least squares.
The next stage in the process is to establish which DAG representations are consistent with the CIG or are nearly

so, allowing for statistical uncertainty, considering demoralization.
As we mentioned above by this term we mean the inverse operation of moralization which allows to construct a CIG

from a given DAG by inserting an undirected link between any two nodes a and b when there is another node c with
incoming directed edges a → c and b → c. In this case c is known as a common child of a and b, and the insertion
of a new, moral, link will marry the parents. After this operation for the whole graph, the directions are removed from
the original links.

Of course we attach the arrow of time to links from the past to the present, so the challenge is to clarify the
directions of the recursive ordering of contemporaneous variables. Normally there are alternative competitive models
and eventually we compare them by using likelihood-based methods.

4. Interest rate transmission in New Zealand

We apply the methodology explained in the previous sections to the interest rate mechanism in New Zealand after the
implementation of the Reserve Bank Act in February 1990. To this aim we consider the model proposed by Oxley [24]
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Fig. 3. Conditional independence graph.

who identified a structural VAR using standard procedures. The paper by Oxley also provides a thorough discussion
of the economic background for the interested reader.

The application is of interest to the economists as the issues involved for this New Zealand case are multi-faceted
and involves the presence of indirect effects.

The data used are monthly, seasonally unadjusted interest rates taken from the Reserve Bank of New Zealand
Financial Statistics database for the period February 1990–April 2002. The individual series considered are the
rates on money at call (denoted A); 90 day bank bills (B); the yield on 1, 3 and 5 year Government stock (C–E,
respectively); base lending rate (F) first mortgage housing rate (G) and the uncovered interest parity with the US
(H).

We identified a VAR(2) and hence considered all the variables up to the second lag. Once the sample partial
correlation matrix was computed we tested with the appropriate procedures explained above the significance of its
elements and constructed the CIG in Fig. 3, where the variables at time t are indicated as A0, B0, . . . , H0, the variables
at time t − 1 as A1, B1, . . . , H1 and the variables at time t − 2 as A2, B2, . . . , H2.

We then considered several DAG models consistent with the CIG. Such initial models were obtained by substituting
undirected edges linking lagged variables to contemporaneous variables with directed edges. For the edges between
contemporaneous variables, several models with different directions suggested by the alternative economic theories
were considered. The different models thus constructed were refined by using subset regression to eliminate the moral
links.

Finally we used likelihood based measures to compare the different models. In particular we considered the Akaike
information criterion and the Bayesian information criterion (BIC) [29].

Here we present the two best models together with Table 1 providing their values in terms of parameters, deviance
and the different information criteria. They are represented in Figs. 4 and 5.

For both of them we can observe some common features as the lack of relevance of the uncovered interest parity
and the central role of the 90 day bank bills interest rate. Both models would support a market segmentation hypothesis
confirming what the Reserve Bank of New Zealand recognised: “The transmission mechanism is multi-faceted, and
the ultimate effect of central bank operations on the end objective of price stability is very indirect. Partly because
the linkages are so indirect, public and market expectations of future policy changes play a very important role in
monetary policy. In effect, they can short-cut, bringing the beginning and end of the transmission mechanism closer
together.” Archer et al. [4].

Table 1
Information criteria.

Model k AIC BIC

Best 42 −97.85 −424.75
Alternative 37 −96.87 −438.11
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Fig. 4. Best model.

Fig. 5. Alternative model.
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