
Optim Lett
DOI 10.1007/s11590-013-0631-8

ORIGINAL PAPER

One side cut accelerated random search
A direct search method for bound constrained global optimization

C. J. Price · M. Reale · B. L. Robertson

Received: 18 September 2012 / Accepted: 2 March 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract A new algorithm for bound constrained global optimization is presented.
At each iteration the method uses a single feasible box containing a control point. A
single random sample point is generated inside the box. If this new point is better it
replaces the control point and the box is reset to the feasible region. Otherwise the
box is shrunk so that it no longer contains the random sample point. If a minimal box
size is reached the box is also reset to the feasible region. The method is shown to
converge almost surely to an essential global minimizer. The method is very simple to
implement. Numerical testing shows that the method is viable in practice. A simple
modification to accelerated random search is also discussed.

Keywords Direct search · Bound constrained global optimization · OSCARS

1 Introduction

The bound constrained global optimization problem is

min
x∈Ω

f (x) (1)

where Ω ⊂ R
n is a finite box of the form

C. J. Price (B) · M. Reale · B. L. Robertson
Mathematics and Statistics, University of Canterbury,
Private Bag 4800, Christchurch, New Zealand
e-mail: C.Price@math.canterbury.ac.nz

M. Reale
e-mail: marco.reale@canterbury.ac.nz

B. L. Robertson
e-mail: blair.robertson@canterbury.ac.nz

123

C. J. Price et al.

Ω = {x ∈ R
n : Li ≤ xi ≤ Ui ∀i = 1, 2, . . . , n}.

Here xi is the i th element of x , and all upper and lower bounds Ui and Li are finite.
Minimum requirements on the objective function f are that it be Lebesgue measurable,
bounded below, and lower semi-continuous at points of interest.

The simplest stochastic method for solving (1) is Pure Random Search (prs), which
calculates f at N random points in Ω and returns the lowest as an approximate global
minimizer. Numerous improvements on prs have been proposed. One strategy is to
partition Ω into sub-regions and calculate f at random sample points in each sub-
region. Early sample points give information which can be used by sampling more
often in sub-regions in which the lower initial sample points lie [9,15]. Alternatively
the probability distribution used to generate the samples can be altered to incorporate
information from earlier sample points [10].

Many stochastic and deterministic methods subdivide the partitions from time to
time. The deterministic algorithm direct [7] is an extreme example of this approach.
It uses one sample point in the centre of each box shaped sub-region. direct iteratively
selects promising boxes and divides each into three congruent boxes with two cuts
orthogonal to a coordinate axis. The centre of each original box is also the centre of
one of its three smaller boxes and thus can be ‘re-used.’ The function values at all
remaining boxes’ centres are calculated, and direct proceeds to the next iteration. A
related stochastic algorithm is tilecutter [11] which has one random sample point
per box (or ‘tile’). At each iteration tilecutter picks a number of tiles, and cuts each
into two tiles using a hyperplane orthogonal to some coordinate axis. One sample
point is placed in each empty tile. Herein we reverse this strategy by placing a second
random point in a tile, and then cutting between the two points.

An alternative to partitioning is multistart [16]. The simplest version of this gener-
ates N sample points randomly in Ω and performs N local searches, using each sample
point as one local search’s initial point. Efficiency can be improved by grouping the
sample points into clusters [2,13,14] with the intent that all local searches starting
from points in the same cluster will yield the same local minimizer. Hence only one
local search per cluster need be done. Only the lowest quantile (say the lowest 20 %)
of sample points are clustered. This helps separate clusters, and avoids wasting time
processing points which are clearly far from optimal. One local search per cluster is
performed, starting from the lowest point in each cluster. In [13,14] a Newton method
is used for the local search and the optimal Hessian used in clustering. In contrast [4]
use a derivative free local search.

Recursive Random Search (rrs) [17] computationally simplifies this approach by
generating a number of random sample points in Ω , and using the lowest to define
a level. It continues with prs until a point below this level is found. A derivative
free stochastic local search is then executed. This local search applies prs to sub-
regions of Ω placed around the current point until progress becomes insignificant.
The algorithm reverts to prs on Ω until another point below the defined level is found.
This approach avoids retaining and processing all previous sample points, but risks
doing local searches from initial points which are very close together.

Accelerated Random Search (ars) is introduced in [3]. It samples randomly once
within each member of a finite sequence of nested boxes. The first box in the sequence

123

One side cut accelerated random search

is Ω , and each subsequent box is the intersection of Ω with a hyperrectangle centred
on the current best point. The mth of these hyperrectangles is a copy of Ω centred
on the current best point, and scaled by a factor (1/

√
2)m . If the new sample is better

than the best known point, or if the finite sequence of boxes is exhausted, then the
algorithm reverts to the start of the sequence of boxes. A variation of ars with an
exponential rate of convergence is described in [12].

These methods differ in a number of ways including storage requirements, over-
heads per function evaluation, and how these change with increasing number of sample
points and problem dimension. For example direct and tilecutter retain and process
all points, and hence face increasing computational overheads per sample point as the
number of sample points increases. The clustering algorithms in [2,4,13,14] avoid this
at the expense of a process that is exponential in the dimension n of Ω . In contrast,
ars and rrs are essentially memoryless.

Herein we present a variation on ars called one side cut ars (or oscars). The
algorithm uses only a single tile, and one point c inside that tile called the control
point. Oscars generates a second point in the tile, and, if worse than c, cuts between
these two points. The part containing c becomes the new tile. The cut is orthogonal
to some coordinate axis to ensure all tiles are hyperrectangles, permitting efficient
random sampling of each tile. This ‘sample then cut’ approach reduces the tile only
in the direction of a known worse point, and implicitly partitions Ω about c.

2 The oscars algorithm

The algorithm consists of two nested loops. The inner loop generates random sample
points in a nested sequence of successively smaller tiles, each of which contains a
control point c. At each iteration a sample point is generated randomly in the tile. If
this new point is better than c, it replaces c and the tile is reset to Ω , exactly as in
ars [3]. Otherwise the tile is cut between the new point and c. The cut is orthogonal
to the coordinate axis along which the difference between the two points is greatest.
The part of the tile containing c becomes the tile for the inner loop’s next iteration.

This continues until a minimum tile size hmin is reached, which completes one
iteration of the outer loop. The search then returns to Ω , but the control point c is
selected differently. If the number m of completed outer iterations is even, c is chosen
randomly from Ω , otherwise c is set equal to the best known point b. This means
odd outer iterations start with a random control point. We call this approach sorc
for ‘Starting Odd iterations with a Random Control point.’ The logic behind sorc
is simple. If c is always picked randomly, no information is passed on to subsequent
iterations. On the other hand if the control point is always set to the best known point,
the search becomes strongly focused around this point, and the method may become
prone to being trapped by a local minimizer. A precise statement of oscars is given
in Fig. 1, where the inner loop is step 2 and the outer loop steps 2–5.

The bounds � and u define the current tile Ωk via

Ωk = {x ∈ R
n : �(k) ≤ x ≤ u(k)}

123

C. J. Price et al.

Fig. 1 The one side cut accelerated random search algorithm

where �(k) and u(k) are the values at step 2(a) at iteration k. In step 2(c) the coordinate
direction along which x (k) − c(k) has its longest component is identified. The tile is
then cut with a hyperplane orthogonal to this coordinate, where the hyperplane passes
between x (k) and c(k) at the point Ac(k) + (1 − A)x (k). The next tile Ωk+1 is the part
of Ωk containing c(k). Here A gives the fraction of the cut’s displacement from x (k)

to c.
The algorithm implicitly partitions R

n into 2n congruent cones emanating from the
current control point c(k). These cones are

K (c(k), w) = {x ∈ R
n : wT (x − c(k)) = ‖x − c(k)‖∞}, ∀w ∈ W ,

where W = {±e1, . . . ,±en}, and ei is the i th unit coordinate vector. The intersections
of these cones with Ω then partition Ω into 2n truncated cones. Each such cone
either contains a nearby sample point x satisfying f (x) ≥ f (c(k)), or it contains
nearby infeasible points. Here ‘nearby’ means either a specific point x satisfying
Ac(k) + (1 − A)x ∈ Ωk , or a sequence of points converging to c(k).

To see why this is so, let F be a face of Ωk where the outward normal to F for
Ωk is w ∈ W . The face F either has been created by a cut between a sample point
x and c(k), or F is a subset of the corresponding face of Ω . In the former case x
must lie in the cone K (c(k), w) otherwise the cut would not have been orthogonal
to w. Additionally x must also satisfy f (x) ≥ f (c(k)), otherwise x replaces c(k) as
the control point. The position the cut is made in step 2(c) of the algorithm means
Ac(k) + (1 − A)x ∈ F and so x is a nearby point.

When F is part of the boundary of Ω and c(k)
∈ F , it is clear that any x satisfying
Ac(k) + (1 − A)x ∈ F must lie outside Ω . If c(k) ∈ F then every point on the ray
c(k) + αw, α > 0, is infeasible. Either way there are nearby infeasible points in the
cone K (c(k), w).

123

One side cut accelerated random search

3 Convergence

oscars is applicable to non-smooth and many discontinuous functions. Hence we
define the essential global minimum f ∗

egm of f over Ω as the greatest value of f ∗ for
which the open level set {x ∈ Ω : f (x) < f ∗} has Lebesgue measure zero. Any point
x∗ with a function value f (x∗) satisfying f (x∗) ≤ f ∗

egm is referred to as an essential
global minimizer. We show the sequence of best known points {bk}∞k=1 converges to
one or more essential global minimizers. This requires the following assumption.

Assumption 1 The function f is lower semi-continuous and bounded below on Ω .

Next we show oscars performs an infinite number of restarts with probability 1.

Theorem 2 The sequence of iterates {x (k)}∞k=1 contains an infinite number of sample
points drawn randomly from Ω with probability one.

Proof Each iteration of the while loop that ends with resetting Ωk+1 to Ω results in a
random sample being drawn from Ω in the following iteration. This resetting happens
infinitely often unless both ‖Ωk‖∞ > hmin and f (x (k)) ≥ fc for all k sufficiently large.
We show that the probability that both of these conditions hold for all k sufficiently
large is zero.

Assume that Ωk is reset to Ω only a finite number of times, the last of which occurs
at iteration K . That means the current point c(k) must be constant for all k ≥ K . For
each w ∈ W define the reach ρk(w) of Ωk in the direction w as

ρk(w) = max
x∈Ωk

wT
(

x − c(k)
)
.

For fixed w each sequence {ρk(w)}∞k=K is a decreasing sequence bounded below by
zero. Hence we can define

ρ∞(w) = lim
k→∞ ρk(w) ∀w ∈ W

and ρmax = max{ρ∞(w) : w ∈ W }. Noting that c(k) ∈ Ωk for all k, if ‖Ωk‖∞ > hmin
for all k ≥ K , it follows that ρmax ≥ hmin/2. Define the set M ⊆ W of outward
normals w ∈ W such that ρ∞(w) = ρmax. Choose J ≥ K such that for each w ∈ W
either

ρk(w) < ρmax or both ρk(w) <
ρmax

(1 − A)
and w ∈ M .

For each k ≥ J choose wk ∈ M such that ρk(wk) ≥ ρk(w) for all w ∈ W . Let Fk

be the face of Ωk for which wk is the outwards normal. Define the pyramid Rk with
apex c(k) and base Fk via

Rk = {c(k) + α(x − c(k)) : x ∈ Fk and α ∈ [0, 1]} ⊂ K (c(k), w) (2)

123

C. J. Price et al.

for all k > J . The fact that Fk is a face furthest away from c(k) means the largest
of the components wT (x − c(k)), w ∈ W , is achieved when w = wk . Hence Fk is
contained in K (c(k), wk). The form of all other points in Rk means Rk is a subset of
K (c(k), wk).

Now Ωk can be viewed as a rectangular prism with base Fk and height equal to the
length of its edge parallel to wk . The pyramid Rk has the same base Fk and height
at least half that of Ωk because Fk is a face furthest away from c(k). Thus the ratio
m(Rk)/m(Ωk) is at least 1/(2n), where m(.) is the Lebesgue measure. Hence the
probability that x (k) ∈ Rk is at least 1/(2n) for all k ≥ J . If x (k) is placed in Rk ,
it must satisfy f (x (k)) ≥ f (c(k)) (otherwise Ωk is reset to Ω) and this results in a
cut orthogonal to wk at a distance not more than (1 − A)ρk(wk) from c(k). Hence
ρk+1(wk) ≤ (1 − A)ρk(wk) < ρmax, contradicting the fact that {ρ j (wk)}∞j=J is a
decreasing sequence converging to ρmax. Hence if Ωk is reset to Ω only a finite
number of times, then x (k)
∈ Rk for all k ≥ J , an event which occurs with probability
zero. ��
Theorem 3 The sequence of best known points {bk} converges to one or more essential
global minimizer(s), with probability 1.

Proof The sequence of best function values { f (bk)} is monotonically decreasing and
bounded below, so its limit exists. The fact that Ω is sampled randomly infinitely often
almost surely, means that the sequence of best function values { f (bk)} converges to a
value not more than the essential global minimum f ∗

egm, almost surely.
The set Ω is compact, hence {bk} has cluster points. Let one such cluster point

be b∗. Lower semi-continuity of f means

f (b∗) ≤ lim
k→∞ f (bk) ≤ f ∗

egm

and so b∗ is an essential global minimizer of f over Ω , as required. ��

4 Numerical results

Tests were performed on 50 problems, as listed in Table 1. Problems 1–25 are
from [1], 26–37 from [8], and 38–42 from [11]. Problems 43–50 are as follows.
The Beckers–Lago problem was modified to f43 = ∑n

i=1((|xi | − 5)2 + 5|xi − 5|),
so that not all minimizers are global. The Rastrigin and offset Rastrigin functions are
respectively

f44 =
n∑

i=1

(
x2

i − cos(18xi)
)

and

f45(x) =
n∑

i=1

((
xi − 1

i

)2

− cos

(
18

(
xi − 1

i

)))

123

One side cut accelerated random search

Table 1 A comparison of oscars, direct, and ars on test functions from [1,8,11]

Function n L U direct ars oscars

nf fails nf fails

1 Ackley 2 −30 30 – 4,074 – 2,211 –

2 Bohachevsky 1 2 −50 50 – 615 – 237 –

3 Bohachevsky 2 2 −50 50 – 481 – 250 –

4 Branin 2 − − 107 139 – 105 –

5 Camel 6 2 −5 5 159 120 – 102 –

6 Goldstein–Price 2 −2 2 123 225 – 151 –

7 Hartmann 3 3 0 1 187 963 – 252 –

8 Hartmann 6 6 0 1 671 25,207 5 22,671 1

9 Dekkers–Aarts 2 −20 20 413 250 – 685 –

10 Levy–Montalvo 1 3 −10 10 293 639 – 907 –

11 Levy–Montalvo 2 3 −5 5 305 490 – 607 –

12 Levy–Montalvo 2 6 −5 5 2,057 8,972 – 1,133 –

13 mod. Rosenbrock 2 −5 5 407 19,213 3 1,253 –

14 Neumaier 2 4 0 4 fail 14,439 – 16,152 –

15 Paviani 10 2 10 2,807 1,540 – 2,379 –

16 Periodic price 2 −10 10 – 9,506 – 9,723 –

17 Salomon 2 −100 100 – 3,991 – 10,107 –

18 Schaffer 1 2 −100 100 – 18,980 – 16,867 –

19 Schaffer 2 2 −100 100 – 562 – 365 –

20 Schaffer 2 6 −100 100 – 45,587 7 3,254 –

21 Schubert 2 −10 10 2,393 320 – 330 –

22 Shekel 5 4 0 10 463 29,062 4 5,290 –

23 Shekel 7 4 0 10 459 20,741 4 5,761 –

24 Shekel 10 4 0 10 707 21,500 3 6,052 –

25 Woods 4 −1 1 457 25,580 4 1,285 –

26 Beale 2 0 5 331 174 – 118 –

27 Freudenstein–Roth 2 −15 15 5,889 2,067 – 1,886 –

28 Jennrich–Sampson 2 −10 10 541 6,766 – 2,167 –

29 Biggs 6 6 0 10 1,051 10,429 – 9,626 –

30 Gulf 3 − − fail 9,937 – 21,961 1

31 Trigonometric 5 0 1 1,271 9,251 1 809 –

32 Trigonometric 10 0 1 2,365 35,483 7 14,090 –

33 Variably dimension 10 0 e fail 2,759 – 4,098 –

34 Variably dimension 20 0 e fail 12,467 – 22,157 –

35 Broyden 3D 4 −3 3 9,439 30,238 6 8,055 –

36 Brown almost linear 5 −5 25 30,703 2,780 – 6,255 –

37 Chebyquad 9 −1 1 fail 2,639 – 2,314 –

38 Weka 1 10 −1 1 fail 105 – 186 –

39 Weka 2 2 0 1 1,565 2,796 – 524 –

123

C. J. Price et al.

Table 1 continued

Function n L U direct ars oscars

nf fails nf fails

40 Weka 2 6 0 1 fail 45,777 9 2,171 –

41 Weka 3 2 0 1 1,545 22,556 3 2,258 –

42 Weka 3 4 0 1 1,411 38,147 7 1,129 –

43 mod. Beckers–Lago 10 −10 10 12,393 50,000 10 18,829 –

44 Rastrigin 2 −1 1 – 3,306 − 2,818 –

45 offset Rastrigin 3 −1 1 7,321 31,504 5 4,974 –

46 ext. Easom 10 −10 10 fail 1,587 − 3,173 –

47 ext. Easom 20 −10 10 fail 4,196 − 14,341 –

48 ext. Easom 30 −10 10 fail 45,704 9 42,153 2

49 2 – – 361 506 − 242 –

50 2 – – 327 1,512 − 396 –

Here ‘nf’ is the average number (over ten runs) of function evaluations needed to reduce f to within 10−3

of the global minimum. Runs using more than 50,000 function evaluations were halted at that figure, and
listed as fails in the columns marked ‘fail.’ Direct is deterministic, so its column lists either the number
of function evaluations needed to reach the required accuracy, or ‘fail’ if this number exceeded 50,000.
Figures in bold mark the fastest method for each problem

and the extended Easom problem is f = −∏n
i=1 e−(xi −π)2

cos(xi). Problems 49
(using γ = 0) and 50 (with γ = 0.1) are given by the following function and bounds:

γ x + y − 1

1 + 200(y − 1 + x2)2 subject to −1 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

Weka 1 was defined as f = min (1 + ‖x‖2, 4x1 + 4) for n > 2. Weka 3 is

fweka3 =
n∑

i=1

xi (1 − xi) +
∞∑
j=0

3(− j)

[
n∑

i=1

(
ki�3 j pi xi� mod pi

)]
,

where the floor function �s� denotes the greatest integer not larger than s. In practice
the summation on j was terminated at j = 40 as 3−40 is far below machine precision.
Weka 2 can be obtained from Weka 3 by omitting the summation on j and setting
j ≡ 0. The parameter values used by Weka 2 (with n = 6) and Weka 3 (with n = 4)
are respectively the first six and four entries in the lists pi = 2, 3, 5, 7, 11, 13 and
ki = 1, 1, 2, 2, 5, 5. Weka 2 and 3 with n = 2 both used pi = 17, 19 and ki = 11, 12.

For most problems the upper and lower bounds are the same for each dimension,
and these bounds are listed in Table 1 under U and L respectively. The bounds are as
for [1] for the first 24 problems. The Woods problem has tighter bounds which place
the solution in one corner of the feasible region. The lower and upper bounds for the
Gulf problem were (0.1,0,0) and (100,25.6,5) respectively.

Table 1 compares the performances of ars, oscars, and direct. Oscars used the
values A = 3/4 and hmin = 10−5. Each test run was performed with a maximum of

123

One side cut accelerated random search

Table 2 An aggregated view of ars and oscars performances on problems 1–50

Method Total nf Fastest on Fails Avg norm nf Worst norm nf

ars 625,882 9 87 5.586 33.8

ars with sorc 453,967 14 53 4.226 41.8

oscars (with sorc) 294,859 16 4 1.766 10.2

oscars no sorc 297,035 11 9 1.736 10.4

Each method is tested both with and without the ‘Start Odd iterations with a Random Control point’ (sorc)
option. The columns list the sum of average function evaluation counts for all 50 problems, the number of
problems on which each method was the fastest, the number of failed runs, and average and worst normalized
function evaluation counts. Function evaluation counts for each problem are normalized by dividing by the
fastest method’s function count for that problem. Fails are counted at 50,000 evaluations, which biases the
figures in columns 2, 5, and 6 favour of methods with more fails. Direct failed ten times on 41 runs

50,000 function evaluations, and terminated when a function value within 10−3 of the
global minimum was obtained. Runs for problem 32 required a higher accuracy of
10−5 to eliminate a known local minimum. Runs not reaching the required accuracy
within 50,000 function evaluations were regarded as fails. Direct is deterministic,
so results for one run of direct on each problem is listed. Direct always selects
Ω’s centre point as its first point, and so comparisons with direct on problems with
a global minimizer at Ω’s centre are meaningless. These problems have a dash in
direct’s column. For ars and oscars the average number of function evaluations
used over 10 runs is listed, along with the number of failed runs. Failed runs are
included in the average function evaluation counts at 50,000 evaluations each.

An aggregated comparison between ars and oscars, each both with and without
the sorc strategy are listed in Table 2. Results for ars and oscars are taken from
Table 1. Results for the other two methods were generated under identical conditions to
those in Table 1. Normalized function counts for each problem were formed by dividing
all function counts by the function count of the fastest method for that problem. The
results show sorc substantially improves ars. This occurs because if ars locks onto
a local minimizer, escape requires a sample point in the part of the global minimizer’s
basin which lies below the local minimizer. If these two minimizers are far apart this
can only occur when ars draws a random sample from Ω , meaning escape could be
a low probability event. With sorc, ars has a much higher chance of escape when
the control point is random. Oscars’ implicit partitioning of R

n into 2n cones when
the control point remains constant means oscars explores Ω more evenly than ars.
Sorc diverts effort away from improving the best known point and can slow a method
when the global minimizer’s basin is easily located. For these reasons sorc’s overall
effect on oscars’ speed is minimal, but it improves reliability on harder problems,
and thus is preferred.

Numerical results were generated for comparison with the global method [4]
listed in Table 4 of [4]. The stricter stopping conditions in [4] were used, and as a
consequence hmin = 10−8 was used for oscars. These results are listed in Table 3,
and show that oscars was faster than global, the original cgrasp [5], and the new
version of c- grasp [6] on 8, 12, and 8 of the 14 problems respectively.

123

C. J. Price et al.

Table 3 This table lists the number of function evaluations required to solve problems 51–64 for
global [4], two versions of c- grasp [5,6], and oscars

Function n global c-grasp [5] c-grasp [6] oscars

51 Shekel 5 4 1,489 5,545,982 9,274 14,455

52 Shekel 7 4 1,684 4,052,800 11,766 5,047

53 Shekel 10 4 1,815 4,701,358 17,612 21,749

54 Hartmann 3 3 3,608 20,743 1,719 361

55 Hartmann 6 6 16,933 79,685 29,894 55,350

56 Goldstein–Price 2 923 29 53 398

57 Branin 2 1,023 59,857 10,090 143

58 Rosenbrock 2 6,274 1,158,350 23,544 3,893

59 chain. Rosenbrock 5 374,685 6,205,503 182,520 466,849

60 chain. Rosenbrock 10 1,908,469 20,282,529 725,281 4,058,216

61 Easom 2 1,604 89,630 5,093 154

62 Schubert 2 1,399 82,363 18,608 246

63 Zakharov 5 8,227 959 12,467 1,882

64 Zakharov 10 47,288 3,607,653 2,297,937 9,562

All entries are averages over ten runs

Table 4 A comparison of oscars, two versions of ars and recursive random search (rrs) [17] on the
version of Rastrigin’s function in [17] in 200 dimensions

Method 500 1,000 1,500 2,000

ars 3,341 2,548 2,001 1,680

ars with sorc 3,290 2,527 1,988 1,632

oscars (with sorc) 5,899 5,561 5,261 4,970

rrs 6,100 5,450 5,050 4,850

Entries are averages over 50 runs of function values after 500, . . . , 2,000 function evaluations

The problems that challenged oscars most were problems 8 (=55), 22–24
(=51–53), 30, 59, and 60. Problems 8, 59, and 60 are ill conditioned, while 22–24
and 30 have sizeable basins or flat areas which initially mislead the algorithm. Ars
did better on functions which lack deep local minima far from the global minimizer(s),
such as problems 17, 30, 33, and 34. Oscars performed well on the discontinuous
problems (problems 39–42).

Problems 11, 19, 31, 33, and 46 are solved in more than one choice of dimension n.
These show that oscars copes at least as well with increasing dimension as ars and
direct for n ≤ 30. Oscars reduces the tile size by shrinking along one coordinate
axis each iteration with each shrink incurring one function evaluation. As n increases,
reducing the tile size in all directions becomes increasingly expensive. Hence one
would expect oscars’ performance to deteriorate as n increases. To explore this,
Table 4 compares oscars, ars, and rrs [17] on [17]’s version of Rastrigin’s function
with n = 200. The superiority of both ars versions is clear.

123

One side cut accelerated random search

The relative costs of the overheads of oscars, ars, and direct were investigated by
timing the methods on the offset Rastrigin function with n = 30 for various numbers
of function evaluations. The times taken for overheads were constant for oscars and
ars at 1.7 and 1.3 times the time taken for the function evaluations alone. In contrast
direct’s overheads rose steadily from 2.5 times at 10,000 function evaluations to 24.3
times at a million function evaluations.

Numerical results were also generated for A = 0.1, 0.5, and 0.9, where A is the
fraction of each cut’s displacement from x (k) to c(k). On average the results for A = 1/2
were very similar to A = 3/4, with A = 0.9 being only marginally worse. The choice
A = 0.1 was clearly inferior, but still better than ars and direct. The choice of A is
not critical, with values in the region of 1/2 to 3/4 recommended.

5 Conclusion

A simple algorithm for global optimization inside a box shaped region has been pre-
sented, numerically tested, and shown to converge to an essential global minimizer
with probability one. Numerical comparisons were made against accelerated random
search and direct. These showed the three methods were broadly similar when they
worked well, but that oscars was more reliable than the other two methods. Oscars
is well suited to objective functions in low to moderate dimensions which can be eval-
uated quickly, including those needing very many function evaluations to optimize. In
addition oscars’ simple strategy of starting odd main iterations with random control
points was shown to significantly improve accelerated random search.

Acknowledgments The authors would like to thank the two anonymous referees for many helpful com-
ments leading to an improved paper.

References

1. Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A numerical evaluation of several stochastic algorithms
on selected continuous global optimization problems. J. Global Optim. 31, 635–672 (2005)

2. Ali, M.M., Storey, C.: Topographical multi-level single linkage. J. Global Optim. 5, 349–358 (1994)
3. Appel, M.J., Labarre, R., Radulović, D.: On accelerated random search. SIAM J. Optim. 14, 708–731

(2003)
4. Csendes, T., Pál, L., Sendín, J.O.H., Banga, J.R.: The GLOBAL optimization method revisited. Optim.

Lett. 2, 445–454 (2008)
5. Hirsch, M.J., Meneses, C.N., Pardalos, P.M., Resende, M.G.C.: Global optimization by continuous

GRASP. Optim. Lett. 1, 201–212 (2007)
6. Hirsch, M.J., Pardalos, P.M., Resende, M.G.C.: Speeding up continuous GRASP. Eur. J. Oper. Res.

205, 507–521 (2010)
7. Jones, D., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant.

J. Optim. Theory Appl. 79, 157–181 (1993)
8. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans.

Math. Softw. 7, 17–41 (1981)
9. Pinter, J.: Convergence qualification of adaptive partition algorithms in global optimization. Math.

Program. 56, 343–360 (1992)
10. Pronzanto, L., Walter, E., Venot, A., Lebruchec, J.-F.: A general purpose global optimizer: implemen-

tation and applications. In: Mathematics and Computers in Simulation XXVI, pp. 412–422 (1984)

123

C. J. Price et al.

11. Price, C.J., Reale, M., Robertson, B.L.: A cover partitioning method for bound constrained global
optimization. Optim. Methods Softw. 27, 1059–1072 (2012)

12. Radulović, D.: Pure random search with exponential rate of convergency. Optimization 59, 289–303
(2010)

13. Rinnooy Kan, A.H.G., Timmer, G.T.: Stochastic global optimization methods part I: clustering meth-
ods. Math. Program. 39, 27–56 (1987)

14. Rinnooy Kan, A.H.G., Timmer, G.T.: Stochastic global optimization methods part II: multi-level meth-
ods. Math. Program. 39, 57–78 (1987)

15. Tang, Z.Bo.: Adaptive partitioned random search to global optimization. IEEE Trans. Autom. Control
11, 2235–2244 (1994)

16. Torn, A., Žilinskas, A.: Global optimization. Lecture Notes in Computer Science, vol. 350. Springer,
Berlin (1989)

17. Ye, T., Kalyanaraman, S.: A recursive random search algorithm for large scale network parameter
configuration. In: Proceedings of the ACM Sigmetrics Conference on Measurement and Modeling of
Computer Systems, pp. 196–205 (2003)

123

	One side cut accelerated random search
	A direct search method for bound constrained global optimization
	Abstract
	1 Introduction
	2 The oscars algorithm
	3 Convergence
	4 Numerical results
	5 Conclusion
	Acknowledgments
	References

