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Abstract A filter based template for bound and otherwise constrained global optimization
of non-smooth black-box functions is presented. The constraints must include finite upper
and lower bounds, and can include nonlinear equality and inequality constraints. Almost
sure convergence is shown for a wide class of algorithms conforming to this template. An
existing method for bound constrained global optimization (oscars) is easily modified to
conform to this template. Numerical results show the modified oscars is competitive with
other methods on test problems including those listed by Koziel and Michalewicz.

Keywords Filter · ars · oscars · Direct search · Bound and otherwise constrained global
optimization

1 Introduction

The bound and otherwise constrained global optimization problem is

min
x∈Ω

f (x) subject to g(x) ≤ 0 (1)

where f is the objective function. The constraint function g is a vector function mapping
R
n → R

q , and Ω ⊂ R
n is a finite box of the form

Ω = {
x ∈ R

n : Li ≤ xi ≤ Ui ∀i = 1, 2, . . . , n
}
.
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Here xi is the i th element of x , and all upper and lower boundsUi and Li are finite, with Li <

Ui for all i . For simplicity only general inequality constraints are included in (1). Equality
constraints can be included as a pair of inequality constraints, without loss of generality.

We assume that f and g are black-box functions which, when supplied with a point x ,
return f (x) and g(x). It is also assumed that f and [g]+ are Lebesgue measurable, where
[g(x)]+ ∈ R

q takes the element-wise maximum of g(x) and zero. Finally we assume f is
bounded below, and that f and [g]+ are lower semi-continuous at points of interest.

There are a number of different strategies to address (1), some of which reduce (1) to
minimizing an appropriate penalty function over Ω [5]. A related approach is [9], which
applies the directmethod of Jones et al. [10] to an auxiliary function. Interval methods [13,
20] have also been used to solve (1) via a branch and bound strategy. Other approaches include
the use of approximations to the objective function [16], and filled functions [23]. In addition
there are many stochastic methods including fish swarm [18], particle swarm [21], simulated
annealing [8], evolutionary algorithms [19], and electromagnetism-like methods [1].

Many of the methods above make use of information not available in non-smooth black-
box optimization, such as differentiability of f and g [5,22–24], or the functions’ analytic
forms [13,20]. In contrast methods such as [8,9,18,19,21] require only the functions’ values
at each iterate. Since these methods neither use nor require additional information or prop-
erties about f and g, they can be easily applied to non-smooth black-box functions, as is the
intent of this paper. Allowing non-linear equality constraints means feasible point algorithms
are not an option. Dealing with infeasible points presents two conflicting aims: attaining
feasibility and minimizing f . One way to reconcile these two aims is to use an exact penalty
function, which requires an appropriate choice of penalty parameter(s). Di Pillo et al. [5]
examine this when f and g are continuously differentiable. Since (1) might not be smooth,
picking such parameters is usually hard. One could work with a variety of different penalty
parameter values simultaneously, but, depending on the relative scaling of f and g, the best
such values could be arbitrarily large or small. Instead, like [8], we opt for a filter.

In general terms, global optimization algorithms calculate f and g at a sequence of sample
points inΩ . Subsequent sample points are selected based on information from earlier sample
points. For example, a method could explore more thoroughly the vicinity of promising
sample points than other parts of Ω . One way to identify promising sample points is by their
objective function values and constraint violations. If we retain only points which are clearly
better than any other sample point in either objective function value or constraint violation
or both, then the points we retain form a filter. Discarding poor sample points in this fashion
can lower computational overheads and storage requirements as well as improve sampling
effectiveness.

In this paper we formulate a general framework for solving (1) using filters [6]. The basic
approach of the filter template is to generate an infinite sequence of iterates {x (k)}∞k=0 inΩ . An
infinite subset of these iterates are drawn randomly fromΩ in order to guarantee convergence
almost surely. Others are drawn from subregions of Ω with the intent of improving the
convergence rate. The existence of a sequence of filter points converging to solution(s) of (1)
with probability one can be shown under mild conditions. A modified version of one side cut
accelerated random search (hereafter oscars) [15] conforming to the filter template is also
tested.

Accelerated random search (ars) [3], and its offshoot oscars [15], are methods for bound
constrained global optimization which use the objective function only to determine which of
a pair of points is better than the other. Hence they can easily be modified to address other
problems such as (1) when an alternative way of doing pairwise comparisons (e.g. via filters)
exists.
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Ars searches about the current best known point (hereafter the control point) by polling
randomly in a finite sequence of nested boxes until a better point is found. This better
point then becomes the next control point, and the process is repeated. If the sequence of
nested boxes is exhausted without improvement, ars continues polling cyclically through
the sequence of boxes. The first box in the sequence is Ω . Each subsequent box is contained
in its predecessor, and is the intersection of a scaled version of Ω centred on the current
iterate with Ω itself.

The principal difference between ars and oscars is the latter does not shrink the polling
box in every direction after a failed poll. Using c as the control point, and x (k) as the kth

random polling point, oscars shortens the box along one coordinate axis so that c remains
in the shortened box, but x (k) does not. The axis used is the one along which x (k) and c have
the greatest separation. Like ars, this process continues until either a better point than c is
found, or the polling box becomes too small, after which the polling box is reset to Ω . If a
better point has been found, then c is set to this better point.

This paper is organized as follows. The next section formally defines what is meant by a
solution to (1). Section 3 describes the stochastic filter template, and establishes convergence
almost surely. Sections 4 and 5 describe and numerically test a filter version of oscarswhich
conforms to the template. Concluding remarks appear in Sect. 6.

2 Theoretical development

The feasible region Φ is

Φ = {x ∈ Ω : g(x) ≤ 0}.

The total constraint violation at a point x ∈ Ω is measured using

θ(x) = G (‖[g(x)]+‖) (2)

where [g(x)]+ ∈ R
q takes the element-wisemaximumof g(x) and zero, andG is a continuous

strictly increasing function satisfying G(0) = 0. The inclusion of the function G allows such
choices as

θ(x) = ‖[g(x)]+‖2 + ‖[g(x)]+‖22 (3)

which is used to generate the numerical results presented herein. Continuity of G ensures
pointswith small values for [g]+ have correspondingly small values for θ . The use ofweighted
norms in (2) permits constraint scaling to be included.

Our approach is intended to cope with ‘black-box’ objective and constraint functions.
The convergence analysis requires that the objective function f be Lebesgue measurable,
bounded below, and lower semi-continuous at points of interest. The minimum conditions
on g are that θ is both Lebesgue measurable, and lower semi-continuous. This implies the
feasible region Φ is a closed set under the standard topology on R

n restricted to Ω . This
topology is used exclusively in this paper.

First we define precisely what is regarded as an acceptable solution to (1). This definition
makes use of infeasible points, and so we define the set of pointsΦ(η) in which the constraint
violation is at most η as follows.

Φ(η) = {x ∈ Ω : θ(x) ≤ η}.
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Lower semi-continuity of the measure of infeasibility θ means each Φ(η) is a closed set.
Since Ω is bounded, each Φ(η) is compact. In particular, the feasible region Φ = Φ(0) is
compact.

Our intent is to explore methods which solve (1) by random search over Ω and various
subregions ofΩ . Convergence is guaranteed almost surely through sample points (or iterates)
chosen randomly from Ω . Hence sets of Lebesgue measure zero are essentially invisible
because sampling them is a probability zero event. This motivates the following definitions.
Let mL be the Lebesgue measure.

Definition 1 (Essential global minimum of f overΦ(η)) Let γ (η) be the infimum of infinity
and all values ftest for which

mL ({z ∈ Φ(η) : f (z) < ftest}) > 0. (4)

Then γ (η) is the essential global minimum of f over Φ(η). Any point x ∈ Φ(η) satisfying
f (x) ≤ γ (η) is called an essential global minimizer of f over Φ(η).

When η = 0, γ (0) gives the essential global minimum of f over the feasible region Φ.
The definition of γ (0) only considers feasible points. Allowing nearly feasible points to be
considered gives:

Definition 2 (Essential global solution of (1)) Let f ∗
egs be the infimum of infinity and all

values ftest which satisfy

mL ({z ∈ Φ(ε) : f (z) < ftest}) > 0, ∀ε > 0. (5)

Then f ∗
egs is the essential global solution value of (1). Any feasible point x satisfying f (x) ≤

f ∗
egs is called an essential global solution point of (1).

The set of all essential global solution points is denoted S∗. Given that we are solving (1) by
generating random sample points in Ω and various subregions of Ω , attaining the essential
global solution value is the best we can realistically aim for.

Clearly γ (η) ≤ f ∗
egs for all positive η. This follows directly from replacing “∀ε > 0” with

“ε = η” in (5). In fact
sup{γ (η) : η > 0} = lim

η↓0 γ (η) = f ∗
egs (6)

where the limit exists and equals the supremum because γ is a decreasing function of η.
Clearly f ∗

egs is an upper bound on this limit. Now, for any ftest , ftest satisfies (5) iff ftest
satisfies (4) for all η > 0. The right hand equality in (6) follows because f ∗

egs is the infimum
of all ftest values satisfying (5). Note that putting η = 0 in γ (η) does not yield f ∗

egs. The
latter’s definition considers points which do not lie in Φ, whereas the former (with η = 0)
does not. The difference between these quantities is easily seen from the following example.

Example 1

f = x21 + (x2 − 2)2 g = (x1 − x2)
2 max(x1, x2), and Ω = [−2, 2]2.

The feasible region consists of the union of bottom left quadrant of Ω and the line x1 = x2
with 0 ≤ x1 ≤ 2. The global minimum and essential global solution f ∗

egs both equal 2, and
occur at (1, 1), as is shown in Fig. 1. In contrast γ (0) = 4 and this value is achieved at the
origin. If Ω is altered to Ω = [0, 2]2 then the global minimizer and essential global solution
are unchanged, but γ (0) = ∞.
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marks where γ(0) is achieved.

marks the global minimizer. The

essential global minimum is also

achieved here.

Feasible

region.
This line segment is also feasible.

x1

x2

−2

−2

2

2

Fig. 1 The feasible region (boundary in bold) and level curves of f (dotted) for Example 1

3 Filters and convergence

The notion of a filter [6] is based on a two dimensional ‘ordering’ of points in Ω in terms
of their f and θ values. If one point (x say) has lower values for both f and θ than another
(say y), then x is clearly a better point than y. Similarly x is clearly worse if both its values
are higher; and x is comparable to y if one value is higher, and the other lower. At highly
infeasible points objective function values are often uninformative, and f might not even be
defined in such regions. For such points one point is better than another only if it has lower
infeasibility. To be precise, a point x weakly dominates a second point y (written x � y) if
and only if either

a. both f (x) ≤ f (y) and θ(x) ≤ θ(y); or
b. both θ(y) > Θ and θ(x) ≤ θ(y).

Here Θ is the θ value above which points which are regarded as highly infeasible. If either
both inequalities in (a) hold and at least one is strict, or both inequalities in (b) hold and the
second one is strict, then we say x dominates y (written x ≺ y).

A filter F is simply a set of sample points with the property that no point in the filter is
dominated by any other point in the filter [6]. In contrast to [6], feasible points are included
directly in our filter, and do not have any special status there. A filter can be used to divide
Ω into three subsets according to the values taken by f and θ . The first of these is the set of
‘worse’ points. This set contains all points in Ω which are dominated by at least one point in
the filter. The second set contains all points which dominate at least one filter point. This is
the set of ‘better’ points. All remaining points neither dominate, nor are dominated by, any
point in the filter F . These points are called comparable points to the filter F .

Filters may be used to solve (1) when the sequence of iterates {x (k)}∞k=0 contains an
infinite subsequence of samples drawn randomly from Ω . At iteration k the filter Fk ⊆
{x (0), . . . , x (k)} is formed by updating the previous iteration’s filter with the current iterate
x (k). If x (k) ≺ z for some z ∈ Fk−1 then Fk is set equal to Fk−1 ∪ {x (k)}. All points in Fk
which are dominated by x (k) are then removed from Fk . Alternatively if z ≺ x (k) for some
z ∈ Fk−1, then Fk is set equal to Fk−1. The remaining case is when x (k) is comparable to
Fk−1. Following [6] we include all comparable points in the filter.

The tactic of including all unfiltered (i.e. comparable and better points) in the filter can
lead to the size |Fk | of Fk increasing steadily as k → ∞. Whilst this is not desirable, it is
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not uncommon for global optimization methods to have storage requirements which increase
steadily as k increases. For example [2,10,14,17] store and process every iterate generated,
or at least a fixed percentage of them. Clearly filters usually discard many iterates, and so
this approach is not unreasonable. Nevertheless strategies which limit the number of points
|F | in F might be useful. We examine one such pruning process, and then describe the filter
template.

When the size |F | of F becomes excessive, the filter points are grouped into bands, where
points in the same band have similar θ values. Pruning retains only the points which have
the least f value in some band, with one exception. The point which is the least infeasible
infeasible pointw in F is also retained, even when F contains a feasible point. Without auto-
matically retaining w there is a risk of failing to reduce infeasibility by cyclically generating
points such as w with new low values of θ , and then deleting them during pruning because
of another filter point z in the same band with f (z) < f (w) and θ(z) > θ(w).

A set of pruning marks M ⊆ [0,∞) is chosen, where

0 ∈ M and inf{μ ∈ M : μ > 0} = 0. (7)

A filter F can be pruned using these marks to get a filter P as follows. The least infeasible
infeasible point is always included in P . The remaining points in P are those whichminimize
f over F ∩ Φ (μ) for some μ ∈ M satisfying μ ≤ Θ . The condition 0 ∈ M ensures that if
any feasible points are known, the one with the least f value is included in the pruned filter.
The second condition in (7) means M contains an infinite sequence of marks converging to
zero. Hence if F contains a sequence of infeasible iterates converging to a feasible point,
then P retains a subsequence with the same property. There is no requirement thatM contain
members which are arbitrarily large.

A sensible choice of M could be, for example,

M = {0} ∪ {β jτ : β jτ ≤ Θ and j ∈ Z} (8)

where Z is the integers, τ > 0, and β > 1. The use of a limit Θ above which points are
judged purely on infeasibility means pruning marks greater than Θ are superfluous.

A template for a filter based method is stated as Algorithm 1. The first step initializes the
filter. Steps 2 to 5 form a loop which processes one point in each iteration. The iterate x (k)

is generated in step 2. The cases when x (k) is a worse, better, or comparable point to the
filter Fk−1 are handled in steps 3, 4, and 5 respectively. Step 5 permits pruning of the filter,
but does not require it. ProvidedM satisfies (7), a method conforming to this filter template
will generate a sequence of iterates converging to a solution of (1) almost surely when the
stopping conditions are suspended. Furthermore, with or without pruning, the sequence of
filters will retain this sequence of iterates. Pruning can reduce the markΘ above which points
are judged solely on their θ values, however the sequence of Θ values must remain bounded
away from zero.

Algorithm 1 The filter based template for generally constrained optimization.

1. Choose x (0) ∈ Ω . Set F0 = {x (0)}, set k = 0, and choose Θ ≤ Θmax.
2. Increment k. If stopping conditions hold exit the algorithm. Otherwise choose

x (k) ∈ Ω .
3. If z ≺ x (k) for some z ∈ Fk−1, set Fk = Fk−1 and go to step 2.
4. Set Ftemp = {x (k)} ∪ Fk−1 and eliminate all dominated points in Ftemp. If x (k) ≺ z

for at least one z ∈ Fk−1, set Fk = Ftemp and go to step 2.
5. If desired, prune Ftemp to get Fk, and reduce Θ if necessary. Otherwise set Fk =

Ftemp. Go to step 2.
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τ βτ β2τ β3τ

f w

θΘ

Fig. 2 This figure shows points in a filter before (circles and dots), and after pruning (dots only). The filter
does not contain a feasible point. Pruning marks, as given in Eq. (9), are shown as vertical lines at μ = β j τ
where τ is the tolerance on constraint violations, and β is the scale factor between adjacent marks. Here
Jmin = 0 so the lowest positive mark is μ = τ . The marks do not extend beyond Θ . The least infeasible
infeasible point, marked w, is always included in the pruned filter. The remaining pruned filter points each
minimize f over the set of filter points with constraint violations θ less than or equal to some pruning mark

Pruning, as so far described, still allows the size of the filter to become arbitrarily large.
However for a practical algorithm, there is a tolerance τ > 0 on constraint violation. Below
this tolerance points are considered “feasible for all practical purposes” and such points are
judged only on their objective function value. Moreover the filter has an upper limit Θ above
which objective function values are ignored. For appropriate M, these two limits yields a
finite upper bound on the size of a pruned filter. Instead of defining the maximum filter size
N in terms of Θ , we define Θ and M in terms of N , τ , β, and a minimum value Jmin ≤ 0
on the index j , as follows:

M = {0} ∪ {β jτ : β jτ ≤ Θ and j ∈ [Jmin,∞) ∩ Z}. (9)

The algorithm starts with a far larger value forΘ (such asΘ = ∞) and reduces it as necessary
to enable pruning to limit the filter size to N . This allows points with very large θ values
to be in the filter during early iterations, which is a desirable feature. As points with low θ

values are found, the limit Θ is steadily reduced to keep |F | ≤ N , thus directing attention
towards feasible parts of Ω as they are identified. The value Jmin allows points to be retained
which have constraint violations less than the stopping tolerance τ , which might be useful in
reducing f . An illustration of a filter, before and after pruning, is given in Fig. 2.

3.1 Convergence

In this and the following subsection, almost sure convergence of methods conforming to the
template is shown, subject to the following assumption holding.

Assumption 3 (a) The objective function f is lower semi-continuous (and hence bounded
below) on Φ(Θmax).

(b) The constraint violation θ is lower semi-continuous on Ω .
(c) The set of pruning marks M satisfies (7).
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(d) The sequence of iterates {x (k)}∞k=0 almost surely contains an infinite number of sample
points drawn randomly from Ω .

Parts (a) and (b) of this assumption are conditions on the problem. SinceΘ is never increased,
it suffices that part (a) holds for the initial value of Θ . Parts (c) and (d) are a conditions on
any algorithm conforming to the template. Condition (d) requires that the algorithm will,
almost surely, look everywhere eventually. Conditions like this are very common in global
optimization when confronted with black-box functions. In contrast, if global information
such as Lipschitz constant is available, or interval arithmetic methods can be employed, the
need to ‘look everywhere’ might be superfluous.

The analysis proceeds under the assumption that stopping conditions are removed and
an algorithm conforming to the template is run forever. Under these conditions a variety of
convergence results are shown to hold almost surely. The results in this, and the following
subsection address the cases when f ∗

egs is infinite, and finite respectively. The first of these
looks at the ability to attain feasibility from the infeasible region.

Theorem 4 Assume all iterates are infeasible, and letwk minimize θ over Fk for each k ∈ N.
Then every cluster point w∗ of the sequence of least infeasible infeasible filter points {wk} is
an essential global minimizer of θ over Ω , almost surely.

Proof The pruning strategy always retains the infeasible point with the least θ value. Hence
wk persists in eachfilter until an infeasible pointw is found satisfying either θ(w) < θ(wk), or
both θ(w) = θ(wk) and f (w) < f (wk). Thus {θ(wk)} is a non-strictly decreasing sequence.
This, and Assumption 3d imply

lim
k→∞ θ(wk) ≤ inf{θtest ∈ R : mL(Φ(θtest)) > 0} almost surely.

Lower semi-continuity of θ implies any cluster point w∗ of {wk} is an essential global
minimizer of θ over Ω , almost surely. ��

This shows the template will asymptotically find a feasible point provided the measure
of Φ(η) is positive for all η > 0. This latter condition holds when, for example, the feasible
region has positive measure, or a feasible point exists at which g is continuous.

The next result applies directly to the sequence of best known feasible iterates, and shows
that its cluster points are essential global minimizers of f over Φ(0). A more general result
is shown first, with this as a corollary. We define the best known point bk(μ) as the point
which minimizes f over Fk ∩ Φ(μ), where μ ∈ M.

Theorem 5 Let f and θ be lower semi-continuous on Φ(μ), where μ ∈ M satisfies
mL (Φ(μ)) > 0. Then cluster points of the sequence of best known points {bk(μ)} ⊂ Φ(μ)

are essential global minimizers of f over Φ(μ), with probability one.

Proof Let b∗ be a cluster point of {bk(μ)}which is not an essential globalminimizer of f over
Φ(μ) in the topology induced on Ω by the standard topology for Rn . Lower semi-continuity
of θ means Φ(μ) is closed. Hence b∗ ∈ Φ(μ). Now {x ∈ Φ(μ) : f (x) < f (b∗)} has
positive Lebesgue measure, so this set is sampled almost surely, by Assumption 3d. Hence
a bk(μ) exists satisfying f (bk(μ)) < f (b∗), almost surely. Now { f (bk(μ))} is a decreasing
sequence, so lower semi-continuity of f means b∗ can not be a cluster point of {bk(μ)},
almost surely. ��

For any μ ∈ M, this result shows almost sure convergence to a point which achieves the
essential global minimum γ (μ) over Φ(μ). In the case when μ = 0 it yields the following
corollary.
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Corollary 6 Let f be lower semi-continuous on Φ ≡ Φ(0) and let mL (Φ(0)) > 0. Then
the cluster points of the sequence of best known feasible points {bk(0)} ⊂ Φ are essential
global minimizers of f over Φ, almost surely.

Proof The result follows directly from Theorem 5 on putting μ = 0. ��
3.2 Convergence to an essential global solution

Finally we establish almost sure convergence to a point in the essential global solution set S∗
for (1), when f ∗

egs is finite. We note that this condition implies mL(Φ(η)) > 0 for all η > 0
via Definition 2. We define open neighbourhoods of S∗ of the form

S∗
δ = {

x ∈ Ω : d(x, S∗) < δ
}

for each δ > 0,

where d(x, S∗) is the distance between the point x and the optimal set S∗; that is to say

d(x, S∗) = inf{‖x − s‖2 : s ∈ S∗}.
The next theorem shows that if a point is nearly feasible and nearly optimal for its level of
constraint violation, then it is near to an essential global solution of (1). By generating and
identifying such points an essential global solution can be located asymptotically.

Theorem 7 Let f ∗
egs be finite. For all sufficiently small positive ε and μ ∈ M,

f (x) < γ (μ) + ε and x ∈ Φ(μ) ⇒ x ∈ S∗
δ(ε,μ)

where δ(ε, μ) → 0 as
√

ε2 + μ2 → 0.

Proof The proof is by contradiction. Assume the theorem is false, and choose monotonically
decreasing sequences {ε j }∞j=1 and {μ j }∞j=1 ⊆ M− {0}, both converging to zero as j → ∞.
Then there exists a positive constant ξ and a sequence {y j }∞j=1, such that

y j ∈ Φ
(
μ j

)
and f (y j ) < γ

(
μ j

) + ε j ∀ j ∈ N (10)

and
y j /∈ S∗

ξ ∀ j ∈ N. (11)

The sequence {y j } lies in a compact set, and so must have cluster points. Let one such
(arbitrary) cluster point be y∞. By replacing {y j } with a subsequence of itself if necessary,
let {y j } converge to y∞. Now θ(y j ) → 0 as j → ∞, and so by the lower semi-continuity
of θ , it follows that θ(y∞) = 0. Lower semi-continuity of f and (10) yield the left hand
inequality in

f (y∞) ≤ lim
j→∞ γ

(
μ j

) = f ∗
egs.

The right hand equality is via Eq. (6). Hence y∞ ∈ S∗ because y∞ ∈ Φ and f (y∞) ≤ f ∗
egs.

Since y j → y∞ as j → ∞ this contradicts (11). ��
This result is directly exploited by the filter method: for any fixed ε, μ > 0 with μ ∈ M,

any point x ∈ Φ(μ) satisfying f (x) < γ (μ) + ε can only be dominated or pruned by
another point satisfying those conditions. Hence once the filter contains a point satisfying
these conditions for a specific ε, μ > 0 with μ ∈ M, it will always do so. Such points occur
almost surely as the algorithm draws an infinite subsequence of sample points randomly from
Ω .
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Theorem 8 Let mL(Φ(η)) > 0 for all η > 0. Then there exists a sequence of filter points
{zk}∞k=1 such that any cluster point z∗ of {zk}∞k=1 satisfies z∗ ∈ S∗ almost surely, where
zk ∈ Fk for all k.

Proof Pick arbitrary positive values forμ j ∈ M−{0} and ε j . The definition of γ (μ j ) shows
that the set

T (μ j , ε j ) = {x ∈ Φ(μ j ): f (x) ≤ γ (μ j ) + ε j }
has strictly positive Lebesgue measure. Hence the probability that a randomly generated
sample point inΩ lies in T is strictly positive. The number of sample points randomly drawn
from Ω is infinite with probability one, so {x (k)} ∩ T is non-empty, almost surely. Let z be
the first such sample point generated. This point will be placed in the filter in step 4 or 5 of
the template. The sample point z can be removed from the pruned filter only if a new point
z+ is found satisfying either z+ ≺ z, or both z+ ∈ Φ(μ j ) and f (z+) ≤ f (z). Both of these
possibilities imply z+ ∈ T .

By considering a sequence of pairs (μ j , ε j ) converging to zero as j → ∞, with μ j ∈
M, it is clear that the sequence of filters contains a sequence of points in T (μ j , ε j ) with
(μ j , ε j ) → (0, 0), almost surely. Theorem 7 shows that this sequence converges to one or
more solutions of (1), as required. ��

4 The filter oscars algorithm

For convenience we refer to the filter oscars method as f- oscars, a summary of which is
presented as Algorithm 2. In addition to storing z, f (z), and θ(z) for each filter point z ∈ F ,
f- oscars also stores the lower and upper bounds k(z) and uk(z) of Ωk(z). The box Ωk(z)
is the region from which a random sample will be drawn if z is chosen as the control point.

The basic approach of f- oscars is as follows: at iteration k the method randomly chooses
a control point c ∈ Fk−1. The method then draws the next iterate x (k) randomly from Ωk(c),
calculates f and θ at x (k) and updates the filter according to the template in Algorithm 1.
Step 1 in Algorithm 2 initializes the method. Steps 2–5 form a loop which generates and
processes one sample point x (k) per iteration. Step 2 generates x (k) and inserts it into the
filter. Step 2 then removes any dominated points from the filter. If x (k) is a better point than
Fk−1 no further action needs to be taken, in which case the current iteration ends at step 3.
Otherwise, steps 4 and 5 update the filter and other relevant information. Step 5 prunes the
filter. When x (k) is a worse point to Fk−1 we have Fk = Fk−1 and so no pruning actually
occurs, in accordance with the filter template.

In addition to the filter, the boxΩk(c)must be updated at iteration k, where c is the control
point used at iteration k. This is done using a similar strategy to ars. The boxΩk(c) is shrunk
whenever the new sample point x (k) is comparable to or worse than Fk−1. The box Ωk(c) is
shortened using the same mechanism as oscars. Using

Ωk(c) = {x ∈ Ω:k(c) ≤ x ≤ uk(c)} ,

the current control point c remains in the filter and Ωk+1(c) ⊂ Ωk(c) is chosen so that c
lies in Ωk+1(c), but x (k) does not. This is done by moving one face of Ωk(c) between c
and x (k). The face moved is orthogonal to the axis along which the component of x (k) − c,
normalized with respect to Ω , is maximal. That face is moved so that it passes through the
point Ac + (1 − A)x (k), where A ∈ (0, 1). Clearly A = 0 puts the face through x (k), and
A = 1 through c. Only the control point’s box is shortened; all other filter points’ boxes are not
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c

x(k)

A

B

C

D

E

F

x1

x2

Fig. 3 The f- oscars cutting process: the box Ωk (c) (shown as ABFE) is sampled at x(k). The point x(k) is
rejected by the filter, and so Ωk (c) is cut. The cut is orthogonal to the x1 axis because x

(k) − c has its longest
normalized component along that axis. Cutting yields the new box Ωk+1(c), which is ABDC

changed. This completes an update of the filter and associated list of boxes {Ωk(z) : z ∈ F}.
An illustration of the cutting process is given in Fig. 3.

When x (k) is a better point than Fk−1, all boxes in the filter (includingΩk−1(c)) remain as
they are. Since x (k) is a better point, there exists a z ∈ Fk−1 for which x (k) ≺ z. However it
is not necessarily true that x (k) ≺ c. Hence Ωk−1(c) is not shortened; to do so would exclude
a known better point x (k) from Ωk(c). The box for the new point x (k) is set equal to Ω .

If the box Ωk(c) becomes too small, that box is reset to Ω via Ωk(c) = Ω . The size
‖Ωk(c)‖nd of Ωk(c) is defined as the infinity norm of the normalized diagonal u(k)(c) −
(k)(c). Specifically

‖Ωk(c)‖nd = max
i=1,...,n

u(k)
i (c) − 

(k)
i (c)

Ui − Li
(12)

which is the infinity norm of the scaled main diagonal of Ωk(c), where the scaling maps Ω

to the unit hypercube.
The next theorem shows that f- oscars satisfies Assumption 3d.

Theorem 9 The sequence of iterates {x (k)}∞k=0 contains an infinite number of sample points
drawn randomly from Ω with probability one.

Proof Our approach is to show that drawing only a finite number of sample points from Ω

(as opposed to those drawn from proper subsets ofΩ) is a probability zero event. Let the K th

iteration be the last iteration at which x (k) is chosen randomly fromΩ .We partition each filter
Fk into two disjoint parts: Hk and Ek = Fk − Hk , where z ∈ Hk if and only if Ωk(z) = Ω .
The probability that a point is drawn randomly from Ω at iteration k is |Hk |/|Fk |.

The only way a new point in Ek − Ek−1 can be found is generating a comparable or
worse point in Ωk(z) ≡ Ω for some z ∈ Hk and then shortening Ωk(z). Once k > K this
is impossible. Hence |Ek | ≤ |Ek−1| for all k > K , and the probability of drawing a point
randomly from Ω is at least p = 1/(1 + |EK |) at any iteration for which Hk is non-empty
and k > K . Thus it suffices to show that the number of non-empty Hk is infinite, almost
surely.

Choose T > K such that Hk is empty for all k > T . If a better point z is found at iteration
k, this better point is included in both Fk and Hk . Pruning does not occur because z dominates
another filter point, and |Fk | ≤ |Fk−1|. Hence no better point can ever be found for all k > T .

All other possibilities result in the control point’s box being shortened. Since |EK | is
finite, some z ∈ EK has its box shortened an infinite number of times. To avoid Ωk(z) being
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reset to Ω in step 5, ‖Ωk(z)‖nd > hmin must hold for all k > T . Now ‖Ωk‖nd ≡ ‖Ωk‖∞
in [15] when Ω is scaled to the unit hypercube. Theorem 2 of [15] shows that shortening a
box an infinite number of times without triggering a reset to Ω is a probability zero event. ��
Algorithm 2 The filter version of oscars.

1. Choose a random point x (0) ∈ Ω . Calculate fc = f (x (0)). Set k = m = 0,
set c = x (0). Choose Θ ∈ (τ,Θmax] and A ∈ (0, 1). Select hmin > 0. Pick the
maximum filter size N ≥ 3. Set F0 = {c} and Ω0(c) = Ω .

2. Increment k. If stopping conditions hold exit the algorithm. Randomly select first
c ∈ Fk−1, then x (k) ∈ Ωk−1(c). Set Ftemp = Fk−1 ∪ {x (k)} and Ωk(x (k)) = Ω .
Remove all dominated points from Ftemp, giving Fk.

3. Set Ωk(x) = Ωk−1(x) for all x ∈ Fk−1 − {c}. If x (k) is a better point than Fk−1, set
Ωk(c) = Ωk−1(c) and go to step 2.

4. Let i maximize |x (k)
i − ci |/(Ui − Li ). If c ∈ Fk, update Ωk(c) via:

(a) If x (k)
i < ci , set Ωk(c) = {x ∈ Ωk−1(c) : xi ≥ (1 − A)x (k)

i + Aci }; otherwise
(b) set Ωk(c) = {x ∈ Ωk−1(c) : xi ≤ (1 − A)x (k)

i + Aci }.
If ‖Ωk(c)‖nd ≤ hmin reset Ωk(c) = Ω and increment m.

5. If |Fk | > N, then prune Fk and reduce Θ if necessary. Go to step 2.

4.1 Stopping conditions

Themethod haltedwhen it had satisfied two conditions. Thefirst of these is that it had located a
point at which themeasure of infeasibility θ did not exceed themaximum constraint violation
tolerance τ . Once this first condition was satisfied the method set a mark fmark equal to the
best known objective function value overΦ(τ). Each time it found a point inΦ(τ) lower than
fmark− facc it reset fmark to this new lowest value. Here facc is the tolerance value on changes
in f below which improvements in f are regarded as negligible. The method halted when K
iterations were completed without finding a new fmark, where K = 2ζnN�− loga(hmin)�.
Here a = 1/(1 − A) and the ceiling function �b� returns the smallest integer not less than
b. This value for K was chosen as follows. It takes at most �− loga(hmin)� shortenings of
each face in a pair of opposite faces of a box to reduce the distance between them to less than
hmin when Ω is scaled to the unit hypercube. Noting that all filter points collectively have at
most nN pairs of faces, this means each filter point will have on average at least ζ complete
cycles through a range of box sizes from Ω to hmin assuming no unfiltered points are found.
Due to the stochastic nature of the method, there is no guarantee that all points will actually
pass through ζ cycles.

5 Numerical results

F- oscars was tested on 13 constrained global optimization test problems. The first 12 are
from [11] and the 13th from [12]. They appear together in [19]. These results are compared
with two other methods, both of which list results for these problems. The first of these [8]
is the filter based simulated annealing method fsa which employs a variant of the Nelder
Mead method as a local search. Runarsson and Yao [19] present an evolutionary method
(sres) which determines the fitness of individuals in a population by a stochastic bubble sort
process.
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The parameter values used by our method were τ = 10−6, facc = 10−3, β = 1.1,
Jmin = −2, N = 30, A = 0.9, hmin = 10−8, Θmax = ∞, and ζ = 6. These values
give K = 2880 n for the stopping condition. We also used θ as defined in (3) to measure
infeasibility. The squared term narrows the width of each band with θ > 1 during pruning,
which increases the emphasis on reducing θ when θ is large.

An examination of (9) shows the largest pruning mark is bounded below by O(βN τ). If
βN τ is very large, the pruned filter is likely to contain highly infeasible points at all times.
Intensively exploring around such points can bewasteful. Numerical experimentation verifies
this, with N = 60, β = 1.5 and N = 30, β = 2 both being worse than the values given just
above.

Table 1 compares results from our method (averaged over 30 runs), with those for [8]
and [19]. The results for [8] and [19] have been lifted directly from those sources (Table 2
for [19]). The problems have been separated into two groups for analysis: those solved by
all 3 methods, and those for which at least one method did not get an accurate estimate of
the solution. For the former (g3, g4, g8, g9, g11, and g12) f- oscars used the fewest f
evaluations on all six, and sometimes significantly so. For the remaining seven problems,
f- oscars and sres obtained the most accurate solution on three problems, and fsa on two
(fsa and f- oscars tied on g6). Fsa and f- oscars each solved twomore problems to within
1% of the best f value known, and sres did so on one. It is worth noting that fsa [8] has
the advantage of using a version of Nelder Mead as a local search procedure, in contrast
to the other two methods. f- oscars found points with a constraint violation less than the
maximum acceptable tolerance τ = 10−6 on all runs on all problems.

We also compare f- oscars with the fish swarm method p- bf afs in [18]. The stopping
rule used in [18] requires explicit knowledge of the optimal objective function value f ∗:
p- bf afs halts when either a point achieving both feasibility and optimality within tolerance
is found, or the maximum number of iterations is reached. Knowledge of f ∗ prevents early
termination at a sub-optimal point, and avoids wasted function evaluations after optimality is
achieved.F- oscarsdoes not use f ∗ in its stopping rule (or elsewhere),which potentially puts
f- oscars at a disadvantage. On the harder 7 problems, p- bf afs did better than f- oscars
on four, worse on two, and the same on one. They tied on g6, with f- oscars being faster
on that problem. For g5 and g13 the solutions found by p- bf afs exceeded our constraint
violation tolerance of 10−6. Our method was faster on five of the six easier problems; p- bf
afs was quicker on g3.

Table 5 of [1] lists final function values for an electromagnetic-like method, a particle
swarm method, and a differential evolution method for problems g1-g13. Unfortunately
function counts are not listed. On four of the seven harder problems, ours obtained a better
objective function value than any method listed in [1]. Not all methods in [1] were able to
solve all of the six easier problems.

We compared ourmethod to the intervalmethods of Sun and Johnson [20] on their example
4, which is essentially problem 4.3 of [7]. Our algorithm was able to obtain an average best
function value of −4.5142 over 40 runs using an average of 24,839 function evaluations
per run. The better interval method of [20] obtained a best function value of −4.4828, and
required more than 100,000 function evaluations and 18,000 inclusion function evaluations
to do so. The global optimum is f ∗ = −4.5142.

Direct [9] solved the Gomez3 problem to within 1% of the optimum after 89 function
evaluations, and within 0.01% of optimum after 513 function evaluations. In contrast f-
oscars took an average of 282 function evaluations to reach a 1% accuracy, and an average
of 1369 function evaluations to reach 0.01%, each averaged over 40 runs. Direct uses the
auxiliary function [ f − f ∗]+ +∑

wi max(gi , 0)where thewi are positive weights and f ∗ is
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the global minimum.Directworks by generating increasingly fine covers of Ω , where each
cover consists of hyper-rectangles (or boxes) aligned with the coordinate axes. The values
of f and g are known at the centre point of each box. At each iteration some boxes are
subdivided into three equal sized boxes. Direct avoids having to know f ∗ by subdividing
all boxes which would be selected for some possible value of f ∗. On Gomez3 direct is
clearly quicker.

Regis and Shoemaker [16] also solve Gomez3 to one percent accuracy in f , their methods
taking 53 and 30 function evaluations. Whilst this is clearly impressive, their methods model
the objective function using radial basis functions. They require the solution of a maximin
problem over the feasible region, and minimize an approximation of the objective over the
feasible region at each iteration. Radial basis function methods are highly suited to problems
with computationally expensive objective or constraint functions. In contrast methods such
as f- oscars, with its lower computational overheads, are better suited to problems for which
f and g can be calculated cheaply. Interestingly, sub-problems of radial basis methods such
as [16] have this property, and f- oscars could be used to solve such sub-problems.

As it stands, f- oscars suffers from the curse of dimensionality because it only cuts one
side of a box at a time. This is a quirk of f- oscars, not an inherent feature of the filter
approach. This curse could easily be avoided by modifying f- oscars so that, for example,
half the faces of a box were cut at each iteration, when n is large.

6 Conclusion

A filter based template for non-smooth black-box bound and otherwise constrained global
optimization has been presented, and convergence shown almost surely under mild condi-
tions. A variation of oscars has been implemented. This method is relatively simple, and
has constant overheads per sample point. It is best suited to objective and constraint functions
which are not too expensive to evaluate. Numerical results show this method is competitive in
practice. There are many unexplored methods conforming to the filter template, both within
the relatively new class of ars algorithms, and elsewhere.

Acknowledgments The authors would like to thank two anonymous referees for their comments, which
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