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� In this article we present a computationally efficient method for finding multiple structural
breaks at unknown dates based on regression trees. We outline the procedure and present the
results of a simulation study to assess the performance of the method and to compare it with
the procedure proposed by Bai and Perron. We find the tree-based method performs well in long
series which are impractical to analyze with current methods. We apply these methods plus the
CUSUM test to the market share of Crest toothpaste between 1958 and 1963.
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1. INTRODUCTION

In the last 50 years considerable effort has been devoted to the
detection and location of structural breaks in time series both in the
statistical and econometric literature (for recent reviews see Hansen, 2001
and Banerjee and Urga, 2005).

The early cumulative summation, or CUSUM, tests had their origin in
industrial quality control as a simple graphical method of detecting small
changes in process parameters (Page, 1954). Plotting either the ordinary
least-squares residuals or their squares against time is not a sensitive
indicator of small or gradual changes in regression parameters. Thus the
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Identification of Changes in Mean with Regression Trees 755

cumulative summation

Zr = 1
�̂

r∑
t=1

zt ; r = 1, � � � ,T (1)

is plotted against time where zt is the residual at time t and �̂ is the
estimated standard deviation. The graph is then examined to see if there
is a systematic departure of the Zr from the E [Zr ] = 0 line.

Brown et al. (1975) developed formal statistical tests of significance for
CUSUM by drawing on the theory of stochastic processes. Under the null
hypothesis of no breaks the sum in Equation (1) forms a Brownian bridge.

Chow (1960) proposed a test for the detection of a structural break at
a known date and it was only much later that Andrews (1993) proposed
a test that was devised for detecting a structural break at an unknown
date. Recently Bai and Perron (1998, 2003) proposed a test to detect
multiple structural breaks at unknown dates. However their procedure is
computationally intensive and is not feasible for long time series or for
routine application to many time series.

In this article our focus is on the problem of detecting multiple breaks
in the mean occurring at unknown dates. To this extent we propose the
use of a fast non-parametric procedure based on regression trees. The
remainder of this article is organized as follows. Section 2 outlines the
new procedure. Section 3 presents the results of a simulation study which
compares the new procedure with the procedure of Bai and Perron (1998,
2003). Section 4 presents an application in market research. Section 5
provides the conclusions.

2. REGRESSION TREES

In the last two decades non-parametric tree based methodologies,
or recursive partitioning, have found wide application owing to their
computational efficiency which allows them to handle large data sets
with relative ease. Probably the best known tree methodology is the
Classification and Regression Tree (CART) of Breiman et al. (1993).

Consider the case of a numeric response variable and let (Y ,X ) be a
random vector, with Y ∈ R and X ∈ Rp . Regression trees seek a function
f (X ), for predicting Y given values of the predictor variables X .

As error function of the predictor f (X ), the mean squared error
E(Y − f (X ))2 is commonly employed. Use of this measure leads to least
squares regression trees (LSRT) in which f (X ) is the conditional expectation
E(Y |X = x). Thus, LSRT fit to each tree node the group mean, i.e.,
the mean of the Y ’s values falling into the node, because this represents
the optimal (or Bayes) prediction minimizing the mean squared error
(for complete discussion the reader is referred to Breiman et al., 1993).
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756 W. S. Rea et al.

Based on a training set (yi , xi1, � � � , xip)ni=1, the algorithm proceeds by
recursively splitting the data into two subsets. Any split is a binary question
of the form “Is xj ∈ A?”, so that in the case of a numeric predictor variable,
the set of possible splits includes all questions: Is xj ≤ c?, for c ranging over
the domain of xj . The split induces a partition of the observations yi : the
left descendant nodes hl satisfying �xij ≤ c� and the right descendant node
hr satisfying �xij > c�.

Thus, at any node h the algorithm selects the split s which maximally
distinguishes the response variable in the left and the right descendant
nodes providing the highest reduction in deviance

SS(h) − [SS(hl) + SS(hr )] (2)

where SS(h) = ∑
yi∈h(yi − ȳ(h))2, (i = 1, � � � ,n), is the sum of squares for

node h, and SS(hl) and SS(hr ) are the sums of squares for the left and
right descendants, respectively.

As hl and hr are an exhaustive partition of h, SS(h) represents the
total sum of squares TSSy(h) at node h and [SS(hl) + SS(hr )] the within-
child nodes sum of squares, the splitting criterion stated in Equation
(2) consists in minimizing the within-groups sum of squares WSSy | s(h).
(We note that Equation (4) is calculated in the same manner.) Once
the binary partition of a node is found, the splitting process is applied
separately to each subgroup, and so on recursively until the subgroups
either reach a minimum size or no improvement of the criterion can be
achieved.

We show that LSRT provide a practical tool for locating structural
breaks in the mean of long time series data. The recently proposed
procedure of Bai and Perron (1998, 2003) (hereafter BP) is also based
on the method of Fisher (1958) of exact optimization and produces
an optimal partition of a time series. However, it is computationally
expensive. A number of financial and geophysical time series such as stock
market volatilities, tree-ring indices, mud-varve sequences, and ice core
data are very long. Sometimes the geophysical series exceed 10,000 data
points with annual resolution. The long compute times and large memory
requirements of the BP makes its use impractical on these types of series.

Consider the time series model:

yt = �g + �t , g = 1, � � � ,G , t = Tg−1 + 1, � � � ,Tg , (3)

where G is the number of regimes (and G − 1 the number of breakdates),
yt is the observed response variable and �t is the error term at time t
(we adopt the common convention that T0 = 0 and TG = T where T is the
series length). This is the pure structural breaks model employed by BP to
detect abrupt structural changes in the mean occurring at unknown dates.
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Identification of Changes in Mean with Regression Trees 757

The problem is to estimate the set of breakdates (T1, � � � ,Tg , � � � ,TG−1) that
define a partition of the series

P (G) = �(1, � � � ,T1), � � � , (Tg−1 + 1, � � � ,Tg ), � � � , (TG−1 + 1, � � � ,T )�,

into maximally homogeneous intervals such that �g �= �g+1. The BP
estimation method is based on the least squares principle: for each
G -partition, the corresponding least squares estimates of the �g ’s are
obtained by minimizing the within-group sum of squares

WSSy |P (G) =
G∑

g=1

Tg∑
t=Tg−1+1

(yt − �g )
2� (4)

thus, the objective function is the same as in LSRT. In particular,
the estimated breakdates (T̂1, � � � , T̂g , � � � , T̂G−1) are associated with the
partition P ∗(G) such that P ∗(G) = argminP (G)WSSy |P (G). In this approach,
the breakdate estimators are global minimizers since the procedure
considers all possible partitions by using the dynamic programming
approach proposed by Fisher (1958) to find the least squares partition
of T contiguous objects into G groups. Fisher shows that the number of
computations can be substantially reduced by exploiting the additivity
property of the sum of squares criterion by means of a dynamic
programming approach (Bellman and Dreyfus, 1962), but, despite the
computational saving, the method cannot deal with high values of T and
G and the same remark holds for the BP’s procedure, even with today’s
computing power.

In the case of LSRT time assumes the role of the predictor variable
when, in fact, it is merely a counter. The absence of a true predictor
variable and lack of distributional assumptions leads us to call this
application Atheoretical Regression Trees (ART).

Let k be an arbitrary ascending (or descending) sequence
of completely ordered numbers, for sake of simplicity take k =
1, 2, � � � , i , � � � ,T . Tree regressing the series yt – whose breaks are to be
located – on k yields nested partitions of yt whose split points represent
candidate break dates.

Note that while in the original Fisher’s method (as in BP’s) optimal
partitions for different values of G need not be hierarchically nested,
in ART, as the binary search algorithm goes on, the previous partitions
are fixed. Thus, after several splits there’s no guarantee that the global
optimum i.e., the absolute minimum within-groups sum of square partition
is reached. It is so only after a single split but, as noticed in Gordon
(1973) for many sets of data binary divisions represents a reasonable
approximation providing good partitions (see also Edwards and Cavalli-
Sforza, 1965).
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758 W. S. Rea et al.

In the case of time series data Hartigan (1975) provides an excellent
justification in favor of the (faster) binary division algorithm: suppose that
the observed time series consists of G segments within each of which the
values are constant, i.e., the model in Equation (3) becomes a piecewise
constant model with �t = 0. The series can be partitioned into G segments
where for each segment the within-group sum of squares is zero. This
partitioning can be identified by a sequential splitting algorithm such as
the one in LSRT.

Also, because the observations are ordered by time, misplacements can
occur only on the boundaries. As discussed in Hansen (2001), although
structural breaks are treated as immediate, it is more reasonable to think
that they take a period of time to become effective, thus misplacements on
the boundaries are not a concern.

Despite the potential suboptimal solutions, LSRT has a further
advantage over global search algorithms as used in the BP method of being
computationally fast. The global search algorithm requires O(n2) steps,
whereas ART, at any tree node requires O(n(h)) steps to identify the best
split, where n(h) is the number of values in node h.

Another distinction between ART and the global search algorithm is
in the selection of the final partition and the consequent set of break
dates. Indeed, methods such as Fisher’s (and BP’s) have the drawback of
producing a single partition for a prespecified value of G and, in general,
it is advisable to produce and compare more partitions by varying G .
In the case of LSRT this is not a concern because the method produces
a hierarchical tree structure associated with the breaks. The selection of
the final set of breakdates can be handled within the framework of tree
methods by pruning. Pruning is the process of retrospectively discarding
branches whose contribution to the reduction of the error is negligible,
for details see Breiman et al. (1993, Ch. 3). In this way a nested sequence
of partitions and candidate breakdates is created. In order to select the
optimal sequence corresponding to the actual number of break dates
and distinct subperiods present in the data, cross validation (CV), the
sequential testing procedure of BP and model selection criteria can be
employed, for details on the use of model selection criteria in regression
trees see Su et al. (2004). Moreover, the inspection of the tree structure
allows an insight into the partitioning process. Breakdates can be ordered
based on their position in the tree and the reduction of the error function
achieved. For this reason manual pruning based on subjective choices of
the analyst can be preferred to an automatic procedure, see Zhang and
Singer (1999, Ch. 4).

Finally, note that if estimation is not the sole concern and one wants
to test for structural breaks or model the observations in the segments,
it can be appropriate to consider restrictions on the possible values of the
breakpoints as suggested by BP. Indeed, extra conditions on the reduction
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Identification of Changes in Mean with Regression Trees 759

in deviance and/or on the length of the subperiods are easily handled
within the tree growing recursive partitioning approach of ART.

3. SIMULATION EXPERIMENTS

There are several questions to be addressed in applying regression
trees to time series. These are:

1. As ART fits piecewise constant functions to data, does ART discover or
impose breaks on a time series?

2. What is the effect of serial correlations on ART’s performance in
detecting structural breaks?

3. Given that observations in time series are, in general, non-
interchangeable, can cross-validation be used in tree selection?

4. Is ART robust to non-Gaussian noise structures?
5. Is ART robust to outliers in the data?
6. Can confidence intervals be established for the breaks?

In this section we present the results of simulation experiments using
ART to detect structural breaks to answer the above questions. For
comparison purposes we used the estimation procedure proposed by BP
based on Fisher’s method of exact optimization.

For ART we used tree growing and pruning procedures as
implemented in tree (Ripley, 2005) as a contributed package in
the R software. For the BP method we used the contributed package
strucchange (Zeileis et al., 2002) in R (R Development Core Team,
2005). In the implementation of the BP method in strucchange the
user selects the minimum segment size rather than the parameter G
discussed above. In all simulations we left the minimum segment size at
0.1 times the length of the series. The implementation we used did not
incorporate later work published by Bai and Perron (2006) consequently
did not include later corrections for autocorrelation or heteroskedasticity.

3.1. Uncorrelated Series with a Single Break

A set of simulations were run with series of uncorrelated observations
drawn from standard Normal, geometric and gamma distributed
populations with a single break point at the midpoint of the series giving
two equal length regimes.

The gamma distribution is given by

f (x ; �, �) = 1
��	(�)

x�−1e− x
�
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760 W. S. Rea et al.

The choice of gamma parameters was � = 2 and � = 1. The mean is � =
�� = 2 and the variance �2 = ��2 = 2.

For a geometric distribution

g (x ; 
) = 
(1 − 
)x−1 for x = 1, 2, 3, � � �

� = 1



and

�2 = 1 − 




�

The choice of parameter for the geometric distribution was 
 = 0�5. Thus
� = 2, and �2 = 1.

One of the beautiful aspects of the standard normal distribution
cannot easily be reproduced by the gamma or geometric distributions.
In the standard normal the standard deviation and the variance are equal
in magnitude. This difference affects the interpretation of the break size
parameter. The variance was two for the gamma distribution we used in
the simulations. We chose to keep the break size numerically the same for
these simulations though it could no longer be interpreted as being in
standard deviations of the noise term.

In most simulations there were 16 regime sizes, 52 to 202 observations
in length. Thus in the graphs of the results the axis labeled “Regime
Number” is non-linear in scale. The break sizes ranged from 0.05 to 2
standard deviations in steps of 0.05 standard deviations. Unless otherwised
stated the mincut parameter, which determines the small allowable
terminal node, was left at the default value of 5 and 1000 replications of
each combination of regime length and break size were run in each of the
simulations.

For the comparable results from the BP the break sizes ranged from
0.1 to 2 standard deviations in steps of 0.1 standard deviations. The longest
series were composed of 256 data points per regime (regime 16). 100
replications were run of each parameter combination.

Figure 1 presents the results for the ART and BP for a single break at
the midpoint of the series. Note that direction of the regime number axis
is reversed in the BP results compared to the ART results. When the series
were short ART was very prone to over-fitting but this tendency gradually
disappeared by a series length of approximately 700 data points (regime 18
or 19). ART had a tendency to over-fit for smaller breaks and for shorter
regimes. BP tended to under-fit for smaller breaks and for shorter regimes.

We tested ART’s ability to find the location of the break when the
break was not at the midpoint but was within the first half of the series.
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Identification of Changes in Mean with Regression Trees 761

FIGURE 1 Left panel: Average total number of breaks reported by ART. Right panel: Average
total number of breaks reported by BP. Simulated series of uncorrelated observations with Gaussian
noise and a single break. Pruning based on cost complexity using deviance. Break size is measured
in terms of standard deviations. Regime number refers to the length of the series, regime 5 is
length 52 and the series is 2 × 52 data points long, regime 20 is length 202 and the series is 2 × 202

data points long.

We examined series with 100, 400, and 1600 observations. The BP was not
run for comparison. We present the results for the 400 and 1600 data point
series, the remainder are available on request from the authors.

The results for the 400 and 1600 observation series are presented in
Figure 2. At these series lengths there was no evidence of over fitting. The
dominant factor in locating a break was its size rather than its location.
Unsurprisingly, it was more difficult for ART to locate the break when it
was close to the start of the series.

FIGURE 2 Average total number of breaks reported by ART for simulated series of 400 (left
panel) and 1600 (right panel) uncorrelated observations, Gaussian noise and a single break at
different locations and BIC pruning.
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762 W. S. Rea et al.

3.2. Uncorrelated Series with Multiple Breaks

An anonymous referee suggested we examine ART’s ability to correctly
locate breaks when there are two offsetting breaks of equal size, having
described this setup as “notoriously difficult”. The results of these
simulations are presented in Figure 3.

The left panel of Figure 3 presents the total number of breaks reported
by ART for these two break series. This graph is similar to a number of
others presented here in that the regression tree reported a number of
spurious breaks when the series were short. Once the series became long
enough, here about regime 16 (i.e., 256 data points per regime), this
tendency disappeared.

The right panel of Figure 3 presents the locations of the breaks for the
regime 16 series as this was the shortest series for which ART did not over
fit. As can be seen the tree reported the location of the two breaks as being
near the correct locations at data points 256 and 512 respectively. As the
break size decreased the breath of the interval increased but there were
no genuinely incorrect breaks reported.

To further investigate the performance of ART for series with multiple
breaks we simulated series with 4 breaks:

yt = �ri + �t

where

�ri = the mean of regime ri ; i = 1, � � � , 5
�t = noise terms drawn from an N (0, 1), gamma, or geometric distribution.

In all simulations �ri = 0 for i = 1, 3, 5 and �r4 = −�r2 . The value of �r2
started at 2 standard deviations and was decremented to 0.05 in steps

FIGURE 3 Left panel: Total number of breaks reported by ART in the two offsetting break
simulations with BIC pruning. Right panel: The locations of the breaks reported for the series with
regime length 256 data points, i.e., regime 16 in the left panel. The series had Gaussian noise.
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Identification of Changes in Mean with Regression Trees 763

of 0.05. When the BP was used to detect breaks in the series, because
the amount of computation required, the value of �r2 was sometimes
decremented to 0.1 in steps of 0.1.

The resultant series were square waves with an amplitude of break size
with Gaussian (or other) noise of constant variance imposed on them. The
results for the series with Gaussian noise and cost-complexity pruning is
presented in the left panel of Figure 4, the results for the BP are presented
in the right panel of the same figure. The results for series with gamma
and geometrically distributed noise and BIC pruning are presented in the
left and right panels of Figure 5 respectively.

As can be seen ART tended to seriously overfit breaks in short
series for all three noise structures. The BP, on the other hand, never
overfitted breaks but underfitted in a large portion of the parameter
regions examined. The series with gamma and geometric noise and BIC
pruning are very similar to the results for Gaussian noise and BIC pruning
in Figure 6. (BIC pruning is discussed below.) The results for gamma and
Gaussian noise were almost indistinguishable. For series with geometric
noise ART reported an average of approximately 0.2 breaks per series
more than the other two noise structures and the plateau region in the
foreground of the figures was correspondingly smaller.

It is well-known that tree-based procedures over-fit small data sets
(Cooper, 1998; da Rosa et al., 2008). This can be seen in several figures,
for example the left panel of Figure 4. However, as the series lengthened
the problem of overfitting reduced and was not evident by regime
15 (length of about 1000 data points). This was where the compute
times of the BP began to become excessive (see Section 3.8 below for
comparisons of compute times). The BP method underfitted for small
breaks particularly for short series.

FIGURE 4 Left panel: Total number of breaks reported by ART in the noisy square wave
simulations. Deviance based cost-complexity pruning. Right panel: Total number of breaks reported
by BP. The series had four breaks and Gaussian noise.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
C
a
n
t
e
r
b
u
r
y
]
 
A
t
:
 
2
2
:
0
5
 
1
3
 
O
c
t
o
b
e
r
 
2
0
1
0



764 W. S. Rea et al.

FIGURE 5 The average total number of breaks reported by ART when using BIC pruning for the
noisy square wave with gamma distributed noise (left panel) and geometrically distributed noise
(right panel). The series had four breaks.

3.3. Alternative Pruning Methods

We examined three tree-pruning methods; deviance-based cost
complexity pruning, the default method in the R package, the Bayesian
Information Criterion (BIC) (Schwarz, 1978) and cross-validation (see
Breiman et al., 1993, pp. 306–309) to see if the problem of overfitting in
the ART method could be reduced by a more aggressive pruning criteria.

Of the range of information criteria available we selected the BIC on
the basis of the results reported by Su et al. (2004) and because it is known
to be more robust to non-Gaussian error structures than the AIC (Akaike,
1973).

In time series data observations are usually not interchangeable. Thus
the common 10-fold cross-validation cannot be used. The alternative
we considered was leave-one-out cross-validation. This minimizes the
disturbance to any correlation structure in the data but it is much
more computationally expensive than the BIC, requiring N trees to be
constructed where N is the number of data points.

The results of BIC and leave-one-out cross-validation are presented in
the left and right panels of Figure 6 respectively.

If we compare the left panel of Figure 4 with left and right panels of
Figure 6 we see that with BIC tree selection ART pruned away many breaks
in the short series resulting in a considerably lower “ridge” feature in
those parameter regions. The leave-one-out cross-validation selected even
smaller trees in the short series than did the BIC. The high sharp “ridge”
of Figure 4 was reduced to a small rise in the right panel of Figure 6.

As observed earlier, no additional pruning was required for long series.
The broad plateau area in the parameter regions on the left hand side of
the left panel of Figure 4, and both panels of Figure 6 showed that in long
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Identification of Changes in Mean with Regression Trees 765

FIGURE 6 The average total number of breaks reported by ART when using BIC pruning (left
panel) and leave-one-out cross-validation (right panel). The series had four breaks and Gaussian
noise.

series the BIC and leave-one-out cross-validation methods usually did not
prune additional nodes from these trees.

For routine tree selection we recommend the BIC for its robustness
to non-Normality, but note that for series with more than approximately
600 data points the BIC became indistinguishable from the default cost-
complexity pruning.

3.4. Series with Correlated Data

To investigate the ability of ART and BP to detect structural breaks
in correlated data we analyzed series with AR(1), AR(2), AR(5), and
MA(1) correlations. The results for the AR(1), AR(2) and MA(1) series
are presented here and the remainder are available on request from the
authors.

An autoregressive process of order one, AR(1) can be expressed as

Xt = �Xt−1 + Zt

where � is a constant (the AR(1) parameter) and Zt is a noise term drawn
from a standard normal, gamma or geometric distribution.

The left panel of Figure 7 presents the results for ART for an AR(1)
series of 1024 observations in length with varying AR(1) parameter and
break size. We considered values of the AR(1) parameter in the range
|�| ≤ 0�95. The right panel presents the results of the BP for a break size
of two standard deviations. It should be noted that the series standard
deviation changes with the magnitude of the AR(1) parameter. The break
size was stated in terms of the input noise series.
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766 W. S. Rea et al.

FIGURE 7 Left panel: Average total number of candidate breaks reported by ART in series with
AR(1) correlations and a single break. Default pruning. Right panel: Comparable results from the
BP for a break size of two.

Both ART and the BP were robust to negative values of the AR(1)
parameter and to small positive values (less than approximately 0.25).
However, neither break detection method was robust to larger positive
values, each reported increasing numbers of spurious breaks as the AR
parameter approached unity.

It can be shown (see Chatfield, 2004, p. 115) that the spectral density
of an AR(1) process is given by

f (�) = 1

(1 − 2� cos� + �2)

� (5)

Thus for � < 0 the power is concentrated in the high frequency regions in
which the series oscillates rapidly about the mean. For � > 0 the power is
concentrated in the low frequency regions giving the series long excursions
away from the mean. It is in these low frequency regions that ART and BP
report spurious breaks. We comment further on this in Section 3.5.

An autoregressive process order two, (AR(2)), Xt , can be expressed as

Xt = �1Xt−1 + �2Xt−2 + Zt

where �1,�2 are constants and Zt is a noise term as before.
In the AR(2) simulations the series lengths were 1024 data points, all

break sizes were two standard deviations in terms the input noise series
and a single break at the mid-point of the series. Values of |�1|, |�2| > 0�5
were not considered. The variance of an AR(2) process depends on the
values of �1 and �2 but this does not appear to have been an issue in this
set of simulations.
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FIGURE 8 Average total number of breaks reported by ART as a function of the two AR(2)
parameters with break size two, Gaussian noise and BIC tree selection.

The results are presented in Figure 8. These results can be understood
by considering the spectrum of an AR(2) process which can be shown (see
Diggle, 1990, p. 77) to be given by

f (�) = 1(
1 − ∑2

l=1 �l cos l�
)2 + ( ∑2

l=1 �l sin l�
)2 �

In the range of values for �1 and �2 which we considered, the power was
concentrated in the lower frequencies when both �1 and �2 were close
to 0.5. As with the AR(1) simulations, the presence of low frequencies in
the data was interpreted by ART as structural breaks. This resulted in a
decreased ability locate the actual break in a series. This can be seen in the
parameter region at the back of Figure 8 in which many spurious breaks
were reported. The BP was not run for comparison.

We ran a set of simulations with AR(5) models to compare the
effectiveness of leave-one-out cross-validation with cost-complexity and
the BIC as a pruning techniques in series with varying levels of serial
correlation. The results for each of the three tree selection methods
were close to indistinguishable showing there was no preferred method of
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pruning in the presence of serial correlation. Graphical presentation of
the results are omitted.

3.5. Series with MA(1) Correlations and Non-Gaussian Noise

To assess ART’s robustness to non-Gaussian noise we ran some
simulations with the geometric and gamma noise. The results for
the Gaussian and gamma distributions and MA(1) serial correlations are
presented here, the graphic presentation of the geometric results are
available on request from the authors.

All series were 1024 observations in length with a single break at the
midpoint. The break was added after the full series was generated.

The results for series with Gaussian noise are presented in left panel
of Figure 9, the gamma noise in the right panel. There were minimal
differences between these two sets of results. There were slightly more
breaks reported when gamma noise was used and the plateau region in the
foreground of the graphs was slightly smaller. Similar results were obtained
with the geometricly distributed noise. Thus while the non-Gaussian noise
structures examined did induce larger numbers of reported breaks than
Gaussian noise these were not excessive.

It can be shown (see Diggle, 1990, p. 74) that the spectrum of an
MA(1) process is given by

f (�) = 1 + 2
 cos� + 
2�

This has some features in common with the AR(1) spectrum, Equation
(5), as when 
 < 0 the power is concentrated in the higher frequencies.
For 
> 0 it is concentrated in the lower frequencies. It differs in that the

FIGURE 9 Left panel: Total number of breaks reported by ART as a function of MA(1) parameter
and break size with Gaussian noise. Right panel: Gamma distributed noise. BIC tree selection.
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MA(1) spectrum is bounded as 
 → −1 or 
 → 1. The AR(1) spectrum
tends to infinity as � → 0 and � → 1.

As in the AR(1) case ART tended to report spurious breaks when low
frequencies were present in the data. Low frequencies were present in the
parameter region toward the back of Figure 9.

For large break sizes and values of 
 close to one, ART’s tendency
to overfit (i.e., report spurious breaks) was still a problem which became
progressively more serious as the break size decreased.

3.6. Series with Heteroskedasticity

We examined ART’s robustness to heteroskedasticity by simulating
series with a break at the midpoint and different standard deviations in the
two halves. The first half always had a standard deviation of one. The break
size is stated in standard deviations of the first half. The second half had a
standard deviation ranging from one to 2.95. We examined two lengths of
series, 800 and 1800 data points. We did not run BP for comparison due
to the excessive computational times it would require.

The results are presented in Figure 10. ART was more robust to
heteroskedasticity in the longer series than in the shorter series. This was
consistent with the other observations presented in this article that the
problem of over-fitting declined with increasing series length.

3.7. Robustness to Outliers

A set of four simulations were run to assess ART’s robustness to
outliers. A series of 400 data points was generated from standard normal
noise and tested to ensure ART did not report a break in the series. In

FIGURE 10 Average total number of breaks reported by ART in series with heteroskedasticity. Left
panel: 800 data point series. Right panel: 1800 data point series. Deviance-based cost-complexity
pruning. The series had one true break.
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the four sets of simulations the data point at locations 20, 40, 60, and
80 respectively were then gradually moved up in steps of 0.05 standard
deviations until ART reported a break. The distance of the outlier from the
mean was recorded in standard deviations. It was clear from these initial
four sets of results that ART was becoming more robust to outliers the
further the outlier was from the beginning of the series. So we did not
investigate this further.

The results are presented in Figure 11. As can be seen, the closer the
outlier was to start of a series the easier it was to induce ART to report
a spurious break. A small number of trees were visually examined and in
most cases ART’s solution to the problem of an outlier was to isolate it into
a short segment of mincut in length.

3.8. Computation Times

We ran some comparisons of compute times between the BP and ART.
These are presented in Table 1. As can be seen the compute times for
the BP increased rapidly with series length while the compute times for

FIGURE 11 Histograms of the size of an outlier required to induce ART to report a break in
a series of length 400 at four different positions. (a) Data point 20. (b) Data point 40. (c) Data
point 60. (d) Data point 80.
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TABLE 1 Comparison of processor times (hours:minutes:seconds)
required to run the BP with minimum segment length set to 0.05 and
ART for series of various lengths. The times for the ART were so short
it was difficult to get accurate timings. All times were run on a
SunBlade 1000 with 750Mhz UltraSPARC-III CPU and 2Gb RAM

Series length Bai and Perron Regression tree

500 0:03:10.05 0:00:00.03
1000 0:14:08.24 0:00:00.04
1500 2:04:13.25 0:00:00.05
2000 3:41:56.75 0:00:00.07
2500 6:18:34.35 0:00:00.08

ART are short and increased only slowly. Given the disparity between the
compute times ART is a useful addition to the practitioner’s toolbox when
analyzing long time series.

3.9. Nonlinear and Long Memory Time Series

An anonymous referee asked what could be said about long memory
and nonlinearity. This is a deep and complex field. In terms of structural
break methodologies, it is well known that they may report breaks when
only long memory is present. For example, Wright (1998) proved that
the probability that the standard CUSUM test would report a break in a
long memory series converged to one with increasing series length, see
also Kuan and Hsu (1998) and Krämer and Sibbertsen (2002). In addition
there is a debate in the literature whether the long memory in financial
and economic series is due to structural breaks, see, for example, Diebold
and Inoue (2001) and Granger and Hyung (2004). If this question is to
be resolved for real series exhibiting long memory it seems likely that
structural break methodologies will play a role in the data analysis of such
series.

We simulated series with long memory using the function farimaSim
in the contributed package fSeries Wuertz (2005) in R (R Development
Core Team, 2005). The values of the fractional integration parameter, d ,
ranged from 0.02 to 0.48 in steps of 0.02 units. We present the results for
series lengths 1000 and 8000 data points in Figure 12.

In contrast to the CUSUM test, ART gained robustness to long memory
as the series length increased. We did not run comparisons with the BP
because of the long compute times required. However, the evidence from
Figure 7 suggested that the BP would perform similarly.

Research on the application of ART to long memory time series is on
going and will be the subject of a subsequent article.
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772 W. S. Rea et al.

FIGURE 12 Distribution of the numbers of breaks reported by ART in series with long memory.
Left panel: 1000 data point series. Right panel: 8000 data point series. Deviance-based cost-
complexity pruning. The series had no true breaks.

3.10. Confidence Intervals

The standard method of establishing confidence intervals in non-
parametric methods such as ART is via the bootstrap. However, the
general solution to bootstrapping a time series is an unsolved problem.
In certain artificial circumstances, such as the simulated series presented
here, a confidence interval could be established via bootstrapping. But
bootstrapping in these circumstances did not offer any advantages over
direct simulation. This remains an area worthy of future research.

4. CREST TOOTHPASTE DATA

In this section we briefly review past literature and then apply ART,
CUSUM, and BP to the Crest toothpaste data set. These data originate
from the Market Research Council of America’s panel of household
purchase records for the period January 1958 to April 1963. It has been
studied by a number of authors such as Jones (1970), Palda and Blair
(1970), Montgomery (1971), Shuchman and Riesz (1975), Wichern and
Jones (1977), and Tsay (1987).

Crest was introduced to the American market in 1956 and was
the second most popular toothpaste after Colgate-Palmolive’s Colgate
brand for the next four years. On 1 August 1960 the Council on
Dental Therapeutics of the American Dental Association (ADA) made
an endorsement of Crest as an aid to dental hygiene after determining
that Crest’s active ingredient, stannous fluoride, did reduce dental caries.
Crest’s manufacturer, Proctor and Gamble, “reintroduced” the product
and in the next few weeks Crest’s market share rose dramatically. Despite
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vigorous advertising campaigns and special promotions by Colgate and
other brands, Crest’s market share continued to rise.

Advertising expenditure data are available on a annual basis.
Shuchman and Riesz (1975) note that Crest’s market share continued to
climb in 1962 even though Crest’s advertising expenditure declined from
$10,545,000 to $9,220,000 between 1961 and 1962 after an increase from
$6,242,000 in 1960.

Shuchman and Riesz (1975) state that after the ADA endorsement,
the market share of Crest rose to about 35%. After this initial dramatic
rise in market share in week 138, Crest’s market share did not return
to this level again until week 168, more than half a year later. This
appears to correspond to the period of intensive counter-advertising
studied by Shuchman and Riesz (1975), and “deals” offered by the other
manufacturers studied by Montgomery (1971).

Montgomery (1971) and Shuchman and Riesz (1975) studied a
number of social, demographic and psychological factors of those who
switched to Crest in the post-endorsement period. However, they did not
study differences between early and late adopters even though both sets of
authors noted the continued rise in Crest’s market share after the initial
jump following the ADA endorsement.

FIGURE 13 The top panel is the regression tree for Crest data. The bottom panel is the plot of
Crest data with ART breaks marked by dashed vertical lines.
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When we analysed the data with ART we found that the increase
in market share reported by these authors occurred in two steps
(see Figure 13). The first occurred in early August 1960 immediately after
the ADA endorsement to a market share of about 34%. The second was
an increase to about 40% market share from the beginning of 1962 (week
207). This two-step rise is also seen in the recursive use of the established
CUSUM test (see Figure 14). This is essentially a manual application of
recursive partitioning using the CUSUM test as the splitting criteria.

However, the BP reported only two breaks (see Table 2) which exactly
match the first two breaks reported by ART. The failure to find a break at
or near the 207th week is consistent with our simulation experiments in
which the BP never reported too many, but occasionally missed, breaks.

FIGURE 14 The top panel is the CUSUM plot for whole series. The middle panel is the CUSUM
plot to the break in early August 1960. The bottom panel is the CUSUM plot from the break in
August 1960 to the end of the series. The dashed lines are the ART break points. The thin lines
about the heavier zero line are the 5% significance level.
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TABLE 2 Break dates reported by ART, the
Bai and Perron procedure (BP) and the 95%
confidence interval for the BP

ART BP BP CI

70 70 62–71
135 135 134–137
207 – –

Although all three tests find a break at or near week 70 the literature
does not suggest an underlying reason for this. The break at week 135
is clearly attributable to the ADA endorsement. The break at week 207
reported by ART and CUSUM was commented on by various researchers
only as a subjective assessment of a visual inspection of the data that Crest’s
market share was continuing to rise. This shows the need for structural
break tests such as ART to indicate when substantial changes have taken
place in a time series and to allow a fuller investigation of the underlying
reasons to be undertaken.

5. CONCLUSIONS AND FUTURE RESEARCH

In this article we presented a very fast procedure, Atheoretical
Regression Trees (ART) to detect multiple changes in mean at unknown
times. Such a procedure is suitable for practitioners who routinely who
deal with long series which may be impractical to analyze with current
methods.

The simulations have provided some answers to our six original
questions. They are:

1. ART did impose spurious breaks when the series was short but this
tendency disappeared as the series becomes longer. This was seen
in both single and multiple break, heteroskedastic and long memory
simulations. On the basis of our simulations we suggest a rule of thumb
that ART can be worthwhile for series exceeding 600 data points when
BIC pruning is used and 1000 data points if cost-complexity pruning is
used. The strength of the serial correlation also needs to be checked.
For AR(1) models with � > 0�25 ART is likely to report spurious breaks.
Robustifing ART to serial correlation is the subject of on-going research.

2. ART was robust to negative serial correlation and a small amount of
positive correlation, but in this regard ART was no worse than the BP.

3. Leave-one-out cross-validation can be used for tree selection but was
computationally expensive.
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4. ART reported higher numbers of breaks for series with non-Gaussian
noise structures but not excessively so.

5. ART’s robustness to outliers depended on the outlier location. For an
outlier 20 data points from the end of the series a outlier needed to be
a mean of over 8 standard deviations away from the series mean to cause
ART to spuriously report a break when none existed. This increased to
a mean of over 2300 standard deviations when the outlier was at data
point 80.

6. It is possible to obtain a confidence interval for the breakpoints using
the bootstrap. However, this is currently limited to series without serial
correlations and may thus be of little practical use.

The ART procedure can be easily implemented in any software that
provides the classification and regression trees methodology.

There are some clear differences between ART and the established Bai
and Perron procedure. ART overfitted short time series, i.e., it reported
breaks where none existed in the data generating process. It performed
well in the simulations for long series for which the compute times for
the BP may be prohibitive. The BP procedure on the other hand had the
tendency to report less breaks than it should when the shift in mean was
moderate or small.

ART was computationally faster than the CUSUM procedure as
implemented in the R package strucchange Zeileis et al. (2002).
It combined both detection and location of structural breaks in single
algorithm.

Section 3.9 only touched on the problem of the duality between
structural breaks and long memory in the briefest manner. Investigating
the statistical properties of structural break methods in general, not just
ART, when applied to long memory time series requires further research.
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