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bstract

We present the results of a simulation study into the properties of 12 different estimators of the Hurst parameter, H, or the fractional
ntegration parameter, d, in long memory time series which are available in R packages. We compare and contrast their performance
n simulated Fractional Gaussian Noises and fractionally integrated series with lengths between 100 and 10,000 data points and

 values between 0.55 and 0.90 or d  values between 0.05 and 0.40. We apply all 12 estimators to the Campito Mountain data and
stimate the accuracy of their estimates using the Beran goodness-of-fit test for long memory time series.

 2012 IMACS. Published by Elsevier B.V. All rights reserved.
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.  Introduction

The subject of long-memory time series was brought to prominence by Hurst [35] and has subsequently received
xtensive attention in the literature. See the volumes by Beran [10], Embrechts and Maejima [20], and Palma [45] and
he collections of Doukhan et al. [19] and Robinson [49] and the references therein.

There is considerable debate in the literature on the origins of the so-called Hurst phenomenon, see for example
lemes [38] or Diebold and Inoue [18]. It is not the purpose of this paper to address this unresolved issue. Instead,
e focus on the empirical properties of several estimators freely available in R [47]. There are some estimators which

re known to have excellent finite sample properties such as the local Whittle of Shimotsu and Phillips [51] and the
aximum likelihood estimator of Sowell [53] which do not appear to be currently implemented in R and hence are
ot covered in this paper.
Of critical importance in analyzing and modeling long memory time series is estimating the strength of the long-range

ependence. Two measures are commonly used. The parameter H, known as the Hurst or self-similarity parameter,
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was introduced to applied statistics by Mandelbrot and van Ness [42] and arises naturally from the study of self-similar
processes. The other measure, the fractional integration parameter, d, arises from the generalization of the Box-Jenkins
ARIMA(p, d, q) models from integer to non-integer values of the integration parameter d. This generalization was
accomplished independently by Granger and Joyeux [28] and by Hosking [34]. The fractional integration parameter d
is also the discrete time counterpart to the self-similarity parameter H  and the two are related by the simple formula
H = d + 1/2. These two models are explained in more detail in Section 2.

A number of estimators of H  and d  have been developed. These are usually validated by an appeal to some aspect
of self-similarity, or by an asymptotic analysis of the distributional properties of the estimator as the length of the time
series converges to infinity.

A number of theoretical results on the asymptotic properties of various estimators have been obtained. The aggregated
variance method was shown to be asymptotically biased of the order 1/log N, where N  is the number of observations,
by Giraitis et al. [26] who also showed the GPH [23] estimator was asymptotically normal and unbiased. Agiakloglou
et al. [3] examined the bias of the GPH estimator when the estimator was applied to time series generated by ARMA
processes. Robinson [48] proved the averaged periodogram estimator was consistent under very mild conditions.
Lobato and Robinson [39] obtained its limiting distribution. The Peng estimator [46] was proved to be asymptotically
unbiased by Taqqu et al. [55]. Some theoretical properties of the R/S estimator have been examined by Mandelbrot [40]
and Mandelbrot and Taqqu [41]. Mandelbrot [40] proved that the R/S statistic is robust to the increment process having
a long-tailed distribution in the sense that E[X2

i ] =  ∞. However, Bhattacharya et al. [12] proved that the R/S statistic
was not robust to departures from stationarity. Thus for a short memory process with slowly decaying deterministic
trend the R/S statistic will report an estimate of H  which implies the presence of long-memory. An estimator based on
wavelets was proved asymptotically unbiased and efficient by Abry et al. [2]. They also showed the traditional variance
type estimators were fundamentally flawed and could not lead to good estimators of H. Nevertheless, several variance
type estimators are implemented in R hence are freely available. Fox and Taqqu [21] proved the Whittle estimator was
consistent and asymptotically normal for Gaussian long range dependent sequences. Dahlhaus [16] proved the Whittle
estimator of Fox and Taqqu [21] was efficient. Further theoretical results on the Whittle estimator can be found in
Horvath and Shao [33].

Because the finite sample properties of these estimators can be quite different from their asymptotic properties some
previous authors have undertaken empirical comparisons of estimators of H  and d. Nine estimators were discussed in
some detail by Taqqu et al. [55] who carried out an empirical study of these estimators for a single series length of
10,000 data points, five values of both H  and d, and 50 replications. Teverovsky and Taqqu [56] showed in a simulation
study that the differenced variance estimator was unbiased for five values of H  (0.5, 0.6, 0.7, 0.8, and 0.9) for series
with 10,000 observations whereas the aggregated variance estimator was downwards biased. Jensen [36] undertook a
comparison of two estimators based on wavelets, one proposed by Jensen [36] and the other proposed by McCoy and
Walden [43], with the GPH estimator for four series lengths (27, 28, 29, and 210 observations), five values of d  and 1000
replications. They reported the wavelet estimators had lower mean squared errors (MSEs) than the GPH estimator for
all d  values and series lengths investigated. Jeong et al. [37] carried out a comparison of six estimators on simulated
fractional Gaussian noises (FGNs) with 32,768 (215) observations, five values of H  and 100 replications. Smith et al.
[52] studied the properties of three estimators under model misspecification.

Several of the above empirical investigations would have been limited by the then available computer power which
has since increased considerably. We have extended these studies to a larger number of parameters, higher number of
replications and 12 estimators as detailed in Section 3.

The remainder of the paper is organized as follows. Section 2 gives a brief outline of Fractional Gaussian Noises and
Fractionally Integrated Series. Section 3 gives details of the method. Section 4 presents the results. Section 5 applies
the methods to the Campito Mountain data which is regarded as a standard example of a long memory time series.
Section 6 contains the discussion and Section 7 gives our conclusions and suggests avenues of future research.

2.  Models
A number of models have been proposed to account for the extraordinary persistence of the correlations across
time found in long memory series. The most widely used models for long memory series are the Fractional Gaussian
Noises (FGNs), a continuous time process, and their discrete time counterparts, the fractionally integrated series of
order d. FGNs were introduced into applied statistics by Mandelbrot and van Ness [42] in an attempt to model the
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xceptionally slow decay in the autocorrelations observed in long memory series. FGNs are the stationary increments
f an Gaussian H  self-similar stochastic process which we now define.

efinition 1.  A real-valued stochastic process {Z(t)}t∈R is self-similar with index H  > 0 if, for any a  > 0,

{Z(at)}t∈R=d{aHZ(t)}t∈R
here R denotes the real numbers and = d denotes equality of the finite dimensional distributions. H  is also known as

he Hurst parameter.

efinition  2.  A real-valued process Z  =  {Z(t)}t∈R has stationary increments if, for all h ∈ R
{Z(t  +  h) −  Z(h)}t∈R=d{Z(t) −  Z(0)}t∈R.

The stationary increments of an H-self-similar series with 0.5 < H  < 1 exhibit long memory. It can be shown [see
0, Section 2.3] that the autocorrelations of the increments of an H self-similar process are of the form

ρ(k) = 1

2
[(k  +  1)2H −  2k2H +  (k  −  1)2H ]

here k  ≥ 0 and ρ(k) = ρ(−  k) for k < 0. Asymptotically

lim
k→∞

ρ(k) →  H(2H  −  1)k2H−2.

hus for 1/2 < H  < 1 the autocorrelations decay so slowly that they are not summable, i.e.

lim
N→∞

k=N∑

k=−N

ρ(k) →  ∞.

Independently Granger and Joyeux [28] and Hosking [34] obtained the discrete time counter-parts to FGNs, the
ractionally Integrated processes of order d  (FI(d)). These are also a generalization of the “integration” part of the Box-
enkins ARIMA(p, d, q) (AutoRegressive Integrated Moving Average) models to non-integer values of the integration
arameter d, and are often referred to as ARFIMA models (AutoRegressive Fractionally Integrated Moving Average).
hey have the added advantage of being able to model any additional short term autocorrelation present in the series
ot accounted for by the long memory component.

Denoting the backshift operator by B, for a non-integer value of d  the operator (1 −  B)d can be expanded as a
aclaurin series into an infinite order AR representation

(1 −  B)dXt =
∞∑

k=0

Γ  (k  −  d)

Γ  (k  +  1)Γ  (−d)
Xt−k =  εt (1)

here Γ  (·) is the gamma function, and εt is a innovation term drawn from an N(0, σ2) distribution. The operator in
q. (1) can also be inverted and Xt written in an infinite order MA representation. It can be shown [see 10, Section 2.5]

hat the autocorrelations for a fractionally integrated process are, asymptotically,

ρ(k) ≈  c|k|2d−1

here c is a constant which depends on d, and on any AR(p), and MA(q) components used in the model. For 0 < d  < 1/2
he autocorrelations decay so slowly that they are not summable. It is this slow rate of decay of the autocorrelations
hat makes them attractive as models for long memory time series.

As indicated above, the two parameters H  and d  are related by the simple formula d  = H  −  1/2.

Both FGNs and FI(d)s have been extensively applied as models for long memory time series. A partial list of some

reas of application are atmospheric pressures [54], atmospheric temperatures [13], economics [4], exchange rates [8],
nterest rates [7], inflation [5], ocean surface temperatures [44], political science [14], river flows [35], stock markets
24], and wind flow [31].
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2.1.  Constrained  non-stationary  models

Klemes [38] argued that long memory in hydrological time series was a statistical artifact caused by analyzing non-
stationarity time series with statistical tools which assume stationarity. Often series which display the long memory
property are constrained for physical reasons to lie in a bounded range, but beyond that we have no reason to believe
that they are stationary. In the series we study in Section 5, namely tree ring data, there are upper and lower physical
limits to a tree ring’s growth in any given year.

Models of this type which have been proposed typically have stochastic shifts in the mean, but overall are mean
reverting about some long term average.

We define the break model as follows:

yt =
p∑

i=1

Iti−1<t≤tiμi +  εt (2)

where yt is the observation at time t, It∈S is an indicator variable which is 1 only if t  ∈ S  and 0 otherwise, t  is the time,
ti, i = 1, . . ., p, are the breakpoints and μi is the mean of the regime i, and εt is a noise term. In this case, a regime is
defined as the period between breakpoints.

It is important to note that Eq. (2) is just a way to represent a sequence of different models (i.e. models subjected
to structural breaks). This model only deals with breaks in mean. It can be generalized for any kind of break. In series
with a structural break the noise process, εt, may also undergo a change. This class of model has been used by others
when studying long memory processes. However, given a true break each regime must be modeled separately.

2.2.  Aggregation  models

In economic and financial applications many time series are aggregates of numerous individual component series.
For example, stock market indices, such as the S&P 500, are just a (possibly weighted) sum of a few tens to thousands
of individual stocks. Granger and Morris [29] examined the types of series which resulted from summing a number of
AR(p) and MA(q) series. Granger and Morris [29] considered the AR and MA models to be “.  . .intuitively reasonable
and could well occur in practice .  . .”. Of particular interest, they reported that the sum of an AR(p1) and an AR(p2)
series yielded an ARMA(p1 + p2, max(p1, p2)) series.

Subsequently Granger [27] considered whether the sum

Xt =
N∑

j=1

Xt(j)

where Xt(j) ; j = 1, 2, .  . ., N  are the individual components of an aggregated series Xt, each of which has short-memory,
could exhibit long memory. Granger [27] reported this was the case. Beran [10, p. 16] stated “.  . .observing long-range
dependence in an aggregated series (macro-level) one cannot conclude that this long memory is due to the genuine
occurrence of long memory in the individual series (micro-level). It is possible that instead it is induced artificially by
aggregation.”

Aggregation models have also appeared in the non-economic literature, albeit indirectly. Hare and Mantua [30]
amassed 100 North Pacific climatic and biological time series and used a composite analysis to demonstrate regime
shifts in the Pacific Decadal Oscillation (PDO). Rudnick and Davis [50] responded with a paper criticizing their
methodology and demonstrating that composite analysis of red noise series produced the step-like changes seen in the
PDO. Overland et al. [44] produced a third paper which suggested a long-memory model also fitted the data. It would
appear all three sets of authors were discussing, in part, a Granger-style long memory aggregation model without being
aware of his work.
Cioczek-Georges and Mandelbrot [15] have studied an alternative aggregation model which exhibits long memory
properties. Their model has found application in modeling aggregate traffic on computer networks. Willinger et al.
[58] also studied long memory in computer networks from the point of view of the network protocols which govern
how traffic from individual sources is aggregated onto shared data networks.



W.  Rea et al. / Mathematics and Computers in Simulation 93 (2013) 29–42 33

 

 

0 200 0 400 0 600 0 8000

0.
0

0.
4

0.
8

1.
2

(a) H Est and CI Abs val H=0.60

Series Length

H

Actual
Median

75% CI
95% CI

 

 

0 200 0 400 0 600 0 8000

0.
0

0.
4

0.
8

1.
2

(b) H Est and CI Agg var H=0.60

Series Length

H

Actual
Median

75% CI
95% CI

 

 

0 200 0 400 0 600 0 8000

0.
0

0.
4

0.
8

1.
2

(c) H Est and CI Abs val H=0.90

Series Length

H Actual
Median
75% CI
95% CI

 

 

0 200 0 400 0 600 0 8000

0.
0

0.
4

0.
8

1.
2

(d) H Est and CI Agg var H=0.90

Series Length

H Actual
Median
75% CI
95% CI

F
v

3

f
t

v
w
V
[

t
i
w
i
r
a
w
9
a
l

ig. 1. Empirical confidence intervals for the H estimates with H = 0.60 and H = 0.90; (a) and (c) absolute value method, (b) and (d) aggregated
ariance estimator.

.  Method

Because the R [47] software and packages are freely available under the GNU Public License, can be downloaded
rom the web, and runs on a wide variety of computing platforms, we chose H  and d estimators implemented in R for
esting.

Ten H estimators are implemented in the contributed package fSeries  of Wuertz [59]. They are the absolute
alue, aggregated variance, boxed periodogram, differenced variance, Higuchi, Peng, periodogram, rescaled range,
avelet, and the Whittle. The wavelet estimator is discussed in some detail by Abry and Veitch [1], Abry et al. [2], and
eitch and Abry [57] and the other nine are discussed by Taqqu et al. [55]. Further, the GPH [23] and Haslett–Raftery

31] estimators are implemented as estimators for d  in the contributed package fracdiff  of Fraley et al. [22].
Taqqu et al. [55] simulated FGNs and the corresponding discrete time fractionally integrated (FI(d)) series and found

hat each estimator performed similarly whether estimating H  in simulated FGNs or d  in simulated FI(d)s. For example,
f an estimator was biased when estimating H  it was also biased in a very similar manner when estimating d. Thus,
ith the exception of the GPH and Haslett–Raftery estimators, we only investigated each estimator’s performance

n estimating H  for simulated FGNs. FGNs were generated using the function fgnSim  in fSeries. We ran 1000
eplications of simulated FGNs with 100 different lengths and eight different H  values. The lengths were between 100
nd 10,000 data points in steps of 100. The H values were between 0.55 and 0.90 in steps of 0.05. For each series H
as estimated by each of these ten estimators. For each H  value and series length we estimated the median, 75% and

5% confidence intervals empirically from the simulated data. The H  or d estimates were sorted into ascending order
nd the median obtained by averaging the 500th and 501st values. Similar calculations were done for the upper and
ower values of the 75% and 95% confidence intervals.
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Fig. 2. Empirical confidence intervals for the H estimates with H = 0.60 and H = 0.90; (a) and (c) boxed periodogram method, (b) and (d) differenced
variance estimator.

For the GPH and Haslett–Raftery estimators we generated FI(d) series with the function farimaSim  in fSeries
over the range 0.05 to 0.40 in steps of 0.05. The other details are the same as above. In the presentation of the results we
converted the GPH and Haslett–Raftery d  estimates to H  equivalents to facilitate comparisons among the estimators.

The simulations and estimations were performed on a SunBlade 1000 with a 750 Mhz UltraSPARC-III CPU with
2 Gb of memory and a Sun Ultra 10 with a 440 Mhz UltraSPARC-IIi CPU and 1 Gb of memory.

4.  Results

To present the results in tabular form would require a very large amount of space. Thus we present a selection of
results in graphical form in Figs. 1–7. Figs. 1–6 are presented with the vertical axis with a range of 1.2 H  units to
facilitate comparisons among the estimators’ standard deviation of their estimates. It should be noted that stationary
long memory occurs in the parameter range 0.5 < H  < 1.0. Baillie [4] states that for 1.0 ≤  H  < 1.5 the series are non-
stationary but mean reverting while for 0 ≤  H  ≤  0.5 the series are anti-persistent. Fig. 7 presents the mean squared error
(MSE) as a function of series length. We report MSE for series lengths greater than or equal to 500 data points. Again
the vertical axes all have the same range to facilitate comparisons.

The results for the absolute value of the variance method are presented in Fig. 1(a) and (c). The absolute value of
the variance method was unbiased at all series lengths when H  was low (0.55 or 0.60) but became progressively biased

and underestimated H  as H  increased.

The results for the aggregated variance method are presented in Fig. 1(b) and (d). The aggregated variance method
exhibited bias and underestimated H  in short series when H  was low. As H  increased the estimator became increasingly
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ig. 3. Empirical confidence intervals for the H estimates with H = 0.60 and H = 0.90; (a) and (c) Higuchi estimator, (b) and (d) Peng estimator.

iased at all series lengths examined. With H  = 0.90 the true value of H  lay above the upper 95% empirical confidence
nterval for all but the shortest series lengths.

The results for the boxed periodogram method are presented in Fig. 2(a) and (c). The boxed periodogram method
as developed specifically to deal with perceived problems with the periodogram estimator. Comparing the boxed
eriodogram with the unmodified periodogram method in Fig. 4(a) and (c) we can see that for FGNs where the series
ere short and H  was high that the periodogram method was biased toward over estimating H. The boxed periodogram
as biased toward underestimating H  for almost all values of H  and series lengths examined.
The results for the differenced variance method are presented in Fig. 2(b) and (d). The differenced variance method

ad one of largest confidence intervals of the estimators when the series were short but this slowly decreased as sample
ize increased. Only the GPH, periodogram and wavelet methods had a similarly wide confidence interval for short
eries. The differenced variance estimator exhibited bias toward over estimating H  for any series with less than 7000
bservations. The bias was very serious in the short series. For series longer than about 9000 observations the estimator
xhibited a small amount of bias toward underestimating H.

The results for the Higuchi estimator [32] are presented in Fig. 3(a) and (c). The Higuchi was biased toward
nderestimating H  but the magnitude of the bias appeared relatively independent of H. The width of the confidence
nterval of the estimate increased with increasing H.

The results for the Peng estimator [46] are presented in Fig. 3(b) and (d). The Peng estimator was biased toward
nder estimating H  in the series lengths we investigated. This bias appeared to be independent of H  but was very small
hough it appeared greater in short series.
The results for the periodogram estimator, presented in Fig. 4(a) and (c), were discussed above in conjunction with
he boxed periodogram estimator.
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Fig. 4. Empirical confidence intervals for the H estimates with H = 0.60 and H = 0.90; (a) and (c) periodogram estimator, (b) and (d) R/S estimator.

The results for the R/S estimator are presented in Fig. 4(b) and (d). The R/S estimator is of considerable historical
interest because it was first proposed by Hurst and was used extensively in early studies of long-memory processes
and continues to be used by various authors for empirical work. However, as can be seen from Fig. 4(b) and (d) the
R/S estimator exhibited three problems; it was biased upwards when H  was low, it was biased downwards when H  was
high, and the confidence interval of the estimate did not decrease with increasing series length once the series reached
about 1000 observations.

The results for the Whittle estimator are presented in Fig. 5(a) and (c). Compared to the other nine estimators
implemented in fSeries  the Whittle estimator was remarkable for its narrow confidence interval. It only displayed
a small amount of downwards bias when the series were short and H was high. There was an implementation issue
in the software we used. The Whittle estimator would sometimes terminate with an error when H  was low and the
series contained only a few hundred observations. Thus in Fig. 5(a) there was no data for series with less than 300
observations in the H  = 0.65 results.

The results for the wavelet estimator are presented in Fig. 5(b) and (d). The wavelet estimator was unbiased for
all H  values at series lengths over 4100 data points. The bias present in series shorter than 4100 data points was very
small. The availability of a new octave  can be seen in Fig. 5(b) and (d) with each doubling of the series length. New
octaves resulted in a series of steps in the reduction of the confidence interval of the estimate with increasing series
length. The estimator had constant variance when the number of octaves  was fixed.

The results for the GPH estimator are presented in Fig. 6(a) and (c). The GPH estimator exhibited a very small
amount of bias toward overestimating d at all series lengths examined. It had a very wide confidence interval which

narrowed slowly as the series length increased.

The results for the Haslett–Raftery estimator are presented in Fig. 6(b) and (d). The Haslett–Raftery did not report
estimates of d  less than zero (H  < 0.5). Hence for low d  and short series the distribution was truncated on the low side
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ig. 5. Empirical confidence intervals for the H estimates with H = 0.65 and H = 0.90; (a) and (c) Whittle estimator, (b) and (d) wavelet estimator.

t d  = 0 or H  = 0.5 as in Fig. 6(a). The Haslett–Raftery estimator was an excellent estimator with only small amounts
f bias in the short series and had a narrow confidence interval.

Fig. 7 presents the MSEs for the estimators for H  = 0.9 or d  = 0.4 as appropriate. This is an alternative way to look
t the data from the simulations. We only report MSEs for series of 500 data points and longer because of the high
SEs for some estimators in the short series. The Whittle and Haslett–Raftery both had low MSEs in all series greater

han 500 data points in length. The step reductions in the MSE for the wavelet estimator can be clearly seen each time
 new octave  became available.

.  Application:  Campito  Mountain  data

The Campito Mountain bristlecone pine data is regarded as a standard example of a long memory time series. It is
 5405 year series of annual tree ring widths of bristlecone pines on Campito Mountain, California. It was studied by
aillie and Chung [6] who determined that an ARFIMA(0, 0.44, 0) model fitted the data best. The lack of additional

hort term correlation in the data means it is a good candidate for modeling with an FGN.
The Campito Mountain data is available in the R  package tseries  as the data set camp. We applied the 12

stimators to this series and estimated the goodness of fit to an FGN for all estimators, where possible, using the
oodness-of-fit test of Beran [9] as implemented in the R  package longmemo  of Beran et al. [11]. The Beran test is
ore powerful against under estimation of H  than over estimation. The Beran test was unable to be used for H  values
xceeding unity. It is important to note that Deo and Chen [17] showed that the asymptotic properties of the test as
resented by Beran [9] were incorrect. We subjected the Beran test to a simulation study, the results of which will be
resented at a later date. This study showed that for sample sizes of the order studied here the Beran test over rejects
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Fig. 6. Empirical confidence intervals for the H estimates with d = 0.10 (H = 0.60) and d = 0.40 (H = 0.90); (a) and (c) GPH estimator, (b) and (d)

Haslett–Raftery estimator.

the null hypothesis by a small amount (e.g. typically 6% at the 5% level). Thus for pragmatic testing of goodness-of-fit,
the Beran test can still be used with appropriate caution.

The results are presented in Table 1. The Beran test indicated an H  value close to 0.89 fitted this data best. The
maximum p-value was 0.577 for values of H  estimated by the aggregated variance and rescaled range estimators. Nine
of the 12 estimators reported H  or d values which lie in an acceptable range on the basis of the Beran [9] test assuming
we set our level of statistical significance at 0.05 to reject the null hypothesis of an FGN. The remaining three could
not be tested.

Given the results from our simulated FGNs there were some unexpected H  estimates for the Campito data. On
the basis of the simulations we expected the aggregated variance, absolute value, boxed periodogram, Higuchi, and
rescaled range to return a low estimate for H. None of these estimators did so. As the Beran test reported that H  = 0.89
yielded the best fit we used the median value from the simulations with series length 5400 and H  = 0.90, and adjusted
for the difference of 0.01 H  units, to estimate the value of H  which would be reported by each estimator if the data was
from an FGN. This value is reported in Table 1 as “Expected H”. The sixth column reports the empirically determined
p-value for the actual estimate again using the simulated data. It is interesting that six of the estimators reported H
estimates which are statistically significantly higher than their expected values.

The estimator which had the least bias and narrowest confidence interval in the simulations with series length 5400
and H  = 0.90, namely the Whittle, was marginally out performed by the aggregated variance and rescaled range judged
on the basis of the Beran test.
The fourth column of Table 1 reports CPU times in seconds. With present day computer speeds estimation times
on the Campito series are not an issue. Only four estimators required more than one second of CPU time on this 5405
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Fig. 7. Mean squared errors (MSE) as a function of series length for all 12 estimators with d = 0.4 for the GPH and Haslett–Raftery and H = 0.9 for
the other ten. MSEs are reported starting at a series of 500 data points. (a) Absolute Value, Aggregated Variance and Whittle. (b) Boxed Periodogram,
Difference Variance and Higuchi. (c) Peng, Periodogram and R/S. (d) Wavelet, GPH and Haslett–Raftery.

Table 1
The first two columns of results presents the H estimates and p-values returned by the Beran [9] test for the Campito Mountain data for each of the
10 estimators of H and the GPH and Haslett–Raftery estimators of d converted to H equivalent. CPU times are in seconds on the SunBlade described
in the text. The expected H column is the expected value that the estimator would report the if the Campito data was an FGN with H = 0.89. The
empirical p-value column is estimated empirically from the simulated data.

Method H Est Beran
p-value

CPU
seconds

Expected
H

Empirical
p-value

Absolute value 0.862 0.435 0.19 0.831 0.70
Aggregated variance 0.889 0.577 0.34 0.821 0.04*

Boxed periodogram 0.914 0.509 0.09 0.849 0.01**

Differenced variance 1.089 – 0.21 0.925 0.01**

GPH 1.037 – 1.43 0.897 0.16
Haslett–Raftery 0.947 0.241 0.17 0.911 0.45
Higuchi 0.966 0.102 19.65 0.845 <0.001***

Peng 0.936 0.344 18.46 0.875 <0.001***

Periodogram 1.007 – 0.06 0.908 <0.001***

Rescaled range 0.892 0.577 0.04 0.816 0.36
Wavelet 0.927 0.421 0.07 0.889 0.25
Whittle 0.876 0.540 1.05 0.890 0.15

* Significant at the 5% level.
** Significant at the 1% level.

*** Significant at the 0.1% level
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observation series. It is evident that some estimators which require longer compute times, such as the Higuchi and
Peng, did not necessarily yield a more accurate estimation of H  for this data.

6.  Discussion

It is clear from the simulations that not all estimators are created equal. Long memory occurs in the range parameter
0.5 < H  < 1. Thus any estimator used to estimate the strength of the long memory needs to be both accurate and have a
low variance.

The boxed periodogram method was developed specifically to deal with the problem of having most of the points
used to estimate H  on the right-hand side of the graph. This was believed to, possibly, cause bias in the periodogram
estimator. Beran [10] and Taqqu et al. [55] outline some of the reasons such a method could be expected to be biased. In
the series we investigated here the box periodogram estimator is inferior to the periodogram estimator it was intended
to improve upon.

The differenced variance method was developed to be robust to trends which were known to cause spurious long
memory in the R/S estimator [12]. We did not test its robustness. Teverovsky and Taqqu [56] established that the
differenced variance method had a higher variance than the aggregated variance method, a result supported by our
simulation study. In fairness to the method it must be pointed out that Teverovsky and Taqqu [56] did not intend for
it to be used alone but rather in conjunction with the aggregated variance method to test for the presence of shifting
means or deterministic trends.

The Higuchi estimator [32] only indirectly estimates H. It estimates the fractal dimension, D, of a series by estimating
its path length. As implemented it then converts the estimate of D  to H  by the simple relationship H  = 2 −  D. This
should be borne in mind if a researcher wishes to estimate D  rather than H  as it is a simple matter to recover D from
the H estimate reported by this implementation.

Taqqu et al. [55] give a detailed proof that the Peng estimator of Peng et al. [46] is asymptotically unbiased. In
our simulations the bias of the Peng estimator was never large but even at a sample size of 10,000 observations the
estimator cannot be considered unbiased. However, its MSE approaches that of the Periodogram method as the series
length increases which, in turn, is better than several others.

The wavelet estimator is asymptotically unbiased. In the simulations the bias was always small and was unbiased
for series with longer than or equal to 4100 observations.

7.  Conclusions  and  future  research

Of the twelve estimators examined here the Whittle and Haslett–Raftery estimators performed the best on simulated
series. If we require an estimator to be close to unbiased across the full range of H  values for which long memory occurs
and have a 95% confidence interval width of less than 0.1 H  or d units (that is 20% of the range for H  or d  values in which
long memory is observed), then for series with less than 4000 data points the Whittle and Haslett–Raftery estimators
were the only two estimators worth considering. It should be noted that these estimators did not meet these criteria until
the series lengths exceeded 700 and 1000 data points respectively. For series with 4000 or more data points, the Peng
estimator gave acceptable performance. For series with more than 7000 data points the periodogram estimator was a
worthwhile choice. For series with more than 8200 data points the wavelet became a viable estimator. The remaining
seven estimators did not give acceptable performance at any series lengths examined and are not recommended.

The Higuchi estimator is useful if the researcher wishes to recover the fractal dimension of the time series. In
contrast to the other estimators it provides useful information about a time series if the series is not an FGN (or FI(d))
series. As an estimator of H  it is inferior to several others.

The boxed periodogram method is clearly inferior to the periodogram method it was intended to improve upon
for FGNs. Further research would be needed to test if it is more robust than the periodogram method in series with
departures from a pure FGN. This could be accomplished, for example, by simulating ARFIMA series with non-zero

AR and MA components or series with structural breaks.

The R/S estimator is of considerable historical interest but had a major deficiency in that its MSE plateaued while
all other estimators’ MSEs decreased with increasing series length. Against this we must note that it was one of the
two best performing estimators when applied to the Campito data when judged by the Beran [9] test.
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The differenced variance estimator was the worst of the twelve estimators in short series. For series longer than
000 data points its MSE was better than the R/S and on a par with the absolute value, aggregated variance and Higuchi
ethods. As noted above, Teverovsky and Taqqu [56] do not recommend its use in isolation as it is part of a test for

hifting means or deterministic trends. Teverovsky and Taqqu [56] also recommend the aggregated and differenced
ariance plots always be examined visually. We agree with these recommendations. We did not test its robustness to
hifting means or deterministic trends. Some numerical results on its performance in these two situations can be found
n Teverovsky and Taqqu [56].

In the application to the Campito data six of the estimators reported statistically significantly different H  estimates
han expected based on the evidence from the simulated series. Although the fit of the Campito data to an FGN is good
p = 0.577), these six estimators do not seem to be robust to whatever specific departures from an FGN that are present
n the data. This suggests that a researcher should not rely on a single estimator when estimating H  and that the Beran
9] test should always be applied to test the goodness of fit of the data to an FGN, while being aware that its asymptotic
roperties are currently unknown.

Because of the apparent lack of robustness, a useful avenue of future research would be to quantify the sensitivity of
hese estimators to various types of departures from an FGN, e.g. FGN series with a small number of shifts in mean or

 small number of outlier data points. Also, it may be worthwhile investigating the problem of model misspecification
here times series generated by ARFIMA models with non-zero AR and MA orders are estimated as if they were FI(d)

eries. Some literature on this work already exists such as Smith et al. [52] and Gil-Alana [25].
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