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Abstract

A direct search method for unconstrained local optimization is described, where the
objective f can be nonsmooth or discontinuous. The method is a combination of the
Hooke and Jeeves algorithm, and the random search CARTopt algorithm. Iterations of
an altered Hooke and Jeeves algorithm are applied until no further progress is forthcoming
from the current iterate zm. The CARTopt algorithm is then applied in a neighborhood
of zm until further progress is made. If progress is made the method reverts back to the
Hooke and Jeeves algorithm once more, otherwise CARTopt confirms zm is an essential
local minimizer of f with probability one. Alternating between Hooke and Jeeves, and
CARTopt provides an effective method for nonsmooth optimization. The sequence of it-
erates {zm} is shown to converge to an essential local minimizer of f with probability one
under mild conditions. Numerical results are presented to show the method is effective
and competitive in practice.

keywords: CART, CARTopt, direct search, Hooke and Jeeves, nonsmooth, numerical
results.

1 Introduction

The unconstrained optimization problem is of the form

min
x

f(x) subject to x ∈ R
n, (1)

where a local minimizer is sought. The objective function f maps R
n into R ∪ {+∞} and in

this paper f is assumed to be nonsmooth and may be discontinuous. However, we do require
that f is lower semi-continuous and Lebesgue measurable. The inclusion of {+∞} means
the method can be applied to barrier functions and discontinuous penalty functions. That is,
constrained problems can be dealt with directly by assigning the value f = +∞ to infeasible
points.

Since f is assumed to be nonsmooth or discontinuous the standard definition of a local
minimizer is modified.

Definition 1. (Essential local minimizer). A point x∗ ∈ R
n for which the set

E(x∗, ǫ) = {x ∈ R
n : f(x) < f(x∗) and ‖x − x∗‖ < ǫ}

has Lebesgue measure zero for all sufficiently small positive ǫ is called an essential local
minimizer of f .
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If f is continuous at x∗, then x∗ is a local minimizer in the classical sense. The objective
value f(x∗) is called an essential local minimum.

Direct search methods can be applied to (1) when f is assumed to be nonsmooth or
discontinuous because no gradient information is required. However, when such assumptions
are placed on f theoretical convergence properties of these methods can be compromised.
Partial convergence results have been presented by others. Audet and Dennis provide a
method which looks asymptotically in all directions at each limit point of their algorithm
[1], for which the Clarke derivative [6] is non-negative. However, the non-negativity of the
Clarke derivative in all directions is only a partial result and does not preclude the existence
of descent directions [13, 14, 16].

An alternative approach to solving nonsmooth problems was proposed by Price, Reale
and Robertson in [13], where it was shown that the problem of finding a descent step on
a nonsmooth function is closely related to a global optimization problem. Algorithms ex-
ploiting this connection have been presented in [13, 14, 16, 17]. These algorithms use global
optimization techniques to exhaustively search for points of descent in a neighborhood of
potential cluster points. The measure of this neighborhood is bounded away from zero for
all iterations, a property crucial for establishing convergence on nonsmooth problems. It is
this localized global phase that gives convergence on nonsmooth problems.

In this paper we investigate a hybrid algorithm consisting of local and localized global
optimization phases in a similar way to [14]. The local phase of the algorithm uses an altered
Hooke and Jeeves algorithm [10]. The localized global phase performs pure random search
on a subset of R

n. This subset is defined and sampled using the CARTopt algorithm [16, 17].
This random search method is provably convergent on nonsmooth or discontinuous problems.

Firstly, the hybrid algorithm’s structure is introduced, where sections 2 – 5 detail the
local phase and Section 6 describes the localized global phase. A method for generating a
new search grid for the Hooke and Jeeves algorithm is proposed in Section 7. Convergence
results for both smooth and nonsmooth objective functions are given in Section 8. The paper
concludes with numerical results on a selection of nonsmooth optimization problems and
concluding remarks.

2 The Algorithm

The algorithm proposed here is a variant of Hooke and Jeeves [10] which searches over a
nested sequence of increasingly finer grids. The new algorithm differs from the classical
version in three major ways. The algorithm may perturb and rotate the successive grids;
limited increases in f are allowed; and a localized global search strategy is applied between
grids.

For second, the sequence of objective function values {f(xk)}
∞
k=1 generated by the algo-

rithm is not necessarily decreasing so that our algorithm approximates the motion of a rolling
ball. In [20], Snyman presents an analogous physical problem to function minimization where
the motion of a ball of unit mass in a n-dimensional conservative force field is considered. In
such an approach, the objective f represents the ball’s potential energy and total energy of
the system, consisting of kinetic and potential energy, is conserved. The system,

ẍ(t) = −∇f(x(t)), x(0) = x0, ẋ(0) = 0, (2)

describes the motion of such a ball [20], where x0 is the initial point (position of ball) and the
parameter t ≥ 0 defines points on the trajectory. Approximating the trajectory defined by
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(2) using various integration techniques gives a variety optimization methods, see for example
[3, 18, 20]. However, while operating in a conservative force field and with no damping in
(2), the ball is in continual motion. To ensure motion towards a local minimizer of f some
form of damping must be added to the system. Snyman, for example, monitors the kinetic
energy of the ball to ensure f is systematically reduced at each iteration. If a step increases
f , the trajectory is abandoned and a new one is started from the penultimate point.

In this paper we a primarily interested in nonsmooth optimization and thus, can not
rely on having explicit derivatives at each iteration as Snyman does [20]. In [16] it is shown
that the classical Hooke and Jeeves algorithm provides an iterative approximation to the
trajectory defined by (2) and requires no explicit derivative calculations. Rather than forcing
the iterates to be strictly decreasing with respect to f , as Snyman does, uphill steps are taken
so our sequence of iterates {xk} approximates the natural path of (2). Allowing for uphill
steps means our method can use momentum to potentially roll over nonsmooth regions of
f . The relative merits of such an approach is illustrated in Figure 3. However, to ensure
the trajectory terminates (if {xk} is bounded) and is not in continual motion, an artificial
damping is introduced to the system (see Section 4).

Thirdly, our algorithm differs from the classical Hooke and Jeeves algorithm when a point
xk has been located, for which no descent is forthcoming on the current grid. At this stage
the classical algorithm reduces the mesh size and tries to reduce f on the finer grid. In our
algorithm, a random search phase in a neighborhood of xk is conducted to locate a point of
descent, before a mesh reduction is considered. It is this localized global optimization phase
that gives convergence on nonsmooth optimization problems by exhaustively searching for a
point of descent in a neighborhood of xk.

2.1 Grid Structure

The Hooke and Jeeves phase of the algorithm proposed here reduces f by searching on a
succession of finer grids, indexed by m. Each grid Gm is defined by a mesh size hm > 0, a
grid center Om (on the grid) and a set of n vectors Vm spanning R

n, where

Vm =
{

ν(i)
m = Hmei : i = 1, . . . , n

}

.

Here Hm is a Householder matrix and ei is the ith column of the identity matrix. Points on
the grid Gm are given by

Gm =

{

x ∈ R
n : x = Om + hm

n
∑

i=1

λiν
(i)
m

}

,

where each λi is an integer. The vectors in Vm are parallel to the axes of the grid and steps

between adjacent grid points are given by the vectors hmν
(1)
m , . . . , hmν

(n)
m . The sequence of

centers Om means each grid can be offset relative to one another and the sequence of matrices
Hm means each grid can be transformed relative to one another. Hence, a succession of finer
grids is not necessarily nested. In the classical algorithm of Hooke and Jeeves, O is fixed and
H is the identity matrix for all iterations.

The set of vectors
V+ = {Vm,−Vm} (3)

form a positive basis for R
n [7] and hence, any vector in R

n can be written as a non-negative
linear combination of vectors in V+. Using (3) a grid local minimizer is defined [5].
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Definition 2. (Grid Local Minimizer). A point x ∈ G(O, h,V) is a grid local minimizer
of an objective function f with respect to a positive basis V+ if

f(x + hν) ≥ f(x) for all ν ∈ V+.

2.2 Algorithm Details

1. Initialize: Set k = m = 0, v0 = 0, H0 to the identity matrix and hmin >

0. Choose h0 > hmin and x0 = O0 ∈ R
n such that f(x0) is finite.

2. Evaluate the objective function f0, and set U0 = f0.

3. while stopping conditions do not hold, do

(a) Exploratory phase: Calculate the exploratory vector Ek at xk + vk.

(b) Sinking lid: If f(xk + vk + Ek) ≥ fk and Uk 6= fk, then choose Uk+1 ∈

[fk,Uk), else Uk+1 = Uk.

(c) Pattern move: If f(xk + vk + Ek) < Uk+1 then set

xk+1 = xk + vk + Ek and vk+1 = vk + Ek,

increment k and goto (a).

(d) If vk 6= 0 set vk+1 = 0, and goto (a).

(e) Localized global optimization phase: Set zm = xk. Choose Ωm ⊂ R
n

such that zm ∈ Ωm and m(Ωm) > 0. Execute CARTopt in Ωm until a

lower point xk+1 is found or stopping conditions are satisfied.

(f) Choose hm+1, form Hm+1 and set Om+1 = xk+1. Increment k and m

and goto (a).

end

Figure 1: The Hooke and Jeeves—CARTopt hybrid algorithm

A precise statement of the main algorithm is given in Figure 1. The algorithm consists
of an initialization phase and three nested loops. An exploratory phase (Step 3(a)) and
a localized global phase (Step 3(e)) are listed as separate subroutines in sections 3 and 6
respectively. The dependence on Om is suppressed in the following as Om is the origin of Gm.
The notation fk = f(xk) has been used for convenience.
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The initialization phase sets the iteration counters k and m to zero, the Householder
matrix H0 to the identity matrix, a lower bound hmin > 0 on the mesh size and v0 to the zero
vector. The user chooses an initial mesh size h0 > hmin and an initial point x0 ∈ R

n such
that f(x0) is finite, which is also set to the grid center O0. It is not necessary to set v0 to the
zero vector. Setting a non-zero v0 gives an initial velocity to the system and usually creates a
different trajectory. This allows the user to explore different regions a possibly locate other
essential local minimizers of f .

The two inner loops (steps 3(a) - 3(c) and steps 3(a) - 3(d), indexed by k) search on
the grid Gm until a grid local minimizer is found. Step 3(d) implements a Hooke and Jeeves
automatic restart, removing unsuccessful pattern moves by setting vk+1 = 0. This forces an
exploratory phase from xk+1 = xk, a successful iterate. The outer loop (steps 3(a) - 3(f),
indexed by m) defines the new grid Gm+1 for the inner loops to search over. The grid is
aligned with a promising direction of descent, xk+1 − xk, using a Householder matrix Hk,
where xk+1 is generated in Step 3(e). This alignment potentially reduces the number of
grid local minimizers and can increase the computational efficiency of the method. Each
component of Step 3 is discussed in the sections which follow.

The algorithm terminates when either hm ≤ hmin or if the stopping conditions of CARTopt
are satisfied. The interested reader is referred to [16] for details on the stopping rule of
CARTopt. Once terminated, zm is the candidate solution for an essential local minimizer of
f .

3 Exploratory Phase

Each exploratory phase tries to reduce f by altering each grid coordinate, ν(i) ∈ Vm, of the
current exploratory search point z = xk + vk in turn. This requires at least n, but no more
than 2n, f evaluations. Each step hν(i) is tried in turn. Firstly z is increased by hν(i). If this
yields a reduction in f then this increase is retained and the method moves on to the next grid
step hν(i). Otherwise the increase is removed, and z is decreased by hν(i) from its original
value. Again, if this reduces f the decrease is retained, otherwise it is abandoned. In either
case the process moves on to the next coordinate of z. The exploratory steps are retained in
the vector Ek, where initially Ek = 0, as demonstrated in Figure 2 on the canonical grid.
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Figure 2: Hooke and Jeeves exploratory steps: Increasing z by he1 gives descent and the step is retained.
For the next coordinate z + he1 is increased by he2. This step increases f and the step is removed. z + he1 is
then decreased by he2, which gives descent, and the step is retained. Thus, Ek = [h,−h] in this example.
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While operating on the grid Gm, if the step −hν(i) was successful during the current
exploratory phase, −hν(i) is tried first in the next exploratory phase. That is, x2 would be
decremented first for the next exploratory phase in our example in Figure 2. The classical
exploratory phase increments each decision variable first, without reference to where the
trajectory is heading. Including this additional heuristic has the potential to save n function
evaluations at each exploratory phase.

4 Sinking Lid

The sinking lid (Step 3(b)) is a strategy used to ensure the trajectory does not oscillate or
cycle endlessly if the sequence {xk} is bounded. This behavior can occur when multiple uphill
steps are taken. Recall that the sequence {xk} approximates a ball rolling in a conservative
force field and without damping can be in continual motion. The sinking lid systematically
reduces an upper bound U on allowable function values each time ascent is made, creating
a sequence of non-increasing upper bounds {Uk}. Thus at iteration k the trajectory cannot
surmount ridges where f(x) > Uk. Provided {xk} is bounded, the lid eventually traps the
ball in the neighborhood of an essential local minimizer, or at least terminates the trajectory
in reasonable time.

Initially U0 = f0 and thus, f cannot be increased above the initial function value. If
descent is made (f(xk + vk + Ek) < fk) the upper bound remains unchanged with

Uk+1 = Uk. (4)

Otherwise, f(xk + vk + Ek) ≥ fk and the upper bound is systematically reduced as follows.
If f(xk + vk + Ek) < Uk, then

Uk+1 = fk +
1

2

[

Uk + f(xk + vk + Ek) − 2(fk + τ)
]

+
, (5)

where [.]+ = max{., 0} and τ > 0 is a small positive constant. Otherwise,

Uk+1 = fk. (6)

If [.]+ in equation (5) is positive, Uk+1 is approximately halfway between the previous
upper bound and f evaluated at the point of ascent given by

Uk+1 =
Uk + f(xk + vk + Ek)

2
− τ.

Thus the lid is reduced by at least τ , which prevents a series of arbitrarily small bound
reductions. The value τ = 1e-10 is used hereafter. Otherwise [.]+ is zero and Uk = fk by (5).
If the point of ascent has a f value greater than Uk, the bound equals the previous successful
iterate, Uk+1 = fk by (6).

The following proposition shows that only a finite number of consecutive uphill steps can
be taken in our approach before a point of descent is required. This ensures the existence
of an infinite subsequence of {xk} with strictly monotonically decreasing f values. This
subsequence is used to establish convergence in Section 8.

Proposition 3. If fk and Uk are finite, only a finite number of consecutive uphill steps are
possible before a point of descent is required in the hybrid algorithm.
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Proof. Consider a point xk∗
on the trajectory such that fk∗

and Uk∗
are finite. If Uk∗+1 = fk∗

,
a point of descent is required from xk∗

. There are two possible ways this can happen. Either
f(xk∗

+ vk∗
+Ek∗

) ≥ Uk∗
or Uk∗

+ f(xk∗
+ vk∗

+Ek∗
) ≤ 2(fk∗

+ τ). In either case Uk∗+1 = fk∗

(by (6) and (5)) and no uphill steps are taken from xk∗
.

Otherwise

Uk∗+1 =
Uk∗

+ f(xk∗
+ vk∗

+ Ek∗
)

2
− τ (7)

and an uphill step is possible. Assume that infinitely many consecutive uphill steps are
possible from xk∗

. Then there exists a sequence of f values {fk}
∞
k=k∗

such that fk+1 > fk,
and sequence of U values {Uk}

∞
k=k∗

such that Uk+1 < Uk. Furthermore, fk < Uk for each term
in the sequences, otherwise descent is required by (6). After m > 0 consecutive uphill steps
are taken

Uk∗+m < Uk∗
− mτ, (8)

by (7). Choosing m > (Uk∗
− fk∗

)/τ in (8) we have Uk∗+m < fk∗
, which contradicts (5).

Therefore, only a finite number of consecutive uphill steps can be taken by the algorithm
before a point of descent is required.

The trajectory produced using this method can define a path which leaves locally optimal
points. This also reduces the tendency of the Hooke and Jeeves phase getting trapped by
a discontinuity of f . However, the primary interest here is in local optimization and hence
locating any optimal point is sufficient. Setting Uk+1 = fk for all k gives a strict descent
(downhill) version of the altered Hooke and Jeeves algorithm.

5 Pattern Move

The Hooke and Jeeves pattern move may be expressed by the pair of equations

xk+1 = xk + vk + Ek, and vk+1 = θ(vk + Ek), (9)

where Ek is the exploratory vector, v0 = 0 and θ is a positive integer. The pattern move
used here differs from the classical move in two ways. Firstly, by choosing θ > 1 a more
aggressive pattern move is achieved, allowing larger steps to be taken. Secondly, uphill steps
are accepted provided f is not increased above the current upper bound Uk. This allows f to
temporarily increase along the trajectory approximating the path of a rolling ball given by
(2). The relative merits of taking uphill steps on a nonsmooth function are illustrated in the
following example.

5.1 Potential Benefits of taking Uphill Steps

Consider the nonsmooth version of Rosenbrock’s function, given by

f(x) = |10(x2 − x2
1)| + |1 − x1|, (10)

where x∗ = (1, 1) is the unique essential local minimizer. This nonsmooth version of Rosen-
brock’s function shares all the difficulties of its smooth counterpart with an added sharp
valley floor where f is non-differentiable. The reader is referred to Figure 3 where a contour
plot of (10) is shown.

387



B.L. Robertson, C.J. Price, and M. Reale

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

.

.
....

.

.

.

.
.
.

.

...

..
.
.

.
.

.

x

x

x

0

x
M

HJ

*

*

*

Figure 3: Trajectory generated by one iteration of the inner loop of the hybrid algorithm (dotted curve)
for minimizing (10), terminating at xM

∗
. The classical Hooke and Jeeves algorithm terminates at xHJ

∗
. The

dashed curve indicates the nonsmooth valley floor. Here θ = 1, x0 = [−0.5, 1.3], h0 = 0.05 and G is a grid
with canonical basis vectors.

The benefits of allowing uphill steps are clear from Figure 3. Initially, both the classical
and altered Hooke and Jeeves algorithms share the same trajectory. However, upon first con-
tact with the nonsmooth valley floor the classical algorithm terminates at xHJ

∗ . The classical
algorithm then experiences a period of stagnation, requiring a series of mesh reductions before
any progress is made toward x∗. Whereas, the altered algorithm rolls over the nonsmooth
valley floor multiple times making progress toward x∗ while operating on the same grid. Al-
though the trajectory terminates at xM

∗ , still some distance from x∗, much more progress is
made. Our algorithm then uses a series of random search phases and grid transformations
to drive the iterates to the solution. In addition, Figure 3 illustrates the potential for our
algorithm to escape local nonsmooth wedges in f , potentially reducing the risk of stagnation,
when f is largely smooth.

6 Localized Global Phase

The localized global optimization phase is used to exhaustively search for a point of descent
in the neighborhood of zm = xk. In this paper we use the random search algorithm CARTopt
[17] to identify and randomly sample promising sub-regions in the neighborhood of zm. If
CARTopt locates a point of descent the hybrid algorithm reverts back to the Hooke and
Jeeves phase. Otherwise no descent is found and as we will show, zm is an essential local
minimizer of f with probability one.

CARTopt is a partitioning random search algorithm that alternates between partition
and sampling phases. Initially a batch of points are drawn randomly from an optimization
region, Ω. If a set of points x ∈ Ω with known f values exists, they can be used in the initial
batch. The batch of points are classified into two sets, points with relatively high f values,
ωH , and points with relatively low f values, ωL. It is necessary that ωH and ωL 6= ∅. The
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set of classified points, T = ωL ∪ ωH , is called the training data set. The training data set is
used to form a partition on Ω using classification and regression trees (CART) [2, 8].

The CART partition defines desirable subsets of Ω where f is presumed to be relatively
low based on T . The partition itself consists of a set of non-empty hyperrectanglar sub-
regions, Ai, such that ∪iAi = Ω and Ao

i ∩ Ao
j = ∅ for all i 6= j, where Ao

i denotes the
interior of Ai. Each Ai contains an element(s) from ωL or ωH , but not elements from both.
The hyperrectangular partition structure is aligned with the coordinate axes which makes
it simple to draw points directly from the union of sub-regions containing low points. The
union of these low sub-regions is called an approximate level set, L [16, 17].

For the next iteration a batch of points Xk is drawn from L. The best points from Tk∪Xk

are retained in Tk+1 and the training data is reclassified into new sets, ωL and ωH . A new
CART partition on Ω is formed with Tk+1 and the method repeats. The method continues
alternating between these sampling and partition phases, defining new subsets of Ω to explore,
until stopping conditions are satisfied. The interested reader is referred to [16] for full details
on a bound constrained version of CARTopt and to [17] for an unconstrained instance. In
this paper we consider using the bound constrained and unconstrained CARTopt methods in
our hybrid algorithm.

6.1 Bound Constrained CARTopt Algorithm

The bound constrained CARTopt algorithm is applied in a hypercube neighborhood of zm

defined by

Ωm = {x ∈ R
n : ‖Hm(x − zm)‖∞ ≤ ρ} , (11)

where

ρ = max{3hm/2, hΩ} (12)

is the hypercube radius and hΩ > 0 is a minimum radius imposed on each Ωm. The minimum
radius ensures m(Ω) is bounded away from zero for all iterations, which is crucial for estab-
lishing convergence on nonsmooth problems. The notation m(.) is used to denote Lebesgue
measure. If the objective function is known to be smooth, then ρ = 3hm/2 is used. This
allows m(Ω) to tend to zero as h tends to zero, potentially increasing the rate of convergence
on smooth problems.

Points with known f values in Ωm are included in an input training data set for CARTopt.
These include the points from the sequence of iterates {xk} and points generated during the
previous CARTopt phase. Let T ∗

m denote the training data set from the mth (m ≥ 1)
CARTopt phase with T ∗

0 = ∅, then the input training data set is defined by

Tm = {T ∗
m−1 ∪ {xk}} ∩ Ωm. (13)

Recycling points with known function values makes computational sense, but care must
be taken when reusing points in the CART partition. CART partitions Ωm into a set of non-
empty hyperrectangular sub-regions using a set of hyperplanes, each parallel to a coordinate
axis [16]. Therefore, if two or more points in Tm share the same coordinate value, there exists
a potential hyperplane orientation for which no split exists. This is not a problem when the
elements of Tm are randomly drawn from Ωm because the probability that two points share
the same coordinate value is zero. However, some elements of {xk} may exist on a common
grid and potentially share the same coordinate value.
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To ensure no partitioning problems, two points x, y ∈ Tm will not be split in the ith

dimension if
|xi − yi| < ǫ, (14)

where ǫ > 0 and sufficiently small. Numerical results are generated with ǫ = 1e-15.
A direct consequence of (14) is that two points x ∈ ωL and y ∈ ωH will not be split if

‖x−y‖ < ǫ. Therefore, it is possible that a sub-region of the partition can contain both a low
and high point. We still consider any sub-region containing a low point, a low sub-region of
the partition. This ensures there exists a non-zero probability of sampling a neighborhood of
each low point during CARTopt’s next iteration because low sub-regions are sampled further
[17]. This property is needed to establish convergence on nonsmooth problems.

Very few sub-regions containing elements from both ωL and ωH were found whilst gen-
erating our numerical results. Including Tm in CARTopt’s training data greatly increased
the numerical performance of our hybrid algorithm. Few (or no) function evaluations were
required to form the initial partition on Ωm. Thus, CARTopt could identify and sample
promising subsets of Ωm at minimal cost. Setting Tm = xk is sufficient to establish conver-
gence, but including the additional points makes computational sense.

The CARTopt phase can terminate in two ways. Firstly, if a point x ∈ Ωm is found
such that f(x) < f(zm), then x is set to the next iterate xk+1 and a new Hooke and Jeeves
phase begins. Secondly, if the stopping conditions of CARTopt are satisfied [16]. The latter
terminating hybrid algorithm and zm is an approximation to an essential local minimizer of
f .

6.2 Unconstrained CARTopt Algorithm

Rather than applying CARTopt in a hypercube search region, the unconstrained CARTopt
algorithm performs random search on R

n. At each iteration, a bounded subset of R
n is

defined by a CART partition from which points are drawn randomly [17]. The partition is
formed using a non-empty training data set T such that

|T | ≤ max{2N, (n − 1)N}, (15)

where N is CARTopt’s batch size. If (15) holds with equality, T is called full size [17].
The unconstrained CARTopt algorithm is implemented in our hybrid algorithm using a

training data set consisting of the best points generated by the hybrid algorithm. These
include points from the sequence of iterates {xk}, and points generated in CARTopt phases.
Specifically, all points are retained in the hybrid algorithm until a full size training data set
exists. Then a number of points with the largest f values are discarded to stop |T | increasing
above full size. This set of points with known f values is used as an input training data set
for CARTopt.

Before a CART partition is formed, CARTopt requires a training data set T = ωL ∪ ωH

such that |T | ≥ 2N . If the input training data set has less than 2N elements, points are
drawn randomly from

zm +
3hm

2
[−1, 1]n (16)

until |T | = 2N so a CART partition on R
n can be formed.

The CART partition on R
n defines desirable subsets to explore further based on the best

points generated by the hybrid algorithm. Although we sample the neighborhood of zm,
there may exist other low points found along the trajectory some distance from xk that are
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also sampled. This is in contrast to the bound constrained CARTopt algorithm which is
forced to focus its search in the neighborhood of zm only (Ωm). It may be advantageous to
sample neighborhoods of other low points, rather than just the lowest, to reduce f . Using
the unconstrained CARTopt algorithm in the hybrid algorithm achieves this.

If a point x ∈ R
n is found in the CARTopt phase such that f(x) < f(zm), x = xk+1

and the method reverts back to the Hooke and Jeeves phase. Otherwise, when the stopping
conditions of CARTopt are satisfied, zm is taken as the estimate of an essential local minimizer
of f .

7 Generating the Next Grid

The outer loop (steps 3(a) - 3(f) indexed by m) of the hybrid algorithm generates a new grid
for the Hooke and Jeeves phase to search over. In this section we assume a point of descent,
xk+1, is located in Step 3(e) so a new grid is generated. Rather than simply having all grids
nested, as in the classical Hooke and Jeeves algorithm, each grid is perturbed, rotated and
scaled. Each is discussed in the subsections which follow.

7.1 Perturbation

Setting the grid center Om+1 = xk+1 — the newly generated point of descent from the
localized global phase — the grid is perturbed in a straightforward manner. Since xk+1 is
generated from randomly sampling subsets of Ωm and Gm is a set of measure zero, Gm+1 is
offset relative to Gm with probability one. Hence, the altered Hooke and Jeeves algorithm is
not confined to a sequence of nested grids.

7.2 Rotation

Each time a grid local minimizer is located, the computationally expensive localized global
phase is initiated. Therefore, if transforming the grid has the potential to reduce the number
of grid local minimizers, the number of localized global phases can also be reduced. In [4] it
is shown that conjugate grids greatly reduce the number of grid local minimizers on a strictly
convex quadratic function in two dimensions. Although these ideas could have potential
here, a new approach is developed which potentially yields the same desired result without
assuming a locally quadratic approximation.

The iterate xk+1 not only gives a point of descent, but also a promising direction of
descent, given by d = (xk+1 − xk)/‖xk+1 − xk‖. Using the Householder matrix,

Hm = I − 2uuT with u = (e1 − d)/‖e1 − d‖, (17)

the x1 axis of the grid Gm+1 is set parallel to d, i.e. Hme1 = d. This transformation can
dramatically reduce the number of grid local minimizers and allow the Hooke and Jeeves
phase to make more progress.

To illustrate the relative merits of our transformation consider, for example, the function

f = max{aTx, bTx} such that x ∈ R
2, (18)

where a = [0.7,−0.7] and b = [−0.9, 0.5]. The reader is referred to Figure 4 where the contours
of (18) are shown. With xk a grid local minimizer of f , a localized global optimization
phase is performed in the neighborhood of xk, locating a point of descent xk+1. If only
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Figure 4: Grid perturbation with no rotation and grid perturbation with rotation. Points of descent and
ascent are denoted ., o respectively and the shaded region indicates points of descent from xk.

grid perturbations are performed, xk+1 remains a grid local minimizer of f and another
localized global phase is conducted. This can repeat for many iterations, making our method
computationally expensive. However, xk+1 is no longer a grid local minimizer if the grid is
transformed using (17). The exploratory phase has successfully located a point of descent
and a new Hooke and Jeeves trajectory is started. Although only a heuristic, this grid
transformation dramatically increased the numerical performance of our algorithm.

7.3 Scaling

The mesh scaling heuristic used here is made with respect to the iterate xk+1 generated in
the localized global phase. Firstly, consider the case when f is assumed to be nonsmooth. If

‖xk+1 − xk‖2 ≥ hm, (19)

then hm+1 = hm, otherwise

hm+1 = max{hm/τh, ‖xk+1 − xk‖}, (20)

where τh is a positive mesh reduction coefficient. Hereafter τh = 2 is chosen, although any
τh > 1 can be used. If (19) is satisfied the mesh size remains unchanged. This may result
in hm not tending to zero as m tends to infinity, but convergence is still obtained through
CARTopt with probability one. Otherwise the mesh is reduced using (20). The term hm/τh

is used as a bound on mesh reduction per iteration to prevent an unjustifiably small value
for hm+1, which may cause the algorithm to terminate early.

If f is known to be smooth, the mesh size is updated using

hm+1 = max
{

hm/τh, min{‖xk+1 − xk‖, hm/(1 + ǫ)}
}

, (21)

where 0 < ǫ ≤ τh − 1 is a small positive constant. This choice of h ensures a mesh reduction
is made if the CARTopt phase locates a point of descent, a property needed to establish
convergence on smooth problems.
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Proposition 4. If f is assumed to be smooth and the sequence of grid local minimizers {zm}
is infinite, then hm → 0 as m → ∞ for all 1 < ǫ + 1 ≤ τh.

Proof. From the form of (21), we have

hm

τh

≤ hm+1 ≤
hm

1 + ǫ
,

where 1 < ǫ+1 ≤ τh. Therefore, h is reduced at each pass and with {zm} an infinite sequence
the result follows.

8 Convergence

In this section it is assumed that the stopping rules for both CARTopt and the altered Hooke
and Jeeves algorithm are never invoked. This allows us to examine the asymptotic properties
of the full sequence of iterates generated by the hybrid algorithm. The stopping conditions
are included in the algorithms from a practical point of view.

8.1 Smooth Results

Firstly, let us consider the case when the objective function f is known to be smooth. These
results are of interest here because the smooth version of the algorithm potentially converges
faster on smooth problems than the nonsmooth version would. In order to establish the
smooth convergence results the following assumptions are required.

Assumption 5. The following conditions hold:

(a) The points at which f is evaluated at lie in a compact subset of R
n; and

(b) the sequence of function values {f(xk)} is bounded below.

These assumptions ensure the existence of cluster points in {zm} and exclude the case
where f(xk) → −∞ as k → ∞.

The next theorem establishes the basic convergence result and follows closely from the
results in [13]. This result uses Clarke’s generalized derivative [6], which is, the generalized
directional derivative of f in the direction d, defined by

fo(x; d) = lim sup
z→x
λ↓0

f(z + λd) − f(z)

λ
,

where z ∈ R
n and λ is a positive scalar.

First we show that there exists a dense set of points in a neighborhood of zm with larger
f values if the mth execution of Step 3(e) is infinite.

Proposition 6. If Step 3(e) of the Hooke and Jeeves—CARTopt hybrid algorithm is an
infinite process, then there exists a dense set of points with larger f values in the neighborhood
of zm with probability one.

393



B.L. Robertson, C.J. Price, and M. Reale

Proof. Step 3(e) is an infinite process and so CARTopt fails to generate a point with a
function value less than f(zm). Noting that zm is an element of CARTopt’s input training
data and no lower points are generated, the sequence of iterates {zk} generated by CARTopt
is an infinite sequence with final value zm (see Figure 1, Step 3(g) in [17]). It follows directly
from Theorem 14 in [17] that zm is an essential local minimizer of f with probability one.
From the definition of an essential local minimizer (see Definition 1), the set

E(zm, ǫ) = {x ∈ Ωm : f(x) < f(zm) and ‖x − zm‖ < ǫ} (22)

has Lebesgue measure zero for all sufficiently small ǫ > 0. That is, there exists a dense set of
points with larger f values in the neighborhood of zm with probability one.

The convergence result for the smooth version can now be given.

Theorem 7.

(a) Assume the sequences {zm} and {xk} are finite. If f is strictly differentiable at the final
value zm∗

of {zm}, then ∇f(zm∗
) = 0.

(b) Let f be locally Lipschitz at z∗. If z∗ is a cluster point of the sequence of grid local
minimizers {zm} and if f is strictly differentiable at z∗, then ∇f(z∗) = 0.

Proof. For part (a) the only way that the sequences {zm} and {xk} are finite is if Step
3(e) is an infinite process. Proposition 6 implies that there exists a dense set of points in
‖x− zm∗

‖ < ǫ such that f(zm∗
) ≤ f(x). The continuity (C1) of f implies that f(zm∗

) ≤ f(x)
for all ‖x − zm∗

‖ < ǫ. The only possibility is ∇f(zm∗
) = 0.

For part (b) we restrict our attention to a subsequence {zj} for which the corresponding
subsequence {zj ,V

+
j } converges uniquely to (z∗,V). In what follows, νj is an element of the

positive basis V+
j (see (3)). Using the definition of a grid local minimizer we have,

f(zj + hjνj) − f(zj) ≥ 0 for all νj . (23)

Rewriting (23), dividing by hj and taking the limit we have

lim sup
j→∞

f(zj + hj(wj + ν)) − f(zj + hjwj) + f(zj + hjwj) − f(zj)

hj

≥ 0,

where wj = νj − ν. Noting that wj → 0, zj → z∗ and hj ↓ 0 (Proposition 4) as j → ∞, the
first two terms give Clarke’s generalized derivative at z∗ and so we have

fo(z∗; ν) + lim sup
j→∞

f(zj + hjwj) − f(zj)

hj

≥ 0. (24)

With f locally Lipschitz at z∗ we have

|f(zj + hjwj) − f(zj)| ≤ K‖zj + hjwj − zj‖,

for a positive scalar K. Thus, after applying the Lipschitz condition and evaluating the limit,
the second term of (24) vanishes leaving

fo(z∗; ν) ≥ 0. (25)
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All smooth functions have an open half space of descent directions centered on x if ∇f(x) 6= 0.
Strict differentiability at z∗ implies

∃w ∈ R
n such that fo(z∗; ν) = wTν for all ν ∈ R

n

and so if w is non-zero, there exists an open half space for which wTν < 0. However, every
positive basis has at least one vector probing any open half space (see Corollary 8 in [16])
and (25) states that all such directions have wTν ≥ 0. Therefore, w must be the zero vector
and hence, ∇f(z∗) = 0 as required.

8.2 Nonsmooth Result

The nonsmooth convergence result is now given. To establish convergence to an essential
local minimizer of f the following assumption are required.

Assumption 8. The objective function f is lower semi-continuous and bounded below.

Assumption 8 ensures that lim infz→z∗ f(z) ≥ f(z∗), where z∗ is a cluster point of {zk}.
Also f(xk) 6→ −∞ as k → ∞ because f is bounded below.

Theorem 9. Let Assumption 8 hold. Exactly one of the following possibilities holds:

(a) {zm} is an infinite sequence and each cluster point z∗ of the sequence is an essential
local minimizer of f with probability one; or

(b) both {zm} and {xk} are finite sequences and the final zm is an essential local minimizer
of f with probability one; or

(c) {zm} is finite and {xk} is an infinite unbounded sequence.

Proof. Noting that a sequence cannot be both infinite and finite only one of these possibilities
can hold.

Case (a) is a direct consequence of Theorem 14 in [17].
Let {zm} be a finite sequence and let m∗ be the final value of m. There are two possible

ways this can happen; either the inner loop is an infinite process or the localized global phase
is an infinite process.

For the former we consider two cases. Firstly, consider the case when Uk is eventually
constant such that Uk = Uk∗

for all k > k∗. In this case we have f(xk) < f(xk−1) for all
k > k∗ by (4) and all xk ∈ Gm∗

for all k sufficiently large. Thus {xk} must be an infinite
unbounded sequence, which is case (c).

Secondly, if Uk is not eventually constant, there exists a strictly decreasing subsequence
{Ui}

∞
i=1 of {Uk} such that Ui+1 < Ui for all i by (5) and (6). The only way this can happen

is if there are an infinite number of uphill steps taken by the algorithm because U is only
reduced by (5) or (6) when ascent is made. With f bounded below and f(x0) finite, fk and
Uk are finite for all k. Therefore, Proposition 3 shows that only a finite number of consecutive
uphill steps are possible before a point of descent is required. That is, there exists an infinite
subsequence {yi}

∞
i=1 of {xk} for which f(yi) < f(yi+1) and all yi ∈ Gm∗

for all i sufficiently
large. Thus {xk} must be an infinite unbounded sequence, which is case (c).

For the latter we have CARTopt being an infinite process. Theorem 14 in [17] implies
that there does not exist a set

E = {x ∈ Ωm∗
: f(x) < f(zm∗

) and ‖x − zm∗
‖ < ǫ}
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with positive measure for all sufficiently small ǫ > 0. Therefore, zm∗
is an essential local

minimizer of f with probability one, which is case (b).

Corollary 10. If the sequence {xk} is bounded and {zm} is an infinite sequence, then every
cluster point of the sequence {zm} is an essential local minimizer of f with probability one.

Proof. With {xk} a bounded sequence, case (c) is removed from Theorem 9 and the result
follows.

9 Numerical Results and Discussion

The hybrid algorithm was tested on a number of problems from Hock et al. [9], Moré
et al. [12] and Schittkowski [19]. The test problems selected were expressed as a sum of
squares

∑

i f
2
i with a global minimum of zero. These problems are easily made nonsmooth

by replacing the sum of squares with absolute values
∑

i |fi|. The nonsmooth versions share
the same global minimizer(s) as their smooth counterparts because fi = 0 for all i at the
solution. However, these modified functions can make the results seem deceptively poor. A
final function value of 1e-5 on the nonsmooth function, for example, corresponds to a function
value of approximately 1e-10 on the original problem. Thus, we consider a final function value
less than 1e-3 acceptable.

The Hooke and Jeeves—CARTopt hybrid algorithm was implemented with an initial mesh
size h0 = e/2 and a minimum mesh size hmin = 1e-8. This apparently strange h0 value was
chosen over the popular choice of h0 = 1 because the latter allowed the algorithm to step
exactly to the solution on some of the test problems considered. This gave a misleading
impression on the performance of the algorithm. The standard optimization starting point
x0 (see Appendix A.1 in [16]) for each problem was used as the initial point for each problem.
The localized global optimization phase uses either the bound constrained or unconstrained
CARTopt algorithm, with the parameters defined as in [16, 17]. The minimum infinity
norm radius hΩ = 1e-4 on Ωm was used when implementing the bound constrained CARTopt
algorithm.

The unconstrained CARTopt instance was also implemented for comparison purposes
with the parameters defined as in [17]. The initial hypercube search region size was chosen
relative to Ω1 (see (11)), given by

x0 +
3e

4
[−1, 1]n.

This choice allows us to make fair comparisons between the two methods.
The stopping rule from [16] was used to terminate the bound constrained and uncon-

strained CARTopt algorithms. This rule terminates CARTopt at iteration k if the distribu-
tion of the γ least function values follows a power law distribution and the probability of
reducing f below f(zk) − ǫ is less than β. Here the values ǫ = 1e-8, β = 1e-6 and γ = 40
were used. The interested reader is referred to [16] for full details on the stopping rule.

Table 1 lists the results for the nonsmooth problems considered when the bound con-
strained CARTopt method was used in the hybrid algorithm and Table 2 lists the results
using the unconstrained CARTopt method in the hybrid algorithm. The legends for these
tables is defined as follows. The first three columns list the problem name, dimension and
the final f value. Columns headed with ‘nf(%HJ)’ list the total number of f evaluations and
values in parentheses list the percentage of f evaluations in the Hooke and Jeeves phase of
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Table 1: Nonsmooth results using the bound constrained CARTopt method in the hybrid
algorithm.

Uphill Downhill

Problem n f∗ nf (%HJ) term f∗ nf (%HJ) term

Beale 2 2e-9 1180 (14) HJ 2e-9 1192 (15) HJ
CB2 2 5e-9 1232 (11) CART 5e-9 1031 (11) CART
QL 2 6e-10 1357 (12) CART 1e-9 1605 (12) CART
Rosenbrock 2 2e-9 1684 (22) HJ 5e-9 1409 (13) HJ
Wolfe 2 4e-10 1293 (20) HJ 1e-9 1090 (14) HJ
Gulf 3 1e-4 26438 (83) CART 3e-6 24368 (75) CART
240 3 1e-8 1879 (27) HJ 1e-8 1781 (25) HJ
Helical Valley 3 1e-8 2510 (19) HJ 1e-8 2285 (21) HJ
Powell 4 3e-8 3828 (25) HJ 3e-8 3514 (21) HJ
261 4 2e-8 4171 (09) HJ 1e-8 3891 (14) HJ
Rosen-Suzuki 4 5e-5 9688 (24) CART 4e-5 12310 (23) CART
Trigonometric 5 6e-8 4429 (15) HJ 6e-8 4505 (18) HJ
Variably Dim. 8 4e-8 13936 (13) CART 3e-8 14059 (12) CART
291 (Quartic) 10 4e-9 6742 (02) CART 4e-9 6632 (02) CART

the algorithm. Columns headed with ‘term’ indicate the method of termination. This can be
either through the CARTopt algorithm ‘CART’ or if the minimum mesh size is reached ‘HJ’.
The multicolumns headed with ‘Uphill’ and ‘Downhill’ list the results for the altered Hooke
and Jeeves algorithm with uphill steps possible, and the version which requires descent at
each iteration, respectively. Because the algorithm is stochastic, all values are averaged over
ten runs.

The Hooke and Jeeves—CARTopt hybrid algorithms solved all the problems considered
to the desired standard. The results show little difference between the downhill and uphill
versions of the Hooke and Jeeves algorithm. The hybrid algorithm terminated when the
minimum mesh size was reached on approximately half the problems. Otherwise the algorithm
terminated through the CARTopt algorithm. Most of the computational effort was conducted
in the CARTopt phase of the hybrid algorithm. The only exception was the Gulf problem,
where a huge number of Hooke and Jeeves iterations were conducted between locating grid
local minima.

Using the unconstrained CARTopt method in the hybrid algorithm was more effective
than using the bound constrained CARTopt algorithm, giving the nine least f values on
the fourteen problems considered. Furthermore, nine problems required fewer f evaluations
to obtain similar approximate solutions. Most notably the bound constrained CARTopt
hybrid algorithm required more than twice the number of f evaluations to solve the Gulf
problem. This was largely due to the fact that the bound constrained CARTopt algorithm
searched in Ωm, whereas the unconstrained CARTopt algorithm searches in R

n. This meant
the unconstrained CARTopt algorithm could take larger steps and the bound constrained
version was forced to take a series of little steps.

The previous results show that the hybrid method is effective, but is it competitive in
practice? To show the method is competitive a comparison between the unconstrained CAR-
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Table 2: Nonsmooth results using the unconstrained CARTopt method in the hybrid algo-
rithm.

Uphill Downhill

Problem n f∗ nf (%HJ) term f∗ nf (%HJ) term

Beale 2 4e-9 1162 (15) HJ 4e-9 1104 (15) HJ
CB2 2 5e-9 882 (15) CART 6e-9 928 (14) CART
QL 2 7e-10 974 (14) CART 8e-10 993 (14) CART
Rosenbrock 2 4e-9 1194 (14) HJ 2e-9 1279 (12) HJ
Wolfe 2 1e-9 1001 (15) HJ 7e-10 1012 (14) HJ
Gulf 3 1e-5 9018 (64) CART 2e-7 6712 (38) CART
240 3 7e-9 2031 (26) HJ 9e-9 1858 (23) HJ
Helical Valley 3 1e-8 1979 (17) HJ 8e-9 1983 (15) HJ
Powell 4 3e-8 2962 (17) HJ 2e-8 3158 (17) HJ
261 4 2e-8 4092 (13) HJ 1e-8 4191 (13) HJ
Rosen-Suzuki 4 7e-4 5873 (09) CART 9e-4 5086 (09) CART
Trigonometric 5 5e-8 4934 (17) HJ 6e-8 4852 (17) HJ
Variably Dim. 8 2e-8 14671 (13) CART 4e-8 14652 (13) CART
291 (Quartic) 10 7e-9 7175 (22) CART 9e-9 6938 (21) CART

Table 3: Comparison with CARTopt and two other direct search methods for nonsmooth
unconstrained optimization

Results from Results from CARTopt Hybrid
[13] [14] (Unconstrained) (Downhill)

Problem n f∗ nf f∗ nf f∗ nf f∗ nf

Beale 2 4e-8 3638 2e-8 1119 1e-9 1091 4e-9 1104
Rosenbrock 2 5e-8 4438 2e-8 1154 2e-9 1248 2e-9 1279
Gulf 3 1e-5 15583 6e-6 31306 9e-5 20101 2e-7 6712
Helical Valley 3 7e-8 8406 1e-9 2773 3e-9 1837 8e-9 1983
Powell 4 4e-7 11074 3e-3 3659 1e-8 2744 2e-8 3158
Trigonometric 5 5e-8 14209 4e-8 6678 2e-8 4562 6e-8 4852
Variably Dim. 8 2e-7 34679 5e-7 55647 4e-8 13048 4e-8 14652
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Topt instance and two direct search methods for nonsmooth unconstrained optimization from
Price, Reale and Robertson [13, 14] is given in Table 3. The hybrid algorithm using the un-
constrained CARTopt method is used in the comparison because it performed best on the
seven comparison problems. The algorithm in [13] is a frame based method which performs
a ray search along either a direct search quasi-Newton direction, or along a ray through the
best frame point at each iteration. Random perturbations of the frames from time to time
gives convergence on nonsmooth problems. The algorithm in [14] is similar to the Hooke
and Jeeves—CARTopt hybrid algorithm presented here, using a series of local and localized
global optimization phases. The classical Hooke and Jeeves algorithm is used in the local
phase and the DIRECT algorithm of Jones, Perttunen and Stuckman [11] in the localized
global optimization phase. This algorithm is deterministic and is provably convergent on
nonsmooth problems.

The hybrid algorithm was superior to the algorithm from [13], producing more accurate
approximate solutions on all problems except the Trigonometric problem, where the f∗ values
were similar. Approximately one third of the function evaluations were required to solve each
problem.

In comparison to the algorithm from [14], slightly more accurate approximate solutions the
to Helical Valley and Trigonometric problem were obtained, otherwise the hybrid algorithm
produced more accurate approximate solutions. Only the Rosenbrock function required more
f evaluations although a more accurate approximate solution was produced. The hybrid
algorithm required noticeably fewer f evaluations on the relatively high dimensional problems,
particulary the Variably Dimensional problem. It is the authors’ opinion that this is largely
due to the fact that the algorithm in [14] is deterministic, whereas our hybrid algorithm is
stochastic, exploring higher dimensions more efficiently.

The unconstrained CARTopt algorithm and the hybrid algorithm performed similar on
the problems considered. This is expected because the hybrid algorithm uses CARTopt in
the localized global phase. However, the Hooke and Jeeves phase of the hybrid algorithm was
extremely effective on the Gulf problem, giving an answer two orders of magnitude better
and required less than one third the f evaluations. Because the hybrid algorithm performs
at least as good as CARTopt, and potentially better on some problems, it is the authors’
preferred choice.

10 Conclusion

A direct search method for nonsmooth unconstrained optimization has been presented. The
method is a combination of an altered Hooke and Jeeves algorithm for which grid transforma-
tions, perturbations and uphill steps are permitted, and the CARTopt algorithm. Alternating
between both algorithms is an effective method for nonsmooth optimization. Convergence to
an essential local minimizer of f with probability one has been demonstrated under mild con-
ditions. Numerical results have been presented which verify that theoretical convergence is
achieved in practice on a number of nonsmooth problems. Comparison with two other direct
search methods shows that the hybrid algorithm is better than both. The hybrid algorithm
performed similar to the unconstrained CARTopt algorithm.
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[18] S. Schäffler and H. Warsitz, A trajectory-following method for unconstrained optimiza-
tion, Journal of Optimization Theory and Applications, 67 1990, pp.133–140.

[19] K. Schittkowski, More test examples for nonlinear programming codes, Lecture Notes in
Economics and Mathematical Systems (282), Springer-Verlag, 1987.

[20] J. A. Snyman, A new and dynamic method for unconstrained minimization, Applied
Mathematical Modelling, 6 1982, pp.449–462.

401


