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Abstract A random search algorithm for unconstrained local nonsmooth optimiza-
tion is described. The algorithm forms a partition on R

n using classification and re-
gression trees (CART) from statistical pattern recognition. The CART partition de-
fines desirable subsets where the objective function f is relatively low, based on
previous sampling, from which further samples are drawn directly. Alternating be-
tween partition and sampling phases provides an effective method for nonsmooth
optimization. The sequence of iterates {zk} is shown to converge to an essential local
minimizer of f with probability one under mild conditions. Numerical results are
presented to show that the method is effective and competitive in practice.

Keywords Nonsmooth optimization · CART · Partitioning random search ·
Numerical results

1 Introduction

The unconstrained optimization problem is of the form

min
x

f (x) subject to x ∈ R
n, (1)

where a local minimizer is sought. The objective function f maps R
n into R∪{+∞}

and in this paper f is assumed to be nonsmooth and may be discontinuous. However,
we do require that f is lower semi-continuous. The inclusion of {+∞} means that the
method can be applied to barrier functions and discontinuous penalty functions. That
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is, constrained problems can be dealt with directly by assigning the value f = +∞
to infeasible points.

Since f is assumed to be nonsmooth or discontinuous the standard definition of a
local minimizer is modified.

Definition 1 (Essential local minimizer) A point x∗ ∈ R
n for which the set

E(x∗, ε) = {
x ∈ R

n : f (x) < f (x∗) and ‖x − x∗‖ < ε
}

has Lebesgue measure zero for all sufficiently small positive ε is called an essential
local minimizer of f .

If f is continuous at x∗, then x∗ is a local minimizer in the classical sense. The
objective value f (x∗) is called an essential local minimum.

Direct search methods can be applied to (1) when f is assumed to be nonsmooth or
discontinuous because no gradient information is required. However, when such as-
sumptions are placed on f theoretical convergence properties of these methods can be
compromised. Partial convergence results have been presented by others. Audet and
Dennis [2] provide a method which looks asymptotically in all directions at each limit
point at which the Clarke derivative [6] is non-negative. However, the non-negativity
of the Clarke derivative is only a partial result and does not preclude the existence of
descent directions [16, 17, 21]. Vicente and Custódio [25] generalize both the algo-
rithm of Audet and Dennis, and its analysis, by requiring only lower semi-continuity
of f , but still require that f is directionally Lipschitz at cluster points. Price, Reale
and Robertson [16] showed that finding a descent step for a nonsmooth problem is
closely related to a global optimization problem. Exploiting this connection allows
for a class of algorithms to be constructed with strong theoretical convergence results.
In these algorithms the Clarke derivative approach is replaced with one that exhaus-
tively searches for points of descent in the neighborhood of potential limit points of a
local search algorithm. If descent is found in this localized global optimization phase
the local search procedure restarts from the point of descent. Otherwise no descent
is forthcoming and an essential local minimizer is located. Alternating between a lo-
cal search algorithm and localized global phases provides an effective strategy for
solving nonsmooth problems [16, 17, 21].

Of particular interest in this paper are partitioning random search algorithms.
These methods attempt to increase the efficiency of Pure Random Search (PRS) [19],
where f is simply evaluated at a number of randomly generated points and an es-
timate of the global minimum is given by the lowest function value obtained. Parti-
tioning algorithms modify PRS by forming a partition on an optimization region and
drawing samples from the particular sub-regions of the partition. Using each batch of
points, the partition and/or the sampling distribution is iteratively updated—usually
drawing more samples from sub-regions of the partition where f is observed to be
low. The interested reader is referred to [1, 18, 21, 23] and references therein for a
more detailed description and various algorithms. However, these algorithms are de-
signed for constrained global optimization and often require successive partitions to
be nested. Thus, applying these methods to local optimization can be computationally
expensive and is heavily dependent on choosing an appropriate optimization region.
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We seek a partitioning random search algorithm for unconstrained local optimization.
Our approach is to use a set of points called the training data set, which is updated at
the end of each iteration. The basic form of an iteration is as follows:

(i) Place an oriented box around the training data set.
(ii) Partition the box into low and high subregions.

(iii) Randomly sample in the low regions of the partitioned box.
(iv) Form the next training data set from the current one and the sample points gen-

erated in step (iii).

The intent here is to search randomly in neighborhoods of the lowest known points.
As lower points are discovered, subsequent iterations place boxes around these new
points, allowing the search to move as far as is necessary to reach a local minimizer.
Once in the vicinity of a local minimizer, successive boxes will contain the minimizer,
allowing step (iii) to explore in an open neighborhood of that minimizer. The partition
is constructed using planar cuts parallel to the faces of the enclosing box. The box’s
orientation is chosen to try and make the partitioning and subsequent sampling as
simple as possible. In practice our algorithm chooses the box’s orientation in step (i),
and implicitly constructs enough of the box and its partition in step (ii) to allow
step (iii) to be done.

The paper is organized as follows. Firstly, the unconstrained CARTopt algorithm
is introduced. Section 3 defines the training data set used to form the partition on R

n.
An invertible data transformation is proposed in Sect. 4 which potentially simplifies
the partition. The partition itself is introduced in Sect. 5 and the sampling method in
Sect. 6. Convergence results are given in Sect. 7, where f is assumed to be nonsmooth
or discontinuous. A new stopping rule based on CARTopt’s local random sampling
property is given in Sect. 8. Numerical results are presented in Sect. 9 and concluding
remarks are given in Sect. 10.

2 Unconstrained CARTopt algorithm

CARTopt is a random search method that uses randomly generated sample points to
form a partition on R

n using a statistical classification method. As the name suggests,
Classification and Regression Trees (CART) [4, 8] is the method used to form the
partition. Such a partition divides R

n into a set of non-empty hyperrectangular sub-
regions aligned with the coordinate axes. To form a partition using CART a training
data set of at least two different categories is required. Here we classify a fraction
of randomly generated samples as being low with respect to f , and the rest of the
samples as high. Applying the CART partitioning technique to such a training data
set partitions R

n into a set of low and high sub-regions. Using the CART partition,
we define an approximate level set L.

Definition 2 (Approximate level set) Let Ai denote the ith low sub-region of the
CART partition on R

n, where 1 ≤ i ≤ |low sub-regions|, then the approximate level
set is

L =
{
x ∈

⋃

i

Ai

}
.
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1. Initialize: Set k = 1. Choose N > 0, δ > 0, h > 0, x0 ∈ R
n

and T1. Store x0 in T1. Pick φ ∈ (0,1).

2. Generate max{2N − |T1|,0} random sample points x ∈ x0 +
h[−1,1]n, store in X1, and evaluate f (x) at each x ∈ X1.

Let z1 minimize f over {X1, T1}.
3. while stopping conditions are not satisfied do

(a) Update the training data set: Tk+1 ⊆ {Xk,Tk} such
that zk ∈ Tk+1. (see Sect. 3)

(b) Classify Tk+1 : Set ωL as the min{	φN
, |{x ∈ Tk+1 : f (x) �=
∞}|} elements of Tk+1 with the least function val-
ues, and set ωH = Tk+1 \ ωL.

(c) Transform the training data set: Calculate the
Householder matrix Hk and set

T̂ = HkT
T
k+1.

(d) Form CART partition on R
n using T̂ to identify low

sub-regions whose union is Lk.

(e) Generate next batch of N random points Xk+1 in Lk.

(f) Apply inverse transform: Set Xk+1 = XT
k+1Hk.

(g) Evaluate f (x) at each x ∈ Xk+1 and call the best
point x̂. If f (x̂) < f (zk), set zk+1 = x̂, otherwise set
zk+1 = zk. Check stopping conditions and increment k.

end

Fig. 1 CARTopt algorithm

The approximate level set defines a subset of R
n where f is potentially low, based

on where f has been sampled, and is constructed in such a way that m(L) is always
finite. Here m(.) denotes the Lebesgue measure. An extremely useful property of L
is that it consists of a union of hyperrectangles (see Fig. 2). Thus, it is simple to
draw further samples from L. Therefore, alternating between partition and sampling
phases in an algorithmic manner provides a method for sampling subsets of R

n which
are relatively low, based on known function values. This is the basis for the new
method.

The algorithm generates a sequence of iterates {zk}∞k=1 ⊂ R
n. Each iterate zk+1 is

the best point at the end of iteration k, and is generated from its predecessor zk by
evaluating f at a finite number of points in the approximate level set Lk , defined from
the CART partition. The partition is reflected using a Householder matrix so that the
hyperrectangles do not have to be aligned with the original coordinate system. This
is done by reflecting the training data set, partitioning R

n, selecting the new sample
points and mapping these points back to the original coordinate system. The loop is
executed until the stopping conditions are satisfied, where the estimate of an essential
local minimizer is zk+1.
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A precise statement of CARTopt is given in Fig. 1. The algorithm consists of an
initialization phase (steps 1 and 2) and a single loop (step 3). Step 1 sets the iteration
counter k = 1 and the user chooses the batch size N > 0, a minimum sub-region
radius δ > 0, an initial search box radius h > 0 and an initial point x0 ∈ R

n such
that f (x0) is finite. Choosing δ > 0 ensures that m(L) is bounded away from zero
for all iterations, where m(.) denotes the Lebesgue measure. This property is needed
for convergence on nonsmooth problems. Numerical experience suggests choosing a
large h is advantageous. This allows the algorithm to take larger steps early on rather
than lots of little ones. In addition, an input training data set T1 can be used if the
user has a priori knowledge of f . If no input training data exists, T1 contains x0 only.
Step 2 generates the first set of points X1, drawn from a uniform distribution over
x0 + h[−1,1]n and corresponding objective function values. Each point is stored as
a row vector of the matrix X1.

The steps of the loop are discussed in detail in the sections that follow.

3 Training data and classification

The training data set T is used as a model from which CART forms a partition on R
n.

Here a dynamic training data set which reflects information about f obtained during
the previous sampling phase is proposed. Of particular interest is locating subsets of
R

n where f is relatively low. Sampling such sets further and updating the training
data set allows a new partition to be formed, defining a new subset to be explored.

An initial classification must be placed on T before any partition can be formed.
There is a great deal of freedom when imposing a classification on T . Here two
categories are chosen, points with relatively low and relatively high function values
respectively, defined formally below. The notation 	λ
 denotes the greatest integer
less than or equal to λ.

Definition 3 (Low points) Given 0 < φ < 1, the min{	φN
, |{x ∈ T : f (x) �= ∞}|}
elements of T with the least function values are classified as low and form the set ωL.

Definition 4 (High points) The set of points T \ωL is classified as high and form the
set ωH .

If f is finite at all training data points, ωL is simply the 	φN
 elements of T with
the least function values. The best iterate, zk , is always included in ωL. Furthermore,
each element of ωL is finite and with f (x0) finite, ωL �= ∅. Hereafter, φ = 0.8 is used
although other choices are possible. Therefore |ωL| ≤ 0.8N for all k, which has two
important consequences. Firstly, the number of distinct low sub-regions is bounded
by 0.8N , even if |T | becomes large. Secondly, |ωL| < |ωH | for all k since 2N points
are initially generated, which can cause ωL to cluster as k increases.

Let us now consider how T is updated. The primary interest here is local (not
global) optimization and so it is sufficient for T to reflect local information about f .
Forming the kth partition using all (k+1)N points generated from previous iterations
(global information), can complicate the partition and is computationally expensive.
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A sufficient number of points surrounding ωL are required to define the approxi-
mate level set L effectively. Loosely speaking, at least 2n high points are required to
define each low hyperrectangular sub-region, one for each face. Therefore, as dimen-
sion increases, CART requires a larger training data set to effectively partition R

n.
Fortunately the number of faces grows linearly with n, as does the maximum train-
ing data size used here. Numerical simulations performed by the first author found a
maximum size |T | ≤ max{2N,2(n − 1)N}, performed well in practice on a variety
of problems.

Definition 5 (Full size training data) A training data set T such that,

|T | = max
{
2N,2(n − 1)N

}
,

is called a full size training data set.

The training data is updated iteratively using the batch of newly generated points
Xk via Tk+1 ⊆ {Xk,Tk}. The most recent sample points appear first in the update.
This gives an indication of the age of points as T grows. When Tk+1 = {Xk,Tk}
exceeds full size, the oldest points with relatively high function values are discarded.
Specifically, Tk+1 = {Xγ ,XR}, where Xγ is the set of γ > 0 sample points with the
least function values and XR is the set of most recent points (not included in Xγ ) to
ensure Tk+1 is full size. Hereafter γ = 2N is chosen, which is the number of function
values required for the stopping condition [21].

Ideally, updating and classifying T causes ωL to cluster in the neighborhood of an
essential local minimizer x∗. Fixing |ωL|, keeping points with the least f values and
the most recent sample points tries to achieve this. Numerical simulations performed
by the first author found that although initially ωL may be disjoint, ωL tends to cluster
into a hyper-elliptical cloud, eventually in the neighborhood of x∗.

4 Transforming training data sets

When forming a partition on R
n the fundamental principle is that of simplicity. The

CART partition performs best when the components of T have an alignment with the
coordinate axes. Since all potential splits are orthogonal to the coordinate axes [20],
such an alignment can simplify the partition. Multivariate splits, as in Binary Space
Partition Trees (BSP) [8], can also simplify the partition because potential splits are
expressed as linear combinations of the coordinate axes. However, such splits can be
computationally expensive and it is difficult to draw samples directly from the convex
polyhedral sub-regions of the partition. Another approach is preprocessing T before
the partition is formed. However, choosing a transform to simplify the partition for a
general problem is often difficult. The interested reader is referred to [8] for various
preprocessing techniques.

Ideally, a transform D : T → T̂ is desired such that, the partition induced from
T̂ is simpler than the one using T . Here simpler means fewer splits in the training
data, and hence less sub-regions in the partition. The CARTopt approach alternates
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Fig. 2 The first figure shows the
level curves of
f = 2|x1 − x2| + x1x2, along
with the training data set
T = {ωL,ωH }, with x ∈ ωL and
ξ ∈ ωH denoted •, �
respectively. Six low
sub-regions are formed in the
CART partition which define L
(the 6th sub-region is between
the two large sub-regions on the
left hand side). The second
figure shows the transformed
training data using the
Householder transformation.
The transformation simplifies
the partition to one sub-region,
producing a good approximate
level set

between partition and sampling phases, and thus D must be invertible so f can be
evaluated at points generated in the transformed space.

Numerical simulations performed by the first author found that although initially
ωL may be disconnected, ωL often forms a hyper-elliptical cloud of points. Thus,
transforming T so that principal axis of the hyper-elliptical cloud aligns with a co-
ordinate axis can be advantageous. Such a transform can dramatically simplify the
partition, particularly in the neighborhood of some essential local minimizers where
hyper-elliptical contours are present. This is illustrated in Fig. 2.

The principal axes of the hyper-elliptical cloud ωL are obtained using Principal
Component Analysis (PCA) [8]. Using ω

(i)
L to denote the ith element of ωL, ex-

pressed as a row vector, the scatter matrix is defined by

M =
|ωL|∑

i=1

[
ω

(i)
L − ω̄L

]T[
ω

(i)
L − ω̄L

]
,
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where ω̄L is the sample mean,

ω̄L = 1

|ωL|
|ωL|∑

i=1

ω
(i)
L .

The dominant eigenvector d , of the scatter matrix M, is the direction vector for the
principal axis of the hyper-elliptical cloud. Using the Householder transformation,

H = I − 2uuT,

u = (e1 − d)/‖e1 − d‖, (2)

the x1 axis is set parallel to d , i.e. He1 = d . Pre-multiplying each element of T with
H gives the desired transformed training data T̂ . This transformation is not only
appealing because it keeps the coordinate directions orthogonal, but also the inverse
transformation is trivial (H T ≡ H−1).

In summary, the transformed training data T̂ is defined as

D(T ) = HT T = T̂ ,

which is implemented in Step 3(c) of CARTopt. The inverse transform is simply

D
−1(T̂ ) = T̂ TH = T ,

which is implemented in Step 3(f) of CARTopt. Numerical simulations found this
transform to be extremely effective in practice, increasing the numerical performance
of the algorithm significantly.

5 CART partition

CART partitions R
n into a set of non-empty hyperrectangular sub-regions Ai , such

that ∪iAi = R
n and Ao

i ∩ Ao
j = ∅, i �= j , where Ao

i denotes the interior of Ai . The
partition is formed by considering splits in T of the form

s = (xj + ξj )/2 where x ∈ ωL and ξ ∈ ωH .

The partition is formed iteratively using a greedy strategy which chooses splits that
maximize an impurity relation [20]. That is, each split tries to make the resulting sub-
regions as pure as possible—mainly low, or mainly high points in each sub-region.
When each sub-region contains either low or high points only, the partition is com-
plete. The interested reader is referred to [20, 21] for full details on the partition.
However, in this paper post-partition modifications are made. The modifications are
simple to implement, keep the hyperrectangular structure of the partition and are not
necessarily implemented at each iteration, only when required. Each is discussed in
the subsections which follow.



CARTopt: a random search method

A matrix B contains the bounds of each low sub-region Ai of the partition. Each
row of B defines the lower and upper dimension bounds of Ai and has the following
structure

Bi = [b1, . . . , bn, bn+1, . . . , b2n],
where bj ≤ xj ≤ bj+n for all x ∈ Ai and j = 1, . . . , n. If Ai is unbounded below
(above) in a particular dimension j , then bj = −∞ (bj+n = +∞).

5.1 Minimum sub-region radius

To exploit the connection between nonsmooth local optimization and global opti-
mization [16], it is necessary for the m(Lk) to be bounded away from zero for all k.
This ensures CARTopt performs localized global optimization in the neighborhood
of potential cluster points by applying random search in a subset of R

n with posi-
tive measure at each iteration. To enforce this condition a minimum splitting distance
2δ > 0 between elements of ωL and ωH is imposed in CARTopt, post-partition. For-
mally, for each low sub-region Ai , each x ∈ ωL ∩ Ai must be at least a distance δ

away from all points on the boundary of Ai . For sufficiently close splits, the splitting
hyperplane is pushed away from closest x ∈ {ωL ∩ Ai}. That is, each lower bound
bj ∈ {Bi(j) : 1 ≤ j ≤ n} and each upper bound bj+n ∈ {Bi(j + n) : 1 ≤ j ≤ n} is set
to

Bi(j) = min
{
bj , x

−
j − δ

}
, (3)

Bi(j + n) = max
{
bj+n, x

+
j + δ

}
, (4)

for each Ai , where j = 1, . . . , n. Here x+
j = max{xj ∈ {ωL ∩ Ai}}, and x−

j =
min{xj ∈ {ωL ∩ Ai}}.

The update given by (3) and (4) has two important consequences. Firstly, it re-
moves the possibility of samples converging to an impassable hyperplane bound-
ary. Secondly, a minimum sub-region radius δ > 0 on each Ai is forced. Therefore,
m(Lk) ≥ δn for all k and so is bounded away from zero as required. The latter giving
convergence on nonsmooth problems, see Sect. 7. Herein δ = 1e−10 is chosen.

Applying the minimum sub-region radius update can destroy the desirable prop-
erty, Ao

i ∩ Ao
j = ∅ for all i �= j , inherent to the CART partition. To remove this prob-

lem the boundary of L could be extended, rather than individual sub-regions. How-
ever, this update is usually only applied when m(L) is approaching the limiting size
and has no adverse effects on the algorithm.

5.2 Updating problematic sub-region bounds

The partition is conducted in R
n and hence, it is possible that particular low sub-

regions are unbounded. That is, there may exist a b ∈ {Bi(q) : 1 ≤ q ≤ 2n} such that
|b| = ∞ for a particular Ai . Such a bound is considered problematic, defined formally
below.

Definition 6 (Problematic bound) A sub-region bound b ∈ {Bi(q) : 1 ≤ q ≤ 2n} for
a low sub-region Ai is considered a problematic bound if |b| = ∞.
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All problematic bounds warrant further investigation. Here two distinct low sub-
regions that can be formed with the CART partition are considered.

Definition 7 (Singleton sub-region) A low sub-region Ai is considered a singleton
sub-region if |{x : x ∈ ωL ∩ Ai}| = 1.

Definition 8 (Non-singleton sub-region) A low sub-region Ai is considered a non-
singleton sub-region if |{x : x ∈ ωL ∩ Ai}| > 1.

Firstly, non-singleton low sub-regions with problematic bounds are considered and
singleton low sub-regions are left until the next subsection.

To remove problematic bounds from non-singleton low sub-regions the following
method is used. The method is computationally cheap to evaluate and maintains the
hyperrectangular structure of L. Each problematic bound is replaced by a new bound
which fits the training data best.

Consider a low sub-region Ai with at least one problematic bound. Each problem-
atic bound corresponds to a face on the hyperrectangle which defines Ai . Initially,
each problematic lower bound bj ∈ {Bi(j) : 1 ≤ j ≤ n} is updated to

Bi(j) = x−
j − α max(rj , δ) (5)

and each problematic upper bound bj+n ∈ {Bi(j + n) : 1 ≤ j ≤ n} is updated to

Bi(j + n) = x+
j + α max(rj , δ), (6)

where α = 1
3 , δ is the minimum sub-region radius and rj = x+

j − x−
j is the range

in dimension j of the set {x : x ∈ ωL ∩ Ai}. Other choices of α > 0 are possible
provided they are finite. This initial step brings all problematic bounds closer to the
convex hull of points in Ai . The updated bounds are tested by drawing a point x from
an uniform distribution over each updated face of Ai and evaluating f (x).

Definition 9 (Upper-face) For a low sub region Ai with bounds Bi , the face defined
by setting bj ← bj+n is called the j th upper-face of Ai , where 1 ≤ j ≤ n.

Definition 10 (Lower-face) For a low sub region Ai with bounds Bi , the face defined
by setting bj+n ← bj , is called the j th lower-face of Ai , where 1 ≤ j ≤ n.

The j th upper and lower-faces define subsets of the hyperplanes xj = bj+n and
xj = bj respectively. Therefore, generating an x uniformly on j th face is equivalent
to uniformly sampling Ai with the j th coordinate fixed (see Sect. 6.2). If f (x) >

f (x+
j ) on the j th upper-face of Ai , a higher function value has been generated and

x is included in ωH . In this case the upper bound bj+n ∈ {Bi(j + n) : 1 ≤ j ≤ n}
is fixed (by (6)). Similarly, if f (x) > f (x−

j ) on the j th lower-face, the lower bound
bj ∈ {Bi(j) : 1 ≤ j ≤ n} is fixed (by (5)). Otherwise, descent was made, x is added
to ωL and the bound remains problematic.

For all remaining problematic bounds, α is increased iteratively in (5) and (6), in
a standard forward-tracking manner. Here the sequence α = 1

3 ,1,3, . . . ,310 is used
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although other choices are possible. The method terminates when either every b ∈
{Bi(q) : 1 ≤ q ≤ 2n} is not considered problematic, or 310 is reached. For the latter
the bound is fixed with α = 310. Each non-singleton Ai ⊂ Lk is considered in turn
and the update is applied ensuring Lk is finitely bounded. The additional samples are
included in the next training data set as recent points. Updating T reduces the risk of
having problematic bounds during the next iteration.

5.3 Singleton low sub-regions

The CART method can form a partition on R
n such that, singleton low sub-regions

exist. These sub-regions can be problematic and are often partially defined by two
close, parallel hyperplanes. Rather than applying the update described above, each
singleton sub-region is replaced by a hypercube.

In the extremely unlikely case when every low sub-region is a singleton sub-
region, the partition is updated as follows. For each x ∈ ωL at iteration k, a hypercube
with center x and radius r defines each sub-region. The hypercube radius is based on
m(Lk−1) to ensure the algorithm searches at a similar level to the previous iteration,
keeping the search focused. Specifically,

r = 1

2
max

{(∑|A|
i=1

∏n
j=1(b

(i)
j+n − b

(i)
j )

|ωL|
)1/n

, δ

}
,

where, b
(i)
j+n and b

(i)
j are the bounds on sub-region Ai on the previous approximate

level set Lk−1, with L0 = h[−1,1]n. Here |A| denotes the number of low sub-regions.
The approximate level set Lk is defined by the union of hypercubes. The inclusion
of δ ensures m(Lk) > 0 for all k. Each singleton sub-region has equal measure and
thus, has equal probability of being sampled during the next sampling phase, see next
section.

When there exists at least one non-singleton low sub-region, the partition is up-
dated as follows. The notation Āi is used to denote singleton sub-regions of Lk . For
each x ∈ {ωL ∩ Āi}, a hypercube replaces each Āi with center x and radius r , defined
by

r = 1

2
max

{(∑m
i=1

∏n
j=1(b

(i)
j+n − b

(i)
j )

|ωL| − |Ā|
)1/n

, δ

}
, (7)

where |Ā| is the number of singleton sub-regions and the m non-singleton sub-regions
Ai ⊂ Lk , i = 1, . . . ,m, have upper and lower bounds b

(i)
j+n and b

(i)
j on the j th coordi-

nate for j = 1, . . . , n. Replacing each Āi with a hypercube, Lk is updated as the union
of low sub-regions. After applying (7), each singleton sub-region occupies 1/|ωL| of
the volume of Lk . This is chosen because each x ∈ Ai occupies 1/|ωL| of the point
space of ωL.

6 Generating the next batch

At each iteration the batch of N points Xk+1 is distributed into the approximate level
set Lk . This increases the chance of reducing f , and also increases the chance of
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reducing the measure of L at each iteration, down to the limiting size. Ideally each
L would be nested, however, as each is an approximate level set this is usually not
true. A fraction of samples can be drawn outside of L, particularly if (1) is a bound
constrained problem. The interested reader is referred to [21] for details on sampling
outside of L and such sampling is considered no further here.

6.1 Batch size

Before describing how each batch of points is generated, the batch size N > 0 is cho-
sen. To choose a suitable N the efficiency of uniform sampling over L is considered.
Firstly, let us define the η-percentage set of L.

Definition 11 (η-Percentage set) Let f− and f+ denote the minimum and maximum
of f on L, respectively. For any η ∈ [0,1], assume there exists an fη ∈ [f−, f+] for
which the set

S(η) = {
x ∈ L : f (x) < fη

}
,

has m(S)/m(L) = η. Such a set is called the η-percentage set of L.

Therefore, S(1) = L and in the limit as ε → 0, S(ε) converges to the set of mini-
mizers {x ∈ L : f (x) = f−}.

Let us now consider how many sample points are required to generate at least one
point in each S(η) as η is decreased. The probability that there exists at least one
point x ∈ S(η) out of N uniform draws over L, is given by,

Pr = 1 − (1 − η)N . (8)

Choosing a high probability, Pr = 0.99 and rearranging (8) with respect to N ,

N = ln(0.01)

ln(1 − η)
,

the expected number of points required to generate an x ∈ S(η) is obtained.
From Fig. 3 it is clear that uniform sampling is very effective at reducing f in the

early stages of sampling, only requiring 44 sample points to generate an x ∈ S(0.1)

with probability 0.99. However, to reduce f significantly further, generating an x ∈
S(0.05) say, an extremely large sample size is required.

At each iteration Lk is sampled using a near-uniform distribution. Therefore, to
maintain algorithm efficiency, it would be advantageous to alternate between parti-
tion and sampling phases with relatively small batch sizes. Sampling Lk for too long
would cause CARTopt to become inefficient, with a large number of samples gener-
ated in Lk failing to reduce f below the current lowest function value. Furthermore,
each partition phase defines a new, possibly smaller, promising subset of R

n to search.
Here the value N = 20 is chosen. Hence, Lk is sampled until an x ∈ S(0.2) has been
obtained with probability 0.99, before another partition phase is implemented. Nu-
merical simulations performed by the first author support this batch size.

For the initial batch 2N = 40 samples are used. Therefore, a generated point x ∈
L0 = x0 + h[−1,1]n will be an element of S(0.1) with high probability. This gives



CARTopt: a random search method

Fig. 3 The expected number of
sample points required to
generate an x ∈ S(η) from
uniform sampling over L, with
probability 0.99

the algorithm at least one sufficiently low point in the initial partition and hence, a
promising sub-region to begin the search for an essential local minimizer.

6.2 Delivery method for new sample points

To sample the approximate level set a near-uniform distribution over Lk is used.
The delivery method requires a two stage process. Firstly a low sub-region Ai ⊂ Lk

is selected, then a point x is drawn from a uniform distribution over Ai . To select
each Ai a simple discrete inverse transform method is used [13]. The cumulative
distribution function F for the sub-region measure of Lk is given by

F(Ap) =
∑p

q=1 m(Aq)
∑

i m(Ai)
=

∑p

q=1

∏n
j=1(b

(q)
j+n − b

(q)
j )

∑
i

∏n
j=1(b

(i)
j+n − b

(i)
j )

,

where m(.) denotes Lebesgue measure and b
(i)
j+n and b

(i)
j are the bounds on sub-

region Ai . A particular Ai is selected using

Ai = min
(
i : U ≤ F(Ai)

)
,

where U ∈ [0,1] is a random variable. Hence, more samples are expected to be drawn
from larger sub-regions of Lk .

Upon selecting a low sub-region Ai a point x ∈ Ai is delivered using

x = [
b

(i)
n+1 − b

(i)
1 , . . . , b

(i)
2n − b(i)

n

]
Un + [

b
(i)
1 , . . . , b(i)

n

]
,

where Un is a diagonal matrix of rank n with each non-zero element ujj ∈ [0,1]
a random uniform variable. The method repeats until the batch of N points is ob-
tained.

If no post-partition modifications were required at iteration k, Ao
i ∩ Ao

j = ∅ for

all i �= j . Therefore, the proposed delivery method samples Lk uniformly. Whereas,
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a modified partition can have an overlap such that Ao
i ∩ Ao

j �= ∅. All overlaps have
a greater probability of being sampled as they can be sampled from multiple sub-
regions. However, such an overlap tends to be small, giving near-uniform sampling
on Lk and does not have any adverse effects on the algorithm.

7 Convergence analysis

The convergence properties of CARTopt are analyzed with the stopping conditions
removed. This allows us to examine the asymptotic properties of the sequence of
iterates generated by the algorithm. Stopping conditions are included from a practical
point of view.

Before the result is presented, we show that the CARTopt algorithm generates an
infinite sequence of iterates.

Theorem 12 The sequence {zk} generated by the CARTopt algorithm is an infinite
sequence.

Proof For {zk} to be an infinite sequence, Steps 3(a–g) of CARTopt must be finite
processes. Noting that |Tk| is finite for all k, Steps 3(a, b, c, f, g) are finite processes.
Step 3(e) is a finite process with N (finite) points drawn from the finitely bounded Lk .

The CART partition in Step 3(d) uses a finite data set Tk and only considers a finite
number of splits from the set {s = (xj + ξj )/2 : x, ξ ∈ Tk}. The resulting partition on
R

n is a finite set of non-empty hyperrectangles, where the number of distinct low
sub-regions is bounded by |ωL| = 	0.8N
. Each low sub-region update requires only
a finite number of steps. Therefore, the partition phase is a finite process and thus,
Step 3(d) is finite. �

The convergence result for the unconstrained CARTopt algorithm can now be
given. To establish convergence to an essential local minimizer of f the following
assumptions are required.

Assumption 13 The following conditions hold:

(a) the points at which f is evaluated at lie in a compact subset of R
n;

(b) the sequence of function values {f (zk)} is bounded below; and
(c) the objective function f is lower semi-continuous.

The first two assumptions ensure {zk} is bounded and exclude the case where
f (zk) → −∞ as k → ∞. Assumption 13(c) ensures that

lim inf
ζ→z∗

f (ζ ) ≥ f (z∗),

where z∗ is a cluster point of {zk}. Without Assumption 13(c), the CARTopt algorithm
does not always converge to an essential local minimizer. Consider, for example, the
function

f (x) =
{

‖x‖ x �= 0

1 x = 0.
(9)
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The origin is not an essential local minimizer of (9), but the algorithm will give
{zk} → 0 as k → ∞ almost surely. Modifying (9) so that f = −1 at x = 0 makes
f lower semi-continuous and the origin is now an essential local minimizer.

The convergence result for the unconstrained CARTopt algorithm shows that every
cluster point of the sequence {zk} is an essential local minimizer of f with probability
one.

Theorem 14 Let Assumption 13 hold. Each cluster point z∗ of the sequence {zk} is
an essential local minimizer of f with probability one.

Proof Theorem 12 and Assumption 13 ensure the existence of cluster points in {zk}.
Let z∗ be any cluster point of {zk} and assume, by contradiction, that z∗ is not an

essential local minimizer of f . Then, there exists a set

E ⊂ {
z ∈ R

n : f (z) < f (z∗) and ‖z − z∗‖ < δ/2
}
, (10)

with m(E) > 0. Also there exists an infinite subsequence K ⊂ Z+ such that

‖zk − z∗‖ < δ/2 for all k ∈ K, (11)

where all members of K are sufficiently large to ensure (11) holds. Then,

‖zk − z‖ ≤ ‖zk − z∗‖ + ‖z∗ − z‖ < δ

for all z ∈ E. For all k sufficiently large, CARTopt samples near-uniformly in the set

{
x ∈ R

n : ‖zk − x‖ < δ
}

(12)

with probability density greater than or equal to (|ωL| · m(Lk))
−1. Therefore, CAR-

Topt samples in E with probability

Pr(x ∈ E) ≥ m(E)

|ωL| · m(Lk)
> 0

for all sufficiently large k. Hence, in the limit as k → ∞, f (zk) < f (z∗) almost
surely, contradicting Assumption 13(c). Thus, z∗ must be an essential local minimizer
of f , almost surely. �

8 The stopping rule

Numerical results were obtained using the stopping rule from [21]. This stopping
rule is an adaptation of the rules of Dorea [7] and Hart [9] for global optimization by
random sampling. These rules can not be applied directly as they require sampling
from a fixed probability distribution. These rules rely on Dorea’s [7] observation that
the measure of the level set

E
(
x∗, δ, ε

) = {
x ∈ R

n : f (x) < f
(
x∗) + ε and ‖x − x∗‖ < δ

}



B.L. Robertson et al.

is almost always a power law function of ε (for small ε) when x∗ is a local minimizer
and δ is fixed. This observation can still be exploited, and we do so by estimating the
power law fit around a prospective local minimizer x using known function values
at sample points near x. If the power law accurately fits these known points, and it
indicates it is unlikely that points near x which are significantly better than x exist,
then the algorithm accepts x as an acceptable approximation to a local minimizer,
and the method halts.

The relevance of Dorea’s observation rests on the fact that CARTopt samples near
uniformly in a neighborhood of its best known point. Without this property the logic
behind our new stopping rule is invalid. Hence, for example, it can not be applied
to methods such as MADS, which sample on a sequence of grids. The situation is
symmetric: MADS’ stopping rule is based on a minimum grid size, which can not be
applied to CARTopt as there is no equivalent of a grid. In any case a stopping rule is
an integral part of an algorithm, and may (as ours does) crucially rely on properties
particular to that algorithm. This is especially true of global optimization in the ab-
sence of global information such as a Lipschitz constant, or knowledge of the global
minimum [24]. For example estimating the global minimum of an arbitrary continu-
ous function on the interval [0,1] using sample points will always eventually succeed,
but deciding when enough sample points have been used is impossible because arbi-
trarily narrow, deep notches might exist in parts of [0,1] not yet sampled. Hence the
stopping rule is not only the hardest part of such a global optimization problem, it can
not be made totally reliable. It has been shown [16] that finding a descent direction in
non-smooth local optimization is tightly linked to global optimization, with attendant
difficulties.

Our stopping rules uses the set Y containing the Γ least function values in ascend-
ing order

Y = {f1, . . . , fΓ }.
Following Dorea [7] we assume that the Cumulative Distribution Function (CDF) of
the function value f0 at a random point in the level set {x ∈ R

n : f (x) < fΓ } is

F(f, κ) = Pr(f0 ≤ f ) =
(

f0 − f∗
fΓ − f∗

)κ

(13)

where f∗ is the essential local minimum. In fact this assumption is somewhat more
general than Dorea’s [21], and usually applies even when f is discontinuous at the
local minimizer x∗. The values for κ and f∗ must be estimated. The estimate f̂∗ of f∗
was chosen from three possible values. These are f1 − R, f1 − R/2, and f1 − R/4,
where R is the range of Y given by R = max(fΓ − f1, εo/2). The positive con-
stant εo ensures R is bounded away from zero. This choice of values for f̂∗ appears
restrictive, but worked well in practice [21].

For each possible value of f̂∗, the value of κ ∈ [n/2,2n] is chosen which mini-
mizes the supremum norm distance between the CDF in (13) and the Empricial Dis-
tribution Function (EDF) of the actual data Y , where the EDF is

F̂ (f ) = 1

Γ

Γ∑

i=1

U (f − fi) (14)
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and the unit step function U (t) is one if t ≥ 0, and zero otherwise. The pair of values
f̂∗, κ̂ for which the supremum norm

sup
f ∈[0,fΓ ]

∣∣F̂ (f ) − F(f )
∣∣

is least are used in (13) to give the fitted CDF.
The range of κ values considered is fairly tight. The lower bound corresponds to

the case when f grows quadratically as one moves away from a local minimizer,
whereas the upper bound corresponds to the case when f grows to the 1/2 power.
A linear growth rate gives κ = n. The range of κ values [n/2,2n] gave good results,
but if a wider range is needed, it is simple to alter it.

The goodness of fit is measured using the Kolmogorov-Smirnov test for contin-
uous data with the null hypothesis that the two distributions are the same. The null
hypothesis is rejected at the 0.05 level of significance, in which case the stopping
rule does not halt the algorithm. If the null hypothesis is not rejected, the probability
that a random sample point in the level set {x ∈ R

n : f (x) < fΓ } will have a function
value less than f̂∗ − εo is calculated. If this is less than β the stopping rule halts the
algorithm. Numerical results were generated using εo = 10−8 and β = 10−6.

9 Numerical results and discussion

CARTopt was tested on two sets of problems. The first set was chosen from Hock
et al. [10], Moré et al. [14] and Schittkowski [22]. The problems selected were ex-
pressed as a sum of squares

∑
i f

2
i with a global minimum of zero. These problems

are easily made nonsmooth by replacing the sum of squares with absolute values∑
i |fi |. The nonsmooth versions share the same global minimizer(s) as their smooth

counterparts because fi = 0 for all i at the solution. However, these modified func-
tions can make the results seem deceptively poor. A final function value of 1e−5 on
the nonsmooth function, for example, corresponds to a function value of approxi-
mately 1e−10 on the original problem. Here we consider anything less than 1e−4 an
acceptable approximate solution to a particular problem.

The second set of problems was taken from Lukšan and Vlc̆ek [12], Brachetti
et al. [3], and Vicente and Custódio [25]. The problems from [12] and [25] are nons-
mooth and the two problems from [3] were made nonsmooth by the first author. The
reader is referred to the Appendix for their exact formulation.

Numerical results comparing CARTopt to Pure Random Search (PRS), Controlled
Random Search (CRS) [3], and two new versions of CRS [3] are presented in Table 1.
The CRS algorithms use a set S of 35n randomly generated points over the search
region. At each iteration n + 1 points are randomly selected from S and one of these
points is randomly selected and reflected through the centroid of the remaining n

points. If the reflected point has a lower f value than max{f (x) : x ∈ S}, it is retained
and the point with the greatest f value is removed from S and the method repeats.
The method terminates when |maxf (x)−minf (x)| < 1e−6, where x ∈ S. One new
version of the algorithm uses a weighted centroid, weighted reflection, and forms
a quadratic approximation using the 2n + 1 points with the least f values under
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Table 2 Comparison of
CARTopt with MADS and
Algorithm 2.1 from [25] on
three lower semicontinuous
functions from [25]. All results
are 10 run averages

Problem n MADS Suff. Decrease CARTopt

failures nf failures nf failures nf

f1 2 0 233 0 175.6 0 764

f2 2 0 193.9 0 494.6 0 476

f4 2 2 220.6 1 177.7 0 403

certain conditions [3]. The second new version is obtained from the first by omitting
the quadratic approximation. Although the CRS algorithms are global optimization
algorithms, they are direct search methods which can be applied to the problems
considered here if a bounded search region is specified. However, the CRS algorithms
have no formal convergence theory for the types of problems considered.

An initial hypercube search region of the form

(x0 + x∗)/2 + h[−1,1]n, (15)

was used, where x0 and x∗ are the standard starting point and a known solution for
each problem respectively. The radius h is chosen sufficiently large so that both x0
and x∗ are interior points of the initial search region. This allows us to compare
CARTopt with the other methods applied in an unbiased search region. The interested
reader is referred to [21, Appendix A.1] for exact values.

PRS marginally solved three of the test problems using 50000 function evalua-
tions. Unsurprisingly both CARTopt and the CRS algorithms were superior to PRS,
requiring fewer function evaluations to produce far more accurate approximations
to the solutions of each problem. The new versions of CRS required fewer function
evaluations than the original CRS on most of the problems to obtain similar or more
accurate approximate solutions. The first author found that the weighted centroid
and weighted reflection reduced the total function evaluations, whereas the quadratic
model had little effect on these problems. These observations are similar to those
reported in [3].

CARTopt solved all the problems considered to the desired standard and required
fewer function evaluations to obtain similar or better approximate solutions on all
but one of the problems. The CRS algorithms required fewer function evaluations
to obtain a more accurate approximate solution to the Gulf problem. For all other
problems CARTopt took approximately half (or fewer) function evaluations to solve
each problem to the desired standard.

The CARTopt algorithm was also tested on the four lower semicontinuous func-
tions from [25], presented in Table 2. Functions f1, f3, and f4 are discontinuous at
the unique solution x∗ = (0,0) and f2 is continuous at x∗ = (0,0) but not Lipschitz
continuous near this point [25]. The authors in [25] used the Mesh Adaptive Direct
Search (MADS) algorithm [2] to solve the problems and reported the number of fail-
ures and the average number of function evaluations. CARTopt solves problems f1,
f2, and f4 with no failures but required more function evaluations to do so. Prob-
lem f3 is not reported here because CARTopt finds an essential local minimizer and
hence solves the problem by our definition. In [25] the classical definition of a min-
imizer is used and they report ten failures from ten runs on this problem. Reporting
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Table 3 Comparison of CARTopt with two other direct search methods for nonsmooth unconstrained
optimization created by the authors. The results for CARTopt are averages over 10 runs. The f value in
bold shows the lowest value obtained

Problem n Results from [16] Results from [17] CARTopt

|f − f∗| nf |f − f∗| nf |f − f∗| nf

Beale 2 4e−8 3638 2e−8 1119 1e−9 1083

Brown 2D 2 2e−3 10598 4e−4 950 2e−3 50000

Gulf 3 1e−5 15583 6e−6 31306 5e−6 16405

Helical Valley 3 7e−8 8406 1e−9 2773 5e−9 1891

Powell 4 4e−7 11074 3e−3 3659 7e−9 2756

Rosenbrock 2 5e−8 4438 2e−8 1154 3e−9 1184

Trigonometric 5 5e−8 14209 4e−8 6678 2e−8 4105

Variably Dim. 8 2e−7 34679 5e−7 55647 4e−8 16182

Woods 4 3e−7 15610 5e−4 4682 0.02 3852

that CARTopt solved all ten problems would be misleading. The authors in [25] also
include results using different starting positions. However in the CARTopt approach,
an initial batch of 2N random points is used and changing a single start point does
not change our results.

CARTopt was also compared with two other direct search algorithms created by
the authors, presented in Table 3. An initial hypercube search region of the form

x0 + 2[−1,1]n, (16)

was used, where x0 is the standard starting point for each problem. This gives CAR-
Topt the same starting point as the algorithms in [16, 17]. The CARTopt algorithm
was superior to the algorithm from [16], using fewer function evaluations to produce
more accurate approximate solutions on all problems except on the Brown, Gulf,
and Woods problems. On the Gulf problem CARTopt obtained a more accurate ap-
proximate solution, but required more function evaluations to do so. On the Woods
function one of CARTopt’s 10 runs halted early, leading to a poor average function
value. For the other six problems approximately one third of the function evaluations
were required. CARTopt matched or outperformed the algorithm in [17] on all test
functions except the Brown and Woods functions.

CARTopt (using (16) as the initial search region) was compared with the MADS
algorithm for unconstrained nonsmooth minimization. Each MADS implementation
was obtained using the optimtool function of MATLAB’s optimization toolbox,
with the patternsearch and MADS options selected. An initial mesh size of exp(1)/2
was chosen to ensure the solution of a particular problem was not on the initial grid,
preventing misleading results. A terminating mesh size of 1e−10 was used. Smaller
values were also tested but this tended to increase the number of function evaluations
and had little effect on accuracy. The MADS algorithm has a ‘search step’, where the
user can choose to implement another optimization method. This step is not needed
for theoretical convergence and is included to potentially increase the rate of conver-
gence. Here we considered no search method, the Nelder–Mead method [5, 15], and
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Table 4 Comparison of CARTopt with MADS using three different search methods. All CARTopt results
are 10 run averages

Problem n No search Nelder–Mead latin hypercube CARTopt

|f − f∗| nf |f − f∗| nf |f − f∗| nf |f − f∗| nf

Beale 2 0.07 640 1e−5 4150 1e−7 2984 1e−9 1083

CB2 2 4e−3 358 5e−9 3718 2e−3 1768 4e−9 833

CB3 2 6e−3 541 1e−6 4342 1e−8 1869 3e−9 1086

Cosine Mix. 4 2e−10 1550 2e−15 25278 8e−3 50000 2e−8 3496

6 6e−10 3397 1e−13 45157 6e−3 50000 2e−8 6731

Crescent 2 0.02 620 1e−8 566 6e−4 1800 1e−9 828

Exponential 6 9e−11 2732 1e−10 3228 1e−16 6170 2e−8 4595

8 9e−11 4437 2e−10 6907 3e−16 9271 2e−8 6998

ext. Rosenb’k 4 2.55 1260 3e−5 14307 1.79 3953 1e−8 3679

Gulf 3 4e−3 50000 2e−7 16900 0.77 50000 5e−6 16405

Helical Valley 3 0.36 657 7e−6 4303 0.58 2684 5e−9 1891

LQ 2 1e−3 400 4e−8 3384 1e−4 1872 4e−8 788

Mifflin 1 2 0.19 299 3e−7 2040 6e−3 50000 4e−9 1268

Mifflin 2 2 2e−11 625 2e−11 2409 1e−10 14164 2e−9 924

Powell 4 0.95 1373 2e−2 5265 0.38 4154 7e−9 2756

QL 2 0.85 484 7e−10 3653 0.09 1674 2e−9 897

Rosenbrock 2 1.49 395 1e−5 3508 2e−1 1932 3e−9 1184

Trigonometric 5 3e−10 2069 3e−10 17620 1e−15 5110 2e−8 4105

Variably Dim 4 0.98 1782 1e−5 21590 1.04 50000 1e−8 3067

8 3.01 7400 4e−5 50000 1.22 12356 4e−8 16182

Wolfe 2 4e−10 536 1e−9 1818 1e−11 2609 1e−9 963

240 3 22.2 6205 6e−6 2516 0.02 50000 6e−9 1943

261 4 0.58 4441 2e−6 18022 2e−5 50000 5e−8 3960

291 10 8e−20 7245 6e−20 8856 5e−39 12790 1e−8 5368

Latin Hypercube design [11]. These methods were chosen because they require no
gradient information and can be applied to nonsmooth problems. Results are present
in Table 4.

The MADS instance with no search step solved one third of the problems to the
desired standard. The Nelder–Mead and Latin Hypercube search step methods dra-
matically increased the number of function evaluations on most of the problems.
This additional computational effort did not significantly increase the performance
of MADS using the Latin Hypercube search method, still failing to solve half the
problems to the desired standard within 50000 function evaluations. However, the
Nelder–Mead search step greatly increased the performance of MADS, only failing
to reach the desired accuracy on one problem (Powell n = 4).

Comparing CARTopt to the best of the MADS algorithms (the one using the
Nelder Mead search step) we see that CARTopt solved all the problems to the desired
standard, requiring fewer function evaluations than MADS on 21 of the 24 prob-
lems considered. Similar function evaluations were required on the remaining three
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Table 5 Comparison of CARTopt with three versions of MADS. All values are averaged over ten runs.
The f value in bold shows the lowest value obtained. The nine discontinuous test functions are listed in
the Appendix

Problem n No search Nelder–Mead latin hypercube CARTopt

|f − f∗| nf |f − f∗| nf |f − f∗| nf |f − f∗| nf

B1 2 0.85 553 1e−6 5994 0.04 3553 3e−9 1291

B2 2 1.65 906 1e−6 6606 0.89 2932 2e−9 1396

B3 2 1.48 624 6e−5 4488 1.17 2928 4e−9 1641

Cosine Mix. 4 2e−10 1550 2e−15 25278 8e−3 50000 2e−8 3496

Cosine Mix. 6 6e−10 3397 1e−13 45157 6e−3 50000 2e−8 6731

R1 2 5.20 392 3e−5 2929 0.78 1705 4e−9 1489

R2 2 1.12 386 1e−5 3609 0.98 2287 4e−9 1473

R3 2 4.94 375 3e−9 8013 2.17 2332 5e−9 2045

R4 2 3.42 366 3e−6 4522 0.92 2975 2e−9 1398

problems. CARTopt obtained the most accurate approximate solutions on most of the
problems considered. The first author tried adjusting the termination parameters of
MADS to increase its final estimates. However, no significant change was observed
and MADS became increasingly computationally expensive.

Results on discontinuous variants of three problems are presented in Table 5 for
the three versions of MADS and also for CARTopt. Two of the three MADS versions
(no search and Latin Hypercube) failed on seven and all nine problems respectively.
The Nelder Mead version of MADS and CARTopt both solved all nine problems,
but CARTopt was by far the faster of the two. Interestingly MADS without a search
step outperformed CARTopt on the two cosine mixture problems. These results show
that CARTopt was the most effective of the four methods on discontinuous problems.
Overall CARTopt outperformed the other methods on a range of smooth, non-smooth,
and discontinuous problems, showing it is clearly an effective and robust method for
non-smooth optimization.

10 Conclusion

A random search algorithm for unconstrained local nonsmooth optimization has been
presented. The method forms a partition on R

n using CART to identify subsets where
f is relatively low. Due to the hyperrectangular structure of the partition, the low sub-
sets can be sampled directly. Alternating between partition and sampling phases pro-
vides an effective method for nonsmooth optimization. Convergence to an essential
local minimizer of f with probability one has been demonstrated under mild condi-
tions. It is possible to apply this convergence theory to a general class of algorithms
that ultimately exhaustively search for points of descent in a neighborhood Ω of
cluster points, provided m(Ω) is bounded above zero and z∗ ∈ Ω . Numerical results
have been presented which verify that theoretical convergence is achieved in practice.
Comparison with other direct search methods shows that the CARTopt algorithm is
competitive in practice.
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Appendix

A nonsmooth version of the Cosine Mixture problem [3] is

f (x) =
{

0.1
∑n

i=1 cos(5πxi) − ∑n
i=1 |xi |, if ‖x‖∞ ≤ 1

∞ otherwise,

where x0 = (0,0, . . . ,0). The cases n = 4 and n = 6 were studied, where f∗ = −4.4
and f∗ = −6.6 respectively.

A nonsmooth version of the Exponential problem [3] is

f (x) = − exp

(

−0.5
n∑

i=1

|xi |
)

,

where x0 = (1,1, . . . ,1) and f∗ = −1. The cases n = 6 and n = 8 were studied.
The discontinuous versions of the Rosenbrock function are defined as follows.

fR1(x) =
{

10|x2 − x2
1 | + |x1 − 1| if x1 ≥ 1,

10|x2 − x2
1 | + |x1 − 1| + 4 otherwise.

fR2(x) =
{

10|x2 − x2
1 | + |x1 − 1| + 4 if x1 > 1,

10|x2 − x2
1 | + |x1 − 1| otherwise.

fR3(x) =

⎧
⎪⎪⎨

⎪⎪⎩

10|x2 − x2
1 | + |x1 − 1| + 4 if x1 < 1,

10|x2 − x2
1 | + |x1 − 1| + 2 if x1 ≥ 1 and x2 > 1,

10|x2 − x2
1 | + |x1 − 1| otherwise.

fR4(x) =
{

10|x2 − x2
1 | + |x1 − 1| if x1 ≤ 1 and x2 ≤ x1,

10|x2 − x2
1 | + |x1 − 1| + 4 otherwise.

Each problem uses x0 = (−1.2,1) and has an essential local minimizer at x∗ = (1,1)

with f∗ = 0.
The discontinuous versions of the Beale function are defined as follows. Let

f1(x) = 1.5 − x1(1 − x2);
f2(x) = 2.25 − x1

(
1 − x2

2

);

f3(x) = 2.625 − x1
(
1 − x3

2

)
.
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fB1(x) =
{∑

i |fi(x)| if x1 ≥ 3 and x2 ≥ 0.5,
∑

i |fi(x)| + 2 otherwise.

fB2(x) =
{∑

i |fi(x)| if x2 ≥ 0.5 and x2 − 0.5x1 ≤ −1,
∑

i |fi(x)| + 2 otherwise.

fB3(x) =
{∑

i |fi(x)| if x2 − 0.25x1 ≥ −0.25 and x2 − 0.5x1 ≤ −1,
∑

i |fi(x)| + 2 otherwise.

Each problem uses x0 = (1,1) and has an essential local minimizer at x∗ = (3,0.5)

with f∗ = 0.
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