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This article introduces a new approach for estimating Value at Risk (VaR),

which is then used to show the likelihood of the impacts of the current

financial crisis. A commonly used two-stage approach is taken, by

combining a Generalized Autoregressive Conditional Heteroscedasticity

(GARCH) volatility model with a novel extreme value mixture model for

the innovations. The proposed mixture model permits any distribution

function for the main mode of the innovations, with the very flexible

Generalized Pareto Distribution (GPD) for the upper and lower tails.

A major advance with the mixture model is that it overcomes the problems

with threshold choice in traditional methods as it is treated as a parameter

in the model to be estimated. The model describes the tail distribution

of both the losses and gains simultaneously, which is natural for financial

applications. As the threshold is treated as a parameter, the uncertainty

from its estimation is accounted for, which is a challenging and often

overlooked problem in traditional approaches. The model is shown to be

sufficiently flexible that it can be directly applied to reliably estimate the

likelihood of impact of the financial crisis on stock and index returns.

I. Introduction

Investment banks and financial corporations often

want to reliably estimate the Value at Risk (VaR) for

their portfolios. The developing 2008–2009 financial

crisis is not only the worst and largest crisis in

financial history, but also one of the most under-

estimated events in modern financial history. The

measurement of risk is therefore attracting more

attention from financial investors than ever before.

VaR is a measure of the market risk as the expected

financial reverse movements over a certain period,

or the expected tail distributions for both losses

and gains. Statistically, the key issue of VaR is to

reliably describe the distribution of the tail behaviour

for the holding portfolios. There are three common

statistical approaches to estimate VaR: nonpara-

metric methods which frequently use sample quan-

tiles; parametric methods such as myriad of volatility

models; and various Extreme Value Theory (EVT)

based methods, where commonly the Generalized

Pareto Distribution (GPD) is assumed for the tail

distribution.
Nonparametric methods are rather uncertain

due to the inherent lack of sample information in

the tails of the distribution. Parametric methods such
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as the Autoregressive Conditional Heteroscedasticity
(ARCH) and Generalized ARCH (GARCH) model
are known to frequently underestimate or overesti-
mate tail risk (McNeil and Frey, 2000) due to the
residuals often exhibiting heavier tailed rather than
the normal or t-distribution which are usually
assumed. Traditional EVT approaches are challen-
ging to adapt to cope with serial dependence seen in
financial return series.

There are several solutions to these issues, some
of which are now discussed. Parametric financial
models and the EVT theory have been combined
in various forms to capture the impact of the
heteroscedastic/dependence on the tail behaviour of
the return series (see for example Pauli and Coles,
2001). One approach is to introduce a time structure
on the parameter of the GPD to capture
the heteroscedastic process, see Bali and Weinbaum
(2007) or Zhao et al. (2009), for example. However,
among other difficulties with this approach is
defining a stationary time series structure based
on irregularly spaced time series. McNeil and Frey
(2000) put forward a two-stage approach by combin-
ing the GARCH model to estimate volatilities
and then use the EVT based GPD to model the
tail of the standard innovations of the GARCH
above some chosen thresholds. After removal of
the stochastic volatility, the standard innovations
are approximately independent and identically dis-
tributed (i.i.d.), permitting the use of the GPD as an
asymptotically justified model for the tail.

A key problem with the above two-stage method
is the threshold selection for the GPD (see Beirlant
et al., 2004) and accounting for the uncertainty due to
the selection. The threshold must be sufficiently high
to ensure the threshold excesses asymptotic argu-
ments used to justify the GPD provide a reliable
approximation (see Smith, 1989). However, the vari-
ance of the parameter increases if the threshold is too
high, due to the reduced sample information. There is
always trade off between these two conditions.
Various graphical techniques (see Beirlant et al.,
2004) based on properties of the GPD are typically
used for threshold selection. However, these techni-
ques are often criticized for being rather subjective in
nature. In many applications, automated threshold
estimation would be beneficial, e.g. in forecasting or
applications with many series for the model to be
applied to. Further, once the threshold is selected, it is
typically treated as a known fixed quantity and so the
uncertainty surrounding its estimation is not
accounted for.

Several approaches have recently been taken to
estimate the threshold. Dupuis (1998) put forward
a semi-automated method of robust threshold

selection. However, some subjective assessment is
still required. Frigessi et al. (2002) suggest a dynam-
ically weighted mixture model of a GPD and a light-
tailed distribution for the bulk of the distribution,
with a smooth weight function to transition between
the two distributions, to replace the usual threshold
choice. Another similar mixture model is developed
by Behrens et al. (2004) by using a mixture of
truncated Gamma for nonextremes and the GPD for
one side extremes. The threshold is a model param-
eter that is estimated directly with the others. Both
of these mixture models assume a certain form for
the distribution below the threshold. Tancredi et al.
(2006) propose a less-restrictive approach to over-
come the lack of a natural model below the threshold
distribution as adapting an unknown number of
uniform distributions. The threshold itself is again
a parameter of the model to be estimated.

These mixture models essentially combine the
GPD for one of the tails (typically the upper tail)
with another distribution for the bulk of the distribu-
tion. In some applications, interest lies in both tails
(e.g. loss and gain for finance applications). A mixture
model, where both tails are GPD is developed in this
article to capture both tails simultaneously and
account for the uncertainty about the thresholds in
any inferences made. Clearly this extension provides
a very flexible model for capturing all forms of tail
behaviour, potentially allowing for asymmetry in the
distribution of two tails.

In this study, we are interested in quantifying the
tail related VaR risk measure using the two-stage
McNeil and Frey (2000) approach, but with our two
GPD tail mixture model. More specifically, we define
a mixture distribution with three components: a GPD
for losses tail, a GPD for gains tail and the normal
for the innovations between main mode between the
two GPD thresholds. The distribution selected for the
nonextreme data can affect estimation of the tail
distribution and therefore it is necessary to choose
it according to the application. The normal distribu-
tion is suggested for the financial applications in
this article, due to their inherent unimodal, approx-
imately symmetric and quadratic shape around the
mode. A Bayesian method of estimation is used
for the mixture model as it can take the advantage
of any expert prior information (see Gelman et al.,
2004), which is important in tail estimation due to the
inherent sparsity of data.

The proposed method is applied to the forecasting
of VaR on daily return series of both individual
stock and market index including the period of
the most recent world financial crisis (year 2008).
The two-stage mixture modelling approach is
described in Section II. Section III gives the empirical
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results from application to returns from a stock
and index. Conclusions and discussion are supplied
in Section IV.

II. Model and Estimation

The GARCH–GPD mixture model

Let {Rt} be a strictly stationary daily log return series
on a financial asset at time t. The two-stage model for
VaR is as follows:

(1) Fit the {Rt} with a GARCH volatility model to
obtain the standardized innovation term xt as

Rt ¼ EðRtÞ þ vtxt ð1Þ

here, the EðRtÞ is the expected return at time t
and vt is the volatility estimators from GARCH
model. The form of GARCH can be changed
according to applications.

(2) Fit the GPD–Normal–GPD mixture model
(henceforth denoted GNG) to {xt} (the stan-
dardized innovation sequence). The distribu-
tion function of the GNG model is defined as

Fðxjm, s, �r, �r, ur, �l, �l, ul Þ

¼

�ðul jm, sÞ 1� G �xj�l, �l, � ulð Þ½ � x � ul

�ðxjm, sÞ ul 5 x5 ur

�ðurjm, sÞ þ 1��ðurjm, sÞ½ �G xj�r, �r, urð Þ

x � ur

8>>>><
>>>>:

ð2Þ

where�ðxjm, sÞ is the normal cumulative dis-
tribution function with mean m and variance s2,
and Gðxj�, �, uÞ is the distribution function of
GPD with shape �, scale � and threshold u.

The subscripts on the GPD parameters are l for
the left ‘losses’ tail and r the right ‘gains’ tail, e.g. ur is
the threshold for the gains tail. For brevity we have
dropped the subscripts in the GPD cumulative
distribution function:

Gðxj�, �, uÞ ¼ 1� 1þ �
x� u

�

� �h i�1=�
,

x 2 <, x4 u, 1þ �ðx� uÞ=�4 0
� �

ð3Þ

where the location u 2 < , scale �4 0 and � 2 <.
Therefore, the parameter vector of the GNG model
is �ðm, s, �r, �r, ur, �l, �l, ul Þ. The special case of � ¼ 0 is
considered in the limit as �! 0 as:

Gðx; �, uÞ ¼ 1� exp �
x� u

�

� �
, fx � ug ð4Þ

The components of the GNG in Equation 2 given by
�ðul jm, sÞ is the proportion of the population below
the lower threshold and 1��ðurjm, sÞ the proportion
above the upper threshold. The proportion below the
lower threshold supplies the information of the
unexpected shortfalls and the proportion above
the upper threshold supplies the information of the
unexpected rise, respectively, in the VaR.

Figure 1 gives an example of a GNG density.
The two vertical dashed lines represent the thresholds
for the GPD tails. The density is not necessarily
continuous at the thresholds. However, frequently
in applications the density is close to continuous
and any lack of continuity is typically of no concern
if interest is only in the risk of extremes.

Although the extra parameters of the GNG model
increase the complexity for statistical inference, the
model has numerous advantages:

(1) The application of traditional GPD requires
what is often a rather subjective choice of
threshold. The proposed mixtures explicitly
define the threshold as a parameter to be
estimated using the usual inference techniques.

(2) Relatedly, the uncertainty of estimating the
threshold is directly accounted for in estimation
of the mixture model parameters, which is more
complex for the traditional fixed threshold
approach.

(3) The model allows both tails to follow the GPD
distribution, explicitly allowing for asymmetry
in the tails. It therefore has the flexibility in
dealing with a variety of distributions with or
without the symmetric features.

(4) The proposed mixture GPD model is able
to capture two-sided tails distribution simulta-
neously, which is more applicable than a
one-sided tail mixture GPD.

Estimating the extreme return quantile

If we consider only the observation in the upper
tail modelled using the GPD, then its distribution

–30 –20 –10 0 10 20 30 40 500
0.01
0.02
0.03
0.04
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Fig. 1. Example of GNG mixture density
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function in Equation 4 can be used to show that the
1� p quantile can be expressed as

qpðxÞ ¼
u� �

� ð1� p��Þ � 6¼ 0
u� � logð pÞ � ¼ 0

�
ð5Þ

where qp is commonly referred to as the return level
with a return period of 1/p. An equivalent formula
can also be determined for the lower GPD tail.

For the fixed threshold GPD, the expected return
quantile with a return period of 1/p* at time t is the
sum of the expected return and the expected rise
or fall of returns.

EðRp�,tÞ ¼ EðRtÞ þ vtqpðxÞ ð6Þ

where p� ¼ pu � p and pu is the proportion below
the lower threshold (for the fall of returns) or the
proportion above the upper threshold (for the rise in
returns). Typically, pu is estimated using the sample
proportion above/below the threshold.

Since the proposed GNG model describes the
entire sample distribution we simply use the inverse
of the distribution in Equation 2 to get the expected
return quantile qpðxÞ with a return period of 1/p
directly:

EðRp,tÞ ¼ EðRtÞ þ vtqpðxÞ ð7Þ

As the normal distribution is used for the main mode,
standard numerical approximations are used in cal-
culating the inverse.

When forecasting, 1-step prediction of the condi-
tional quantile at q, which is the lower quantile p and
upper quantile 1� p of return, is

Rq,tð1Þ ¼ inf FðRtÞ � q ’t�1
��� �

ð8Þ

where ’t�1 is the information up to day t� 1.

Method of estimation

Stage 1: GARCH model. After choosing the form
of GARCH type volatility model, we fitted the model
using Maximum Likelihood (ML), as this is the most
common inference approach used in the literature.
The expected return EðRtÞ and the volatility vt are the
1-step forecasts. The observed standard innovation
series are then used for the second stage.

Stage 2: GNG model. The inherent sparsity of
extreme data means that it is often sensible to try
and utilize information from all sources for inference
purposes, e.g. expert knowledge. We have there-
fore used Bayesian inference for the GNG model
parameters so that prior information, along with
the sample data can be utilized. Markov Chain
Monte Carlo (MCMC) has been used to obtain

posterior distributions (see Green, 1995). A brief
outline of the priors is given below for brevity, as
those chosen are fairly standard in the extremes
literature with full details in Zhao (2009) and avail-
able upon request.

Specify the prior distributions

The parameter vector �ðm, s, �r, �r, ur, �l, �l, ul Þ can be
decomposed into three components, those associated
with the normal, GPD parameters and the thresholds.
A normal prior is for the location m and a gamma
prior for scale parameter s, assuming m and s are
independent. Following Coles and Tawn (1996) the
GPD priors are specified on the quantile differences,
which is becoming standard in the extremes in the
literature. A truncated normal distribution is used as
the prior distribution for thresholds of both tails,
which are truncated at the minimum and maximum
of the sample data respectively, due to Behrens et al.
(2004). Hyperparameters are chosen to ensure relative
diffuse priors to indicate our lack of prior knowledge
of the parameters for these applications.

III. Application in Financial Crises

Comparison of models

We compare the fixed GPD and the proposed GNG
based methodologies using results from application
to the daily returns of the Citigroup and
S&P100 index over the period 17 January 2001 to
30 December 2008. These include 2000 daily prices
and two major financial crises, namely 9/11 and the
developing 2008–2009 financial crisis. We use a
GARCH(1,1) for the volatility model. Although not
shown for brevity, after removing the conditional
variance (volatility) the standardized innovations {xt}
are essentially an independent sequence, which is
beneficial for inference purposes for the second stage
which assumes independence.

It is clear from Fig. 2 that both the Gaussian and
t-distributions do not adequately represent the tail
innovation distributions of the Citigroup, as they are
sufficiently inflexible at representing the tail shape.
The left plot in Fig. 2 is the empirical quantiles
versus the normal quantiles. It is clear that both tails
are heavier than the normal tail. The right plot is the
empirical quantiles versus the t-quantiles and it shows
a lighter tail than the t-distribution. The Q–Q plots
for the S&P100 index gives similar results as the
Citigroup, so are not shown for brevity. It is clear
that a model which provides more flexibility in
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the tails of the distribution of the standardized
innovations is required, particularly as it is the tails
that are key for reliably estimating the expected fall
or rise from the expected return.

The mixture GPD model GNG proposed in these
articles, along with the traditional fixed GPD
approach, provide flexibility in capturing different
tail behaviours. The model is suitable for any
combinations of three types of tail behaviours with
the typed determined by the shape parameter of the
GPD, namely exponential type (�¼ 0), heavy tailed
(�>0) and short tailed (�<0). The models also
permits asymmetric tail behaviours (e.g. lower tail
could be of exponential form and upper tail a heavy
tail). The tails can be constrained to be symmetric
if required, and various tests for evidence of
asymmetry can be derived, see Zhao (2009).

In order to show the problem of the threshold
selection of the fixed threshold method with the model
proposed, we compare the estimation results of the
two approaches in fitting the innovations of these
financial time series. We use the ML Estimation
(MLE) for the fixed threshold GPD, since this is the
common approach in the literature. The use of
relatively diffuse priors in the Bayesian inference for
the GNG model means the results are directly
comparable. Table 1 illustrates the effect of threshold
selection in the traditional fixed threshold GPD
approach. The GPD is fitted to the standardized
innovation term of the Citigroup data with different
thresholds and compared to the GNGmixture model.
The choice of the threshold value results in variation of
the GPD shape and scale estimators, and consequently
for estimates of the VaR. Even though these variations

appear rather slight for this data, the differences can
have a substantial impact on the quantile and VaR
estimates.

Although, the Bayesian Credible Interval (CI) and
MLE based confidence intervals have philosophically
different interpretations, they are to some degree
heuristically comparable. The CIs for the shape and
scale parameters of the GNG model, are wider than
the confidence interval of the fixed threshold GPD as
expected, as this in part comes from the extra source
of threshold uncertainty. For heavy tailed distribu-
tions, a wider confidence interval is expected since
the uncertainty about the threshold is much higher
compared to the short tailed distributions, where
there is a natural end-point for the threshold value.

Table 2 reports the estimated expected quantiles
of the standardized innovations for the threshold
choices in Table 1, to show the impact on thresh-
old choice. The expected quantiles of the fixed
threshold GPD are calculated as the return level of
the GPD explained in Section II. The expected
quantiles for the GNG are calculated as the mean
of the posterior predictive quantiles. It is clear that
the expected quantile values vary when the threshold
changes and the differences among them gets larger for
quantiles further out into the (upper and lower) tails
of the distribution. As mentioned previously, these
differences tend to be magnified for heavier tailed
distributions, which are commonly observed in finan-
cial data. Different choices of threshold can clearly
lead to very different estimates of the extreme
quantiles used in risk measures like VaR. The GNG
explicitly estimates both thresholds at the same time,
and accounts for the uncertainty in the estimates.

–4 –2 0 2 4
–6

–4

–2

0

2

4

6

Normal

E
m

pi
ric

al

QQ plot Empirical versus Normal

–6 –4 –2 0 2 4 6
–6

–4

–2

0

2

4

6

E
m

pi
ric

al

T

QQ plot Empirical versus T

Fig. 2. QQ plot of the standardized innovation from the Citigroup 2001–2008
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The variation considered by the GNG model
represents the full uncertainty for all the model
parameters. Figure 3 gives the sample quantiles
from the predictive posterior quantile distributions
based on the GNG estimates for the Citigroup
data. As expected, the posterior quantile is more
skewed for the higher quantiles, due to the reduced
information in the tails. The predictive posterior for
the upper tail is right skewed, summarizing the lack
of information for higher levels, and vice versa for the

lower tail quantiles. Notice that the sample quantiles
are included for comparison and are positioned at the
mode and well within the CI, which demonstrates
that the predictive quantile distributions are consis-
tent with the sample information.

Forecasting the extreme quantiles

We use the proposed two-stage method to conduct
the 1-step forecasts of daily return quantiles R

q
t for

Table 2. Expected quantile estimators for the fixed-threshold-GPD and the GNG (two-tail

mixture GPD) models, along with CIs for the GNG model

Quantiles

Fixed GPD – right u 0.9 0.99 0.999 0.9999
0.6716 1.1257 2.5043 3.7029 4.7451
0.8827 1.1281 2.4857 3.7841 5.0259
1.1178 1.1178 2.4983 3.7490 4.8823
1.5721 1.2312 2.4395 3.8887 5.6269

GNG model – right u 0.9 0.99 0.999 0.9999
1.4604 1.1359 2.4460 3.9691 5.6174

CI 1.0608 2.1760 3.2827 3.8861
1.1817 3.1620 6.7840 13.5697

Fixed GPD – left u 0.1 0.01 0.001 0.0001
�0.7788 �1.2190 �2.7812 �4.5093 �6.4209
�0.9649 �1.2208 �2.7774 �4.5260 �6.4903
�1.2481 �1.2481 �2.7438 �4.7053 �7.2776
�1.6410 �1.2254 �2.7456 �4.7333 �7.3323

GNG model – left u 0.1 0.01 0.001 0.0001
�1.6149 �1.2376 �2.6779 �5.0217 �8.8012
CI �1.1647 �2.3432 �3.8287 �4.7203

�1.3070 �3.0970 �7.4052 �21.9675

Table 1. Parameter estimates for the fixed threshold GPD and the GNG (two-tail mixture GPD) models

pu ur "r CI �r CI

Fixed threshold GPD – right 0.20 0.6716 �0.0607 �0.1498 0.0284 0.6691 0.5862 0.7638
0.15 0.8827 �0.0194 �0.1336 0.0949 0.6076 0.5173 0.7135
0.10 1.1178 �0.0429 �0.1769 0.0912 0.6296 0.5192 0.7634
0.05 1.5721 0.0790 �0.1721 0.3300 0.5054 0.3677 0.6947

GNG model – right 1.4604 0.0304 �0.1897 0.2633 0.5991 0.4163 0.8012
CI of u 0.9612 1.9182

pu ul "l CI �l CI

Fixed threshold GPD – left 0.20 �0.7788 0.0438 �0.0566 0.1443 0.6255 0.5437 0.7197
0.15 �0.9649 0.0505 �0.0661 0.1671 0.6246 0.5309 0.7347
0.10 �1.2481 0.1177 �0.0435 0.2790 0.5655 0.4575 0.6991
0.05 �1.6410 0.1165 �0.1376 0.3705 0.6240 0.4531 0.8594

GNG model – left �1.6149 0.1644 �0.1172 0.4323 0.6146 0.3909 0.9337
CI of u �1.9032 �1.1093

Notes: The fixed GPD is fitting using MLE so confidence intervals are shown. The GNG is fitted using Bayesian inference
with diffuse priors, so CIs are shown. In the table, pu is the proportion of innovations above/below the upper/lower thresholds
respectively. u denotes the thresholds; � is the shape; � is the scale of GPD. 95% confidence/CIs are shown.
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S&P100 index and Citigroup. Suppose the return
sequence is R1, . . . ,Rt , . . . ,RT, where t � T. In pro-
viding the forecast we only use historical information
from n¼ 1000 daily returns, i.e. approximately
4 years. The forecasted return quantile R̂

q
t are then

dependent on all the information up to t� 1.
The scheme is as follows at time t:

(1) Apply GARCH(1, 1) model onRt�n�1, . . . ,Rt�1

to obtain the standardized innovation sequence
xt�n�1, . . . , xt�1.

(2) Obtain the 1-step forecasting of the expected
return EðR̂tÞ and the volatility v̂t based on the
estimators of step 1.

(3) Apply the GNG model on the standardized
innovation sequence xt�n�1, . . . , xt�1, and fore-
cast the x̂

q
t based on the predictive posterior

quantile distributions.

(4) The forecasted return quantile can be
calculated as

R̂
q
t ¼ EðR̂tÞ þ v̂tx̂

q
t ð9Þ

using the obvious notation developments from
Equation 7.

Repeat all the steps for each time point to obtain
a sequence of conditional forecasted return quantiles
{ R̂

q
t } for the forecasting period. These forecasted

return quantiles are termed ‘conditional’ as they are
conditional on the variance being assumed known,
using the estimates from the GARCH. We also
estimate the unconditional quantiles for comparison,
which are the quantile estimators by applying
the GNG model directly on the return series. The
unconditional quantiles do not account for the
dependence due to the volatility.
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Fig. 3. Predictive posterior quantile distributions for the Citigroup 2001–2008 innovations
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Figure 4 gives the plot of real return observations
of the Citigroup and forecasted conditional and
unconditional quantiles for the 1% upper and lower
quantiles. We have focused on the period from
March 2008 to December 2008, as this covers the
recent financial crisis. As expected, the unconditional
quantile estimators fail to capture the changing
volatility and dependence of the returns. The condi-
tional forecasts, on the other hand, can describe
both the dynamic of the conditional variance and
the tails behaviour of the expected falls and rises. The
conditional approach based on the GARCH(1, 1)
is therefore clearly warranted due to it providing
more realistic description of the return quantiles.
Similar results were obtained for the S&P100 index
and are not shown for brevity.

A comparison between our method and the fixed
threshold approach is now conducted. To implement
this method in a forecasting framework it is necessary
to choose the thresholds at each timepoint, which is
clearly impractical. It is common in the literature
to determine a threshold in advance, by specifying
what proportion of the observations at each time-
point should above/below the threshold, using
graphical diagnostics the details of which are not
shown here for brevity. Figures 5 and 6 show the
comparison between the GNG and the fixed thresh-
old GPD for the upper and lower quantiles at the
0.5% level with associated confidence intervals.
The proportion above/below the threshold for the
fixed each threshold approach was fixed at 10%.
Extensive comparisons with other sensible propor-
tions above/below the thresholds provided no change
in the conclusions drawn. Notice that the extreme
quantiles for both tails based on the GNG are slightly

larger than the fixed GPD based method, with
a wider confidence interval as we expect due to
accounting for the uncertainty about the threshold.

The similarity of the estimates and the only slightly
larger CIs is extremely pleasing, as the proposed
methodology has not required a priori specification
of the threshold which is a major advantage over the
traditional fixed GPD based method.

An interesting feature of the CIs for the GNG
approach is that they tend to be somewhat wider for
heavier tails, as shown in Figs 5 and 6 by the larger
confidence intervals for the losses compared to the
gains. Table 1 confirms that the losses have a larger
shape parameter than the gains, thus indicating
a heavier tail. This result implies that the uncertainty
of threshold selection is likely to be more important
for the heavy tail distributions relative to the light
or short tails, which is commonly the case for
financial data.

Summary

To summarize the above empirical results the
proposed GNG model based method of forecasting
has the following advantages over the traditional
fixed threshold GP approach:

. The model resolves the difficulty in threshold
selection by treating the threshold as a further
parameter to be estimated. This advantage
becomes extremely beneficial for problems
where automated application is required, as in
the above forecasting example and applications
containing a large number of series to apply the
approach to. The automated threshold
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Fig. 4. VaR of the Citigroup standardized innovations in 2008, comparing the conditional GNG and an unconditional approach

(where the stochastic volatility is ignored)

70 X. Zhao et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

an
te

rb
ur

y]
 a

t 0
3:

51
 0

8 
Se

pt
em

be
r 

20
11

 



estimation also removes the subjectivity
employed in the common methods used for
threshold choice (e.g. using the mean residual life
plot).

. The model explicitly accounts for the uncer-
tainty due to the threshold choice.

. The model fits to both the gain and loss tails
simultaneously which is more natural and con-
venient when the interest lies in both tails.

. The model supplies a more objective approach in
predicting the extreme shortfall and rise in the

VaR along with a more precise uncertainty
interval associated with the unexpected returns.

The obvious drawback with this type of approach
is the a priori use of the normal distribution to
capture the main peak. In many applications this will
be appropriate, as the density around the mode is
often approximately symmetric and quadratic in
shape. However, it is possible that in some applica-
tions that other distributions, e.g. an unknown
number of uniform distributions as Tancredi et al.

Fig. 5. Conditional quantile forecast from the GNG and the fixed-threshold GPD model for the S&P100 index standardized
innovations in 2008

Fig. 6. Conditional quantile forecast for the GNG and the fixed-threshold GPD model for the Citigroup standardized
innovations in 2001
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(2006), may be more appropriate for which it would
be trivial to extend the outlined methodology.
Further research (Zhao, 2009) is underway to show
the general performance of the GNG model at
approximating a wide variety of distributions, with
different tail behaviours and modal shapes, which
is available upon request. Another drawback of the
model is the discontinuity of the density at thresholds,
which is a fairly minor problem particularly as in
most application interest in extreme quantiles well
away from the threshold.

IV. Discussion and Conclusions

In this article, we proposed an approach for fore-
casting the VaR in combining the classical GARCH
model and a new GPD mixture model. The proposed
model overcomes the difficulty in threshold selection
in traditional approaches. Further, the threshold is an
explicit parameter of the model to be estimated, and
therefore the uncertainty associated with the thresh-
old selection is accounted for in forecasting the VaR.
The mixture model for the GARCH innovations
gives a flexible asymmetric distribution, with the
GPD for capturing the gains and losses, tail
behaviours and a normal distribution for the main
mode. We applied the model in forecasting the VaR
for the Citigroup and S&P100 for two financial crisis
periods, 2001 and 2008, to demonstrate the advan-
tages of the model for estimating the VaR.

A natural extension/adaption of the model is to
consider an alternative distribution for the main
mode of density, as discussed above. In this applica-
tion a normal distribution was shown to be appro-
priate, however, in some applications it is likely that
an asymmetric distribution may be appropriate,
which is trivially captured in the above framework.
A more flexible approach may be to adopt or extend
the approach of Tancredi et al. (2006) to allow an
unknown number of uniform distributions for the
main mode of the density between the thresholds.
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