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ABSTRACT 

We consider t ~ ~ v o  new modeling procedures for multiple time series which address the 
challenge of providing both a good representation of tlie structure, and an efficient parame- 
terization. We first review a method, applied to vector autoregressions of low order, wllich 
uses conditional independence graphs to identify a sparse structural autoregressive repre- 
sentation. We show by an example how this may be extended to identify a sparse structural 
form of an ARSIA(1,l) model for a series of seven daily US dollar term rates. The identified 
structure reveals the pivotal role of the series of two year rates, and highlights sources of 
heteroscedasticity. 
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Vector aut,oregessions of high order are widely used to provide an elnpiritsl approximation 
to multiple time series structure, but the large number of parameters in these n~odels restricts 
the possible maximum lag when'the series is of moderate length. We present. and illust,rate 
by example, a simple exteusion of tlie vector autoregression ill 1\4-hich the predictors are 
smoothed functions of the past. 1-ariabltts. This allo~vs i~lfor~nation from higher lags to be 
used in a model of relatively low order. and call improve forecasts at higher lead t.imes. 

KEY WORDS 

Condit,ional indepelldence. vector autoregrrssio~i. vector -4R11.4. term rates. smootlli~lg. 
l~eteroscedasticity. forecasting. cycles. 

1. INTRODUCTION 

The pth order vector autoregressive tnodel, or VAR(p) niodel, for a sta- 

tionary, m dimensional, time series xt = (z,,.~. q . 2 ,  . . . , x ~ : ~ ) ' ,  is ~haract~erized 

statistically by the fact that the prediction of xt from all past values xt-l, 

xt-2,. . . ; is a linear combination of the finite set xt-,: xt-2,. . . , In sonle 

practical applications it is clear that this provides a very good approxinlation 

to the structure of the series for some relatively snlall value, say 1, 2 or 3, of 

the order p. In other cases it'nlay only provide a good approxinlation by using 

a relatively high order, in which case the need to estimate a very large number 

of coefficients will adversely affect the application of the model to prediction. 

In this paper we first consider the case of low order autoregressions and how 

we might find an efficient, i.e. sparse, parameterization of the model. We 
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have two reasons for seeking an efficient parameterization. Firstly, even in 

the case of a low order model, reductioils in the number of coefficients can 

reduce prediction error variance, particularly .ilrhen the dimension m is large. 

Secondly, a paranleterization which. is parsimonious in it.s use of coefficients 

more stxongly supports a causal interpretation of that representation. Used 

with other relevant background knowledge it may assist in the understanding 

of the true iilecllariisnls giving rise to tlie series. LVe will present an approacli 

to this probleni using structura.1 VAR models. that permit conteniporaneoi~s 

dependence, between the series. We show hour inethods based on conditional 

independence graphs between conteinporaneo~is and lagged values. niay be 

used for identifying parsimonious inodels of this form. 

There are illally reasons why a vector autoregressive nloving average niodel. 

with relatively low autoregressive arid nloving average orders p and q. the 

VARILIA(p.q) nlodel, inay he appropriate for a series. For example a VAR(1) 

process wit11 added observation error has a VARhIA(l.l) represelltation. Also, 

if we oiily observe m - 1 components of an m diinensional VAR(1) process. 

they will, in general, be represented by a VARh/IA(l,l) model. The VARhfIA 

process is characterized statistically by the fact that the prediction it of xt from 

all past values xt-l, xt-2,. . . . is in fact a linear coillbination of the finite set 

of variables xt-l, xt-2, - . . : xt-p and et-l. et-a, . . . , et-,, where el is recursively 

defined as the prediction error, or linear innovation, xl - &. We shall show 

how the nlethods based on conditional independence graphs nlay be extended 

to structural VARMA model, using all application to a VARMA(1,l) model 

for seven daily US dollar term rates. 

There has been much research into methods for finding simplifying structure of 

nlultivariate time series, based on  VAR and VARMA models forms. For exam- 
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ple Box and Tiao (1977) consider a linear transfornlations of the given series to 

a new set of series that have a particular canonical structure that reflects their 

predictability Pens and Box (1987) propose a sinlplifying structure for time 

series in terms of a snlaller number of factor series. The reduced rank VAR 

models of Alin and Reinsel (1988) provide a more parsimonious parameter- 

ization by identifying structure in the parameter matrices of VARhIA niodels. 

Tiao and Tsay (1989) propose a nlethod of identifying a transforiliation of the 

series that results in scalar component niodels. Collectively, these determine 

a vector ARhIA structure, but presented in a form in which any sinlplifying 

structure is captured by conlponent models of lower order. 

Despite these advances, for empirical applications, and particularly in 

forecasting, it is still usual to use a high order VAR model to approxinlate 

the structure of multiple time series. These nlodels are only asymptotical- 

ly correct: arid for consistent estiniation, the order used inust iiicrcase with 

the length of series available. The estimation of the large nunher of parame- 

ters in such a higher order model, adversely affects its predictive performance. 

Doan, Litterman and Sinls (1984) address this problem by using a Bayesian 

method for estimating the VAR. We shall use an approach'that retains a low 

order model, but still incorporates past values at higher lags into the predictor. 

We do this by constructing a standard set of predictors which are exponential- 

ly s~noothed combinations of past values. In the final part of this paper we 

explore this approach; a generalization of the standard VAR(p) nlodel which 

requires the user to select a single sinoothing constant. It has the potential to 

improve the forecasting ability of the VAR model, particularly at higher lead 

. times. 
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2. GRAPHICAL MODELING OF STRUCTURAL VAR AND 
VARMA PROCESSES 

2.1. The Structural VAR Model and its Graphical Representation 

The VAR nlodel for which we seek an efficient paranieterization has a 

structural form which allows for contenlporaneous dependence througha ma- 

t,rix coefficient a o :  

One requirement. of this lllodel is that the variance ~natrix D of a t  is diagonal. 

A further condition, on cPo, is that it represent a recursive (causal) dependen- 

ce of each conlponent of xt on other contelnporaneous conlponents. This is 

equivalent to the existence of a re-ordering of the elenlents of xt such that cPo 

is triangular with unit diagonal. The nlodel nlay be transformed to canonical 

for111 by dividing through by Qo, in which for111 xt is expressed as a linear corn- 

bination x t - ~ ;  xt-2,. . . , xt-p with an error tern1 et = cPilat. This is the linear 

innovation, having variance C related to D by 
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The nlodel (1) is not unique, in that the transfor~llation to the canonical form, 

which is unique, nlay be reversed by the choice of any matrix Qio which satisfies 

(2). Ea.cll possible ordering of the series gives a different for111 of (causal) 

structural model. Our objective is to discover such an ordering which gives 

a nlodel representation (1) requiring a relat.ively small ~lulilber of coefficients. 

This will not be possible in all cases. The method we use to explore the 

possibilities will reveal this to us. 

Tlle nlodel (1) may be represented by a directed acyclic graph (DAG) in 

which the conlporients of zl. xt-1, . . . , .rt-, for111 the nodes. and causal depen- 

dence is indicated by arrows linking nodes. The nature of the lllodel is that 

all arrows end in nodes representirig the contempoianeous variables on tlie 

left hand side of (1). Some arrows will start fro111 the past. arid solile from 

other contenlporaneous variables. As an ill~lstration, we reproduce a structur- 

al model presented by Reale and Ttunilicliffe-ttTilson (2001). The data were 9 

years of konthly values of three variables of the Italian nlonetary systenl; the 

re-purchase agreement interest rate, the average interest rate on government 

bonds, and tlie average interest rate on bank loans. The DAG representing 

the chosen structural VAR(2) model for these series is shown in Figure 1. The 

numbers attached to the links are the coefficients in the linear predictor for 

the corresponding contenlporaneous variable. 

These coefficients are estimated by single equation ordinary least squares 

(OLS) regression. This is fully efficient under our working assumption, 

that the vector series is Gaussian. Our methods are also applicable, and 

the properties of the estimates given by the regression are reliable, under wider 

conditions, such as et being I.I.D., presented for exanlple in Anderson (1971). 
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FIGURE 1 

The DAG representation of the structural VAR(2) identzfied for th,e Italian 

monetary variables. 

2.2. Identification of the Structural VAR Model 

We now describe the exploratory tools used to identify the model in this 

example. The first step is to identify the overall order p of a VAR model for 

the series. The second and central step is to construct a sample condition- 

al independence graph (CIG) for the variables x t ,  x t - ~ ,  . . . , x t -p  which form 

the nodes of the graph. Being bked upon statistical correlations, the only 

causality which can be deduced from this is that indicated by the arrow of 
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time. Nevertheless, it may serve to suggest tlle direction of dependence be- 

tween conten~poraneous variables by adnlitting only a slllall nunlber of possible 

sinlple DAG interpretations. The corresponding structural VAR models are 

then fitted and refined by regression and a nlodel selection crit,erion such as 

AIC. Akaike (1973), used to select the best. 

The statistical procedures arc based on a data ~i iatr is  X tvllic.11 in the general 

case colisists of m ( P  + 1) vectors of length I ,  = ,V - P. c-onlposctl of elellleiits 

xt -.,,, i .  t = P + 1 - 2 1 : .  . . . iV - u !  for each series i = 1.2. .  . . . rn: ant1 each lag 
. .. 

(1 = 0. 1. . . . . P,  for soi~ic chosen i~iaximu~ii 1a.g P. 111 the first step of overall 

order selection, for eacli order p we fit: by OLS, tlie sat,urat.ed structural VAR 

regressions of the m contenlporarleous (lag 0) vectors 011 all the vectors up to 

lag p. Using the sulns of squares Si from these regressions wc foriil the AIC as 

n C log  Si + 2k: where X: = pn' + m.(?n. - 1)/2 is tlie total iiuluber of regression 

coefficients esti~iiatetl ill :.i!t. regressions. For the :.::.ii~iit~:.! ! ~ s : ! c :  : l l t ~  f:r?uszl 

order of t.he contemporaneous variables uves not affect tlie result. Eacli one is 

irlcluded only as a regression variable for a s~~bsecluent variable in tlie chosen 

ordering. We tlleri select the order p ~trhicli niininiizes tlie AIC. In this way we 

selected the order p = 2 for the Italian nlonetary series. .whicli is in agreenlent 

with that found in a previous analysis by Bagliarlo and Favero (1998). 

2.3. The Conciii;ionai i~~dependertc:,: G1.aph fcr a 'V'A.R,(p) Process 

The next step is to construct the saillple CIG for the chosen illode1 order p. 

This CIG consists of tlie same nodes as those shown in Figure 1, representing 

the variables up to lag 2. In general a C I S  is an undirected graph, defined 
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by the absence of 9 link between two nodes if they are independent condi- 

tional upon all the renlaining variables. Otherwise the nodes are linked. In a 

Gaussian context this conditional. independence is indicated by a zero partial 

autocorrelat ion: 

where the set of collditioning variables on the right is the whole set up to lag 

p. excludiug the variables or1 the left. As slioivii l)y L\.'lThit.taker (1990). tlie set 

of all s~lch partial correlations required to coiistr~ict the CIG is conveiiie~itly. 

calculated frorii t.lie inverse [:I.'. of tlie covaria~lce iliiltrix V of the whole set of 

variables, as 

where r = ( p  + l)(i - 1) + u + 1 and s = (p + 1)(j - 1) + v + 1 respectively 

index, in the lnatrices V and 147, the ( p + l ) m  variables xt-u.l and xt-,,: for the 

m series at lags zero to p. In sthe wid& linear least squares context. defining 

linear partial autocorrelations as the same function of linear unconditional 

correlations as in the Gaussian context, (3) still usefully indicates lack of linear 

predictability of one variable by the other given the inclusion of all renlaining 

variables. 



362 ESTAD~STICA, VOL. 53,160, 161, JUNIO Y DICIEMBRE, 2001 

2.4. Estimation of the Conditional Independence Graph. 

To estinlate the CIG we use in place of V the salllple covariailce lliat.rix 

formed from the data  nlatrix X: but iiicludillg only lags up to y.  We then 

need a statistical test to decide wllicll links are absent in the graph. We are 

only concerned with links between' contenlporaneo~is variables and between 

contemporaneous and lagged variables. hecause these are the ol~ly ones that 

appear in tlie structural nlodel DAG. Tllc test we use is to retain a liilk \vlieii 

lpl > z / J i z 2  + U) 11 JF; \vhere z is an appropriate critical va111r of 

the standard rlornlal distribution, and u = n - k is the residual degrees of 

freedom in the regression of ally one collinln of X on all the relllaiiliilg colunlns. 

This derives fsonl two results. The first is t . 1 1 ~  stttndarcl. algebraic. relation- 

ship between a sainple partial corrclatio~i and ;] regression t ~~111le give11 1)y 

i~ = tlV?f2 + u )  (see Greerle (1993) p. 180). Tllc second is tlw ilsyiiq)totic 

norlllal distrib~ltion of the t value for time series regression coefficients. give11 

for exaaiple by Anderson (1971. p. 211). Of course we sllould psopc>sly a~)ply 

nlultiple testing procedures when applyilig tlie test sinlultai~eously to all swiilplc 

partial autocorrelations, but that is not a practical option. Our at,t,itudc! is 

similar to that advocated by Box and Jenkins (197G) for the idelitification. for 

exanlple, of autoregressive lllodels 11sillg time series partial autocorrelations. 

We use these values to suggest possible models; after fitting tliese we apply 

more forlllal tests and diagnostic checks to converge on an acceptable model. 

To return to our example. ti?;: ~:it!??l ' . * ~ ! i ~ / r '  :C,i- significance a t  tlie 5% level . . 
. * 

is 0.207. Figttie C :;nfiw-?: t!:r a2propriate subgraph of the CIG of the lagged 

variables constructed using this threshold, with the addition of two links, xt.3 - 

xi-1.1 and xt.3 - xt -2 .2  shown by broken lines. These are included because their 

partial autocorrelations are very close to the threshold. The series are only of 
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moderate length so that some additional power for detecting non-zero partial 

correlations is justified. 

FIGURE 2 

The CIG estimated for the Italian monetary series. 

2.5. Selection of a Directed Graphical Interpretation 

We next proceed to determine which DAG representations are consistent 

wit11 the CIG in (2), or are nearly so, allowing for statistical uncertainty. For 

this purpose we use, in an inverse manner, the nloralization rule of Lauritzen 

and Spiegelhalter (1988), by which we can form the CIG that would arise from 
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any hypothesized DAG interpretation. This rule. is to insert an undirected 

link between any two nodes a and b for which there is a node c witli directed 

links both a -, c and b -+ c. In tliis case c is known as a conlliion child of a 

and b, arid tlie insertioli of a new, moral, link as niarryirlg the parents. After 

doing tliis for the whole graph tlie directions are rellioved from tlie original 

links. 

Of course we attach tlle arrow of time to liliks froni tlie past to tlie preseiit, so 

tlie challenge is t.o clarify the directions of the recllrsive ordering of contenipo- 

raneous variables. In tliis example tlie lllairi point to note is the clear absence 

of a link xt-1.2 - xt.3. A nioral link would be expected here unless we assign the 

direction between conteniporaneous variables: .ct.2 -+ .rt.:3.. 1vhic11 also opens up 

tlie possihilitp that x t . 2  - :rt.3 is a nloral link. Tllerc is no siniilar c1ca.r illdica- 

tion of tlle reliiailiirlg clioice of conteln~oraneo~ls links. tliougli tlie exclllsion 

of directed cycles. such as x1.2 -, I L . ~ , : ~  -) : I : , , . ~  + xt.> lil~iit,s tlie possibilities. 

\Vt! do note-liowever that zf-l,:! - .T ( ,~  niiglit be explained as a 1llori~1 link, by 

ass~~nling t . 1 ~  direction xt,l  --+ xt,.2. By sllcli considerations we were led to tlie 

illode1 represented in Figure 1. By the AIC tliis rilodel is judged better than 

tlie saturated model, with 11 fewer paranieters. Details are given in Reale and 

Tunnicliffe-i$7ilson (2001) of one other niodel for these series wliicli shared tliis 

property but which required one lllore parameter. hloralization of Figure 1 in 

fact yields a CIG wliicli differs from Figure 2 by tlie inclusion of extra links 

~ ~ - 1 . 3 - x ~ . ~ ,  xt.-2.3 -xt.l, xt-2:2 -xt,2 and ~ ~ . - 2 . 2 - ~ ~ . ~ .  which were not detectable 

from tlie lengt,li of data available. Our general conclusion is that inspect.ion 

of Figwe 2 lead us swiftly to tlie specification of a good struct~lral model for 

these series; one wliicli on tlie evidence of the AIC represents t,he structure as 

well as tlie full VAR(2) niodel with fewer than half tlie parameters, and witli 

improved predictive ability. 
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2.6. St ruc tu ra l  VARMA Modeling of Term Rates 

We here present a novel extension to structural ARh'IA modeling, of the 

nlethods introduced in the previous sections. We do this by use of a single 

example. We consider a series of seven daily dollar term rates over the period 

fro111 30th November 1987 to 12th April 1990. excluding non-trading days. 

The nlati~rity ternls are G nlonth, 1. 2: 3; 5, 7 arid 10 years. Figtire 3 illus- 

trates just the six month, two year and ten year rates. The lliove~ilents in the 

series are clearly highly correlated. Our starting point is a saturated canon- 

ical multivariate ARhIA(1,l)   nod el characterized by 98 ARhIA coefficients 

a ~ i d  21 correlations between the innovation series. Tliis had been previously 

estiinated for these seven series in order to provide a simulation nlodel for as- 

sessing financial trading over a long period. The mean adjusted nlodel is of the 

form 

where el is Gaussian white noise with covariance nlatrix C. The parameters 

were estimated by maximum likelihood using the method of Tunnicliffe Wilson 

(1973) to maximize the concentrated likelihood - +n - log det 5, where .k is 

the sample covariance matrix of the innovations series e,. The innovations are 

regenerated from the mean corrected series, for given values of the coefficient 

matrices and e l ,  by the recursion for t = 1,2 , .  . .: 
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el = xt - ~ ~ x ~ - ~  + (6) 

FIGURE 3 

Six-month (solid line), two year (broken, line) and ten year (dotted line) dollar 

term rate series. 

US Dollar 6 month. 2 year and 10 year term interest rates 
11.0- 

t(15- 

10-0- - 95- 
22 
0 

0 lrn 200 m 4m m am 
Days from 30 November 1987 - . . . . . . . . . . . . . . . . . . . .  ............................. ............ ....... ..... . . . . . . . . . .  .......... 

Because data was plentiful the problem of transient non-stationarity in the 

series et due to lack of knowledge of eo was dealt with by setting eo = 0, 

discarding the first 39 values of et and using just the remaining 600. The 

length n therefore refers to this number. 
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Our plan is to identify and estimate a structural nlultivariate ARMA(1,l) 

nlodel: 

~vllere the variance matrix D of nt is diagonal. The equivalence b&twi.ri0 j.3) 

ant1 (7) is given by @; = (Po@,. O; = +o at = aoel  and aoV@b = D. 
The sallie rec~~rsive (causal) structure for Go is assu~ned a+ for t.he structural 

VAR niodel (1): and our ail11 again is to identify a nlodel of the for111 (7) in 

wliicli tlic matrices @o arid (PT arc3 sparse. 

2.7. A Condit ional  Independence  G r a p h  for t h e  VARMA Model  

Consider (7) as defining a directed acyclic subgraph in the 3m variables 

consisting of (the components of) r t ,  and at-l with independent errors at. 

Because is not defined until we have identified the structural rliodel and 

know Qo, we cannot siniply apply our graphical model identification procedure 

to this set of variables. We do however know the lagged canonical residuals 
1 

el-l accurate to O,(n-T), as a result of estilnating (5). We can then achieve 

our ainl in two steps. In the first we apply the procedure to the data vectors 

corresponding to the component variables of x t ,  x t - ~  and etdl. We can replace 

at by et because this is a linearly equivalent set of variables. In defining the 

partial correlations it will not therefore affect the links within components 

of xt  and between these and the components of Once these links are 
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defined, then so are the structural residuals at .  This is the niain step because 

it identifies the causal ordering within xt. In the second step the links between 

xt and at-l  can be identified by subset regression if further parsiilloily is sought,. 

TABLE 1 

Partia.1 Corre1ation.s for Structural A R M A  Modeling. 

For this example we therefore construct the data matrix X from the 21 data 
vectors corresponding to xt, xt-1 and et-l, and from this form the 
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corresponding sa~nple partial autocorrelation matrix. The elements of this 
are shown in Table 1 for the links, within xt and between xl and x t - l ,  of 
interest in identifying the conteinporaneous causality. Figure 4 sllows the 
corresporiding sub-graph of the CIG, constructed using a significance level of 
5% corresporidirlg to a critical value of 0.081. iL7e have used broken lines to 
indicate the three rnost nlarginal links. 

FIGURE 4 

T h e  CIG derived f rom Table 1 for  stmctz~ra.l ARMA model identijicntion 

2.8. The Linear Innovations Graph 

We now note a property of this graph, that the subgraph linking the conl- 

ponents of xt is identical with the CIG of the linear innovations series et 

from nlodel (5), which is shown in Figure 5 .  This is because the covariance 
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FIGURE 5 

Conditional Independence Gra.ph derived for the dollar term ra.te innovation 

series. 

structure of et is precisely the covariance structure of x, conditio~led or1 the 

past variables used to predict it: ir i  this case x t - ,  and Tlie ca~lsal struc- 

ture of el can be studied in isoldtior1 aiid this is a tlleille of S~v~nsoi i  and 

Granger (1997) who suggest that a. linear causal structure ~iiay he appropriate 

in many cases. In Reale alid T~ulilicliffe IVilson (2001) the possible DAG 

interpretations of Figure 5 are explored tts an illustration of graphical modeling 

in the staildard case of rilultivariate data without lagged structure. They found 

in this case 28 lilodels which were statistically indistinguishable interpretations, 

and estirilated one of them, shown in Figure 6. The structural error vector 

a t  resulting froill this estimation should have diagonal covariaiice matrix, so 

inspection of its sanlple correlation matrix provides an initial diagnostic check 

of tlie fitted DAG. In this example, Reale and Tunnicliffe Wilson (2001) found 

clear evidence of nlodel inadequacy in the for111 of a significant cross-correlation 

between the structural residuals a t , l  and a t .3  Introducing a further directed 

link, from the innovation et.3 to et , l  in Figure 6, rectified this inadequacy. 
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F I G U R E  6 

A directed graph which explains the independence graph shown in  Figure 5, 

with the regression coeficients associated with the 1in.k~. 

2.9. Selection of t h e  Direc ted  Graphica l  In terpre ta t ion  

We can build upon the results of this inno\ration series x~iodeling as we lnove 

to structural nlodel identification based upon the CIG of Figure 4. We shall 

hope that the extra information in this figure will help to distinguish anlong, 

and reduce, the various DAG interpretations possible for Figure 5, coi~sidered 

as an isolated subgraph. We shall assess any tentatively identified model by 

regressing each conlponent of xt on other specified elements of xt and xl-l, and 

all elenlents of e t - ~ ,  fornling the deviance as before. When diagnostic checking 

suggests that an acceptable structural nlodel of the for111 (7) has been found, it 

will then be re-estimated by nlaximum likelihood for full efficiency, including, 

at  least initially, all coefficients of the lagged terms at-l. There is not space to  
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FIGURE 7 

The first DAG identified jor the structural ARMA model. 

give a coxnplete account of our nlodel exploration, but the strategy is to consid- 

er which directions of contex~lporaneous dependence are conlpatible with the 

relative sparseness of links from the past, having considered the implications 

of moral linkage. We first considered the ordering shown previously in Figure 

6. One reason for this is that x 3 , ~  is a convincing candidate from this Figure as 

a pivotal variable, the influence from which then spreads out to the other vari- 

ables. Using this ordering we selected the lagged variables from those indicated 

by the links in Figure 4. This resulted in the model represented in Figure 7 

and referred to  as A in Table 2, which presents the evidence for cornparing the 

models, relative to the saturated nlodel, using the HIC, Hannan and Quinri 

(1979) and SIC, Schwarz (1978), as well as the AIC. 
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TABLE 2 

Compari.sons of structural A R M  models using criteria rela,tive to the saturated 

.~~~.odel.  

The link .xt-1.3 -+ xt.l had also bee11 introduced as a possibility along with 

/:,,:I -+ ..r:,., follo~ving the finding for the innovations lliodel that et.3 -.+ c t . ,  was 

required and both are llioderately significant. Other than these, 9 of t.he links 

fro111 lagged variables which appear in Figure 4 also occrlr in t,he lllodel and 

8 of the other 9 car1 be accounted for by nloralization. The reriiaining link, 

:r,- 1,:1 -+ ;r,.6 was found to be quite insignificant. This model is preferable to 

the satr~rated model according to all t.hree criteria in Table 2. 

~ilodel 

A 

B 

I\.ILE of B 
? 

2.10. Model Exploration and Checking 

Although this is a good model, we explore other possible models which are 

sinlilarly co~npatible with the CIG, in an attempt to discover 110~: precisely 

this structural ordering is determined. We first consider model B ~vith a rever- 

sal of ordering between variables four and five as shown in Figure 8. The results 

reduction in 

no. of pars. 

41 

44 

14 

increase 

deviance 

74.71 

.58..?:3 

83.17 

inrelative 

AIC 

-13.29 

-29.45 

-4.83 

relatiye 

HIC 

-88.GO 

-104.76 

-80.14 

relative 

SIC 

-206.75 

-222.91 

-198.30 
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FIGURE 8 

The fin.01 DAG identified for the .~tn~ctural ARMA model. 

in Table 2 show that a deviance improvement of approxiniat,ely 1G is 

achieved with no net change in the nunlber of paranleters. \Ve liave here a 

clear indication of nlodel preference wliicli was not possible by consideration 

of the innovations alone. The residual correlation matrix is sl~own in Table 3. 

The largest value is 0.1053 between variables 5 and G. All the values in this 

table are close to those of the corresponding sub-model fitted to the innovation 

series, so no inlprovelnent can be expected by introducing further lagged vari- 

ables. A similar reversal of the ordering between variables 6 and 7 drastically 
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TABLE 3 

Residual col-relation matrix for th.e structural ARI11A model. 

illcreased tllc deviance and is not otlicrivise reported. However, a reversal of 

order between variables 1 and 2. i. e. a replacenlent of z 1 . 2  + xl.l by X I . ,  -+ z t . 2  

aiid 2 1 - 1 . 2  -+ xt.1 by 21-1.1 + :r l . l .  iricreased the deviance by oilly 0.5, so 

the two possible orderings are statistically indistinguishable. Our coiiclusion 

is that inodel B is best, witli the AlLEs of tlie coefficients ( f  values) of the 

links shown in Figure 8 and the likelihood criteria for the nlaxinlunl likelihood 

estiillation of this final model shown in Table 2. Series 3, the two year rate, 

is the pivotal variable, but series 1 and 2 appear to be only weakly linked to 

the remainder, and tbeir ordering is not critical. The number of autoregressive 

coefficients shown in Figure 8 is 26, compared with 70 for a saturated illode1 

and this reduction is acceptable according to all the criteria shown. 
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2.11. The Innovation Components of the Structural Model 

The contemporaneous recursive ordering defines the residual series a, as 

orthogonal conlponents of the residual innovations et. Tlie variances of these 

orthogonal in,novations are shown in Table 4 in cotnparison with the ca,non,ical 

variances of el. Apart fro111 the pivotal series xt.g, the recursive ~liodeling 

accounts for a substantial fraction of the canonical innovation variance. wit11 

x t . , ~ .  xt.6 and xt.7 being   no st nearly determined. 

TABLE 4 

Variances of canonical and orthogonal innovations (times 10000). 

Canonical variance 58.3 57.6 60.8 53.9 49.5 45.9 41.5 

Orthogonal variance 20.9 41.7 61.2 3.9 11.3 3:2 2.7 

The components and xt.2 are much less precisely dependent upon the re- 

mainder. The orthogonal innovations also appear to reflect different sources of 

hetiroscedasticity. In particular, as sllowri in Figure 9, the absolute values of 

the canonical residuals for the five year rate series, show noticeable autocorre- 

lation at low lags which is not evident in the absolute canonical residuals for 

the same series. 
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FIGURE 9 

The sam.ple a.~~tocorrelations of the absolute canonica.L residuals and th,e absolute 

structz~ral residuals for the five year mte ,  showing ezridence of heteroscedasticity 

i n  th.e latter. Th,e plot shows th.e tuio ,starrdnrd error lintits about zero for the 

sample nutocor.relatio~~s of wh.it.e noise. 

ACF of absolute canonical residuals ACF of absolute structural residuals 

"1 

In this example we Iiave therefore achiewd our ail11 of identifying a parsinlo- 

nious illode1 form with no loss of predictive ability. We have also found a 

convincing representation of the flow of infornlation both from the past to the 

present. and between contenlporaneous values. with the two year rate variable 

being of greatest inlportance and the five year rate of secondary importance. 

The sources of heteroscedastjcity are also better identified in this 111odel. 
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3. AN EXTENSION OF VECTOR AUTOREGRESSION 

3.1. Background qnd Introduction 

The niodels we now present arc a11 extclision of tlie st,aiidnrd VAR ~lioclcl. 

t,o be ~ ~ s t d  i l l  a siiliilar nianner as an cliipiriciil tool. 1,ritil:~rily for tlie I)ilrl)osc of 

forecasting. and seco~iclly for ~1larii~tt:rizillg:g t l ~ e  sc!ri~s prol)ertios 111 ('st illliltiilg 

their joillt sl)ectruill. 

Tllc: nlo(lels a.re. forilially. a sl~l)-cl~lss of t lic \~?c tor  ARhIA niotl(~ls. lIo~\:e\.c~. 

tlw i~.lovillg av(!rki.gc part is of' ti fixc~l ?ill(I si111l)lv forlii. req~~isilig t I i v  s l ) (>~i f i~ i \ -  

tioil of il sillglc, siiiootlliilg cocfific.it:~~t 6. Tlict ~llotlt\ls \\-ere fisst illot i \ . ; ~ l ( \ ( l  1)y i t  

cant i l ~ l l o ~ ~ s  ti~llc niodcl presclitccl i l l  t l ~ .  ~l~i ir i \~. iatc  (';is(: 1)y E( \ l ( . l i~~~~.  bIallil)t(.)ll 

ancl Tui~t~i(.liff(? lVilsoil (1994). Tlle itl(1il is to l~sc! a sct of sll~ootIlc~(.l fr~llc.tiolis 

of past values of the serics as liuci~r prc!tlic,tioil \.i.ll,iitl)lcs. If H = 0 tltclsc flill(.- 

tiorls of the past reduce to the usual Ii~ggctl \~ i~ l l~cs  of tlie series i111(l tllc: llioclcl 

siniplifies to the stanciard vector al~toregrc.ssioli. The (liscrctc I i111t 1110(11~1 is 

descril-led in the univariate czse by hlorton alld Tr~nnicliffe \I.'ilsoli (20013). 

and ail ~l11)licatioll of the contiiluous tiiiic vorsion to the bivariattl case given 

in Morton and Tl~nnicliffe Wilson (20011)). They call the exteridcd alltore- 

gressions ZAR models. Here. we presetit tlio discrete t,ilne form of tlie model 

for multiple time series showing how it call be fitted atid used for forecasting. 

. These VZAR niodels are applied in a siniilar manner to the high order V.4R 

models, with tlie ail11 of obtaining a good approximation to tlie second order 

structure of the series. Examples in tlie univariate case show that. for a given 

order of model, a nlucll better approxinlation lnay be obtained by these ex- 

tended models than by a simple autoregression, and the improvenient is not 
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very sensitive to the choice of 8. Of course, if the series is truly represented 

by a low order autoregression, then a higher order will be required within the 

class of extended nlodels. 

3.2. Linear Combinations of the  Past  

'rll(. sllloothillg is hwscd 111)o1i 1)oiv~rs of a11 ol)c:rittor 11. iq)l)lic~l to tlie 

t i l r l (>  sc\ri(\s .I:(. wllc~re TI' is (Icfinotl. il l  tc>r~iis of tlic l,i~(.k\~artl shift ol)cri\tor B. 

1 )>- 

B(T~IISC 11- is a ~ ~ ~ l i i ~ r o t l ~ ~ l i ~ r  tri~~rsfo~.~l~;\tiori. lii~vil~g 1111it giLi1r at a l l  frc(~~~(~ii(*i(!s. 

t k  st!ri(!s I\-!.rt ?I11 \ I ~ L \ ' ( '  the salllc ~l,(!Ctl.Illll ~ L I I ( \  i \ l l t ~ ~ ' ~ ~ i t l . i ~ l l ~ ( t  s ~ s I I < ' ~ I I ~ ( !  as 

:r1. a l i c ~ l i  t11i1t is ~t i \ t io~~itry.  I\.?! for111 tlit' sesics : r , ( X , ) l  - I I - ~ . ~ . ~  rec~rrsi\-t!ly for 

k = 1.2 .  . . . 11silig 

taking ~ ( 0 ) ~  = . r l .  Because ~ ( k ) ,  iliclrrdes a conipone~lt ( - 6 ) ) k ~ r .  we will remove 

this to for111 s~llootll combinations of past values alone, as 
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FIGURE 10 

Froin th,e top doum. the weights atta.ch,ed to pa.st rrnlues by th.e operation defined 

i n  (1 0): 7l.sin.g 8  = 0.5: and for orders k = 1.2 .  . . . 5 .  

Weights used for functions of past values 

For exanlyle T ( l ) / .  = ( 1  - 8"(1 - Q B ) - ' J . ~ _ ~ ~  \vhich is proportional to a 

lagged exponential weighted moving average (EWhlA), and J.(2)[ = (1 - 8') 

( ( 1  +Q" B - 2 8 ) ( 1 -  8 B ) - 2 x t - l .  The plots in Figllre 10 show the weights \vllirh 

are attached to past values by Z ( k ) t  in the case 8 = 0.5 and for k = 1: 2 , .  . . . .5. 

Regression upon expo~lentially weighted conibinations of past values was used 

by Bray (1971) for prediction of unenlployment fro111 the rate of growth of GDP. 
His regressors were obtained by successive application of EWlLIAs with increas- 

ing values of the smoothing parameter so that his weights were all positive. 
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FIGURE 11 , 

From the top down, a series togeth,er with. the series resulting from a,pplying 

the operation defined in (10) for or-(Lers k = 1 a.nd 4,. and usin.g 8 = 0.5. 

Filtered functions of quarterly series 

. . . . . . . . . . , . . . , .. . . . .. -. . . . ... .. . . - . - . . - .. . , - . . . Quarters 

IVhen applying (9) to a time series sample xl: xs: . . . : x, ive will st.art froill 

t = 2 and will need to clioose a value of ~ ( k ) ~  for f = 1. Because the gain of 

the operator M.' is 1 a t  all frecluencies, a nat,ural clioice is x(k), = z(k - = 

. . .  = X I ,  which is equivalent to assnilling that x(k), = .Il for all t < 0. 

In Figure 11 we illustrate the application of powers of 1.V aiid I/Cr4 t.o tlie 

seasonally adjusted quarterly series of USA uneillployillent rates from 1959 Q1 

to 2000 Q2. This is one of a set of three time series which we sliall use in a 

, subsequent example to illustrate prediction based on these linear conlbinat,ions 

of the past. 
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3.3. The Extended VAR Model , 

The niodel we fit to our vector t,inie series xl is the regression 

in ~vliich Ck are ~iiatrix coefficie~its. This is a canonical for111 of tlic: nlodel, 

in which the errors e,, lime cov;lriancc 111'trix C. Provided tlicsc c:octficients 

are full. i . e .  there a.re no elclile~lts co~~strailled to be zcro. tllc l)i\.riu~leters 

call be estinlated with full efficit>ncy hy OLS itpplied to thc scparatt sil~gle 

tfytli~tio11 regressions for each cle~iicllt of .7:,. A st~.t~cturiil lllodel n:llic.li in(-l~rtles 

conte~lil)oraneous regressors. and llitving errors a, w i t , l ~  dikigo~lal coviirialice 

matrix D could also be fitted. This is exactly ecluivalent to ( 1  1 )  i f  there are 

110 parameter  constraint,^. Mre sllall use the canonical for111 hecause prediction 

fro111 the past is our aim. The niodels naturally for111 a nested (*lass as p 

increases. 

We can overconle concern about the effects on the regression of the transient 

errors at the start of x(k), by introducing extra ternls in (11) wllich allow for 

these effects. We suggest that a nlaxinlunl lnodel order P is chosen. Tlle data 

nlatrix for the regression  consist,^ of the m ( P +  1) vectors ~ ( k ) ~ ~ .  t = 1 . 2 ,  . . . , 7 7 :  

for k = 0; 1, . . . , P and i = 1: 2, . . . ; m. We augment this with the P vectors 

of impulse responses of the operators W k  for k = 1; 2: . . . : m. These are the 

responses illustrated in (lo),  and are readily generated using (9), but starting 

fro111 t = 0, and setting xt = 0 for all t except xo = 1. The values of ~ ( k ) ~  
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so generated for t = 1: 2. . . . : n then comprise tlie required impulse response 

vectors. We advise that. these vectors are included, whatever order p 5 P of 

nlodel is fitted, in each of the single equation regressions of (11). It is in tlieory 

only necessary to include imp~llses corresponding to for k < p. The reason 

for ollr advice is for conlparability. witli standard vector autciregression. In tlie 

case 9 = 0. the inc11.1sion of the ilnpulses is equivalelit to dumrkly variables for 

tlie effects in lagged regressio~l of unknonril values .XI. for t = 0. -1:. . . . P - 1. 

The net effect of this is to ilse only regression vectors wit11 clenicnts of x t - k  for 

t = P + 1. P + 2. . . . . n .  Tlle aclvalitage of usi~lg fixed P w1le11 fitting ally order 

p of niodttl up t o  P. is that tlie dcpeude~lt vector ill  tlic regressions relliains 

tlie same. rather than reducing in leligtli with i~lcreasillg p. Tliis is 1)et.ter 

for coniparing t110 prediction error variances fro111 models of illcreasing order. 

For our niodel col~lpa.risons we sliall also use the AIC. HIC alld SIC. with tlic 

de\-imce (~iiirius twice the log 1ikt:liliood) defirietl as rr log 2 arid perialized by 

21)1119 for the AIC. 2prn' log log n. for the HIC: mlcl p~n' log t i  for t l ~ c  SIC. Tlie 

esti11iat.e 2 is the saniple va.lue formed from tlie residuals 6, ~vitliout corrcctioli 

for paranleter clcgrees of freedoni. 

3.4. Properties of the Extended VAR Model 

Before we show the exaniple tve give sonie further properties of the new 

model. First, consider the regression nlodel (11) in the case when xt is a 

weakly stationary vector process. Because we can invert (8) to get B = (I/V + 
8)/(1+9W), any combination of past values Bkxt ,  by expa~ision of Bk in te r~ns  

of Wk:  can also be expressed as a conibination of the regressors l (k ) t .  The 
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VZAR models therefore have the sanle asymptotic predictive potential as the 

class of VAR nlodels. 

Secondly; we write the illode1 in the forni. 

where to = 1 + C < k ( - 8 ) k .  We have here reversed tlie correctio~is of 1,1'"ivell 

in ( 1 0 ) .  and gatliered all tliese into tlie coefficiclit to .  The net coefficiellt of 

x, froni all the ternis in (12)  is still tlierefore 1. which is tlie value of ((11') 

eval~~ated at 11' = 1. If 'ive now sut~stitutc 11' = (B - H)/(l - 6'B) into (12) 

a i d  siliiplify. we obtairi: 

The matrices dl, are the usual autoregressive coefficients of a VARhIA model. 

but the operator (1 - 8B)P is a scalar moving average, act.ing on tlie error vec- 

tor el which we now assume is white noise. Provided therefore, that det b (B)  
llas no zeros for B < 1,  model. ( 1 3 ) ,  and hence also lnodel (12) ;  represents 

a weakly stationary VARMA process with mean p.  Now ( 8 )  represents a 

Moebius transformation, see Priestley (1985 p 170), of the r~nit  disk to itself, 

so the stationarity condition may be equivalently expressed by the requirement. 
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that det <(l,If-) 112s 110 zeros for Lt7 < 1. Tlie coefficients [r1tk therefore occupy 

the sanle paralneter space as that of a standard VAR. 

Other. spectral. properties of tlie niodel are given for the ~lnivariate case hy 

hlortoll and T~ulnicliffe Wilson (2001a). and these readily generalize to tlie rnul- 

tivariate case. A final property of the nlodel. ~vhich is riot presented elscwlitre. is 

the state sl)ace r~presentatiou. given for the niean corrected \.ariahles 11.y 

Tlit. niodel (12)  appears in the last line of this represelltation. wit11 the ~)rt.\-ious 

lines recl~rsivcly defining tlle variables xL'(k),,.  he equation sllould be divided 

tlirougli by t11c matrix on tlie left, to briilg it into tlie standard f(.)l.ili. T l ~ e  

observat,ioli ecluiltion is silllply tlie selection of the first m state variables. It is 

possible to use (14) with tlie Kalnlan filter to for111 one step aliead predictioiis and 

derive the exact likeliliood of the model, avoiding tlie estinlation of tlle transients. 

It is reconlniended that the square root form of the Kalrnan filter is used to avoid 

ariy prohlelil with state estiiiiation. The estiniation by regression is llotvever very 

straightforward, and the most useful application of (Id),  again with the Kalliian 

filter; is to nlulti-step forecasting. 
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FIGURE 12 

Th.re-ee (;Sf4 n~ncro-econ,omic irrdiccr.for.~ irscrl for the model eznmple. All aeries 

co7rsisf of q?inr.terly vnhies from 1959 Q I to 2000 Q2. Th,e first is the i71.terest 

mtes. tire .iecon,d is th.e quarte7.ly change in the loqarith,tn of the CDP and th.e 

third ia tire luie~mploynler~t mfe. 

Qunrterly series d interest rates 

Quarterly seris of granih rates 
aM 

L I 

a a U) OD m rm ra iro re, 

Quarters 

Ouartedy scries of unemployment rates 

Quarters 
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3.5. An Example  of Modeling T h r e e  Quar t e r ly  Series. 

Tlie series wliicll we use for illustratioii are three USA niacro-ccononiic indica- 

tors, .t.lic treasury bill rate, tlie GDP in cllrrent dollars, and tlie uiieiiiployiiient 

ra.te. This is a selection of tlie varii\l)les 11scd by Doail: Littor11i:ul and Siiils 

(1984) ill t.lieir Bayesian aritorcgressivc: iilodc-ll. We IISC tlie qlli~rterly seasoilally 

;l.c!ii~st&d valilcs froui 1959 qi~a.rt(:~. 1 to 20i)O (111iirtcr 2. For ('st i l i l i l l  ioil IVO xvill 

exclildc the filial tlircc years of di~t;\. rct.:~iiiing tliciu for illustsat ion of out of 

sitii~plc forecasts. \Vc t~pply tlic logi~ritli~~iic traiisforiuatim t o  o11r t llrcc! series 

1,efc)re fitting tlie nlodel. aiirl we HISO difference tlie secorid sc:~.ies. Fig~lre 12 

slio~vs plots of the scrics. 

15'~: first tiescribe tlic rcsult of f i t  1 ill:: il stai~dtud vector a~~torcg~.rssioll to t lio 

t hrec series. The AIC sclcctetl a n~odel ortlcr 8. altliol~gll t lie IIIC' sclectctl. 

ordcr 3. Tlie HIC will ,aPiie~~~tlly sclect. it lo~ver order iiiodcl. I)eca\~se it is 

dcsig~icd to estil~iate tlle order coi~sisteiitly. wlieii it is supposed t l l i ~ t  tliest> is a 

true finite order model. Tlie AIC tt3i1ds t o  overcstiniate such a trile ol.dcar. hut 

1)ecause we are atte~iipting to al)l~rosiiiiatc t.llc structi~re of the series for the 

p~uposes of forecastiilg, and do liot suppose that there is a trrlo firlit(' order, 

we believe that. the AIC is tlie illore appropriate criterion for obtaining ;L good 

apl)roxinlating nlodel.. 'Ilk did exalliirle the results froril fitting tlie i~iodel of 

order 3, but the forecasts did not. follow the series at all well. 1% tllerefore 

show the results of fitting the VAR(8) illode1 and extrapolating tlie final 3 

years of data, froill 1997 Q3 to 2000 Q2, in Figure 13. 

.By comparison, the order chosen for the ZAR model, using 8 = 0.5, was 5 .  I11 

fact this was the first inininluin arid the AIC reduced to a lower value at lag 9 
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and continued to reduce. Tlie HIC ilidicated order 2. The  forecast,^ fro111 the 

ZAR ( 5 )  ~ilodel are sliowri in Figure. 14. 

FIGURE 13 

Out of scrrnple forecusts of th.e th.ree USA m,c~c.ro-eco.no,ij,i(: irrdic.o.tors orler th,e 

period frorn. 1997 Q3 to 2000 Q2: with f~irth~er forecasts t o  . 2003 . (22. ohta.in.ed 

using n stu.ndarrj 1.;1 R(8) ~rro(Le1. 

FIGURE 14 

Out of sample forecasts of the three USA macro-econ.omic indicators over th,e 

period from 1997 Q3 to 2000 Q2, with filr.th,er forecasts 1.0 2003 (22: obtained 

using the vector ZAR(5)  model. 
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3.6. Model Comparisons 

Orie (:all 0111~  draw liniited conclusions fro111 one examl>let and our aim 

is niaillly to coinpare and contrast the two ~iiodels. Altlio~~gli ire do riot 

show theill. me reinark first that tlie   nod el residl~als and their sanlple allto- 

correlatiorls were genert~lly siluilar. sliowi~ig no clear prefcrerlce for olie i~iocl- 

cl. Hourever. tlie lower AIC was for the ZAR ii~odcl. by 17.0. and a within 

saniplc forecastilig colli~~arison showed that a t  lead time G tlie ZAR nlodel 

liad lower niel-rn square forecast error. by 35%! 8%. a.nd 2(i'7;! respectively, for 

all tllrce series. Before collirile~itillg on the out of salilple forecasts: we draw 

attcilt ion also to Figllre 1.5: wliicli sho~vs forecasts ~~roci~.~c.ecl by a con t i~ l~~ous  

tinlt? ZAR ~ilodel of order 4. Tliis mas estimated by ~i laxi~l i~ui l  likeliliood: 

~rsing tlic Kl-rliiia~i filter to eva l~~a te  the likeliliood. In this case, tlle loga- 

rithnls of the GDP series were used without clifferenci~ig and the forecasts 

H ~ C  sliowii of tlie original vall~es of this series. The error lililits s1101~1i on all 

tlie forecasts represent 9.5% confidence. 

Tlie niaiii difference in the out of sauiple forecasts is that both the discrete 

alld coiitinuous ZAR models sliow the ~lnemploymeut continuing to decrease 

over the last three years. The alnlost continuous decline of unemploynlent 

over the last 7 or 8 years. associated with a continuing healthy econon~y. 

has appeared to suggest a structural break in the nor~llal pattern of econo- 

niic cycles. However, the ZAR models manage to forecast this continuing 

decline, 011 the basis of estinlation fro111 data up to 1997 quarter 2. They 

do however predict a reversal around the end of 2000. By contrast with 

the ZAR model, the standard VAR illode1 forecasts show little moveillent 

a t  higher lead times. 
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FIGURE 15 
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Out of so.~n,ple forecasts of the th,ree IJSA 1r7a.cro-ecnri,orrii(: irtdico.tors olier 

th.e period from 1997 Q3 to 2000 Q2. obtninecl using th.e vector CZAR(4) nzotlel. 

3.7. Spect ra l  P rope r t i e s  of the Model  

As hlorton and Tnnnicliffe 1lTilsoii (2001a) point. out. tlic ZAR iiioclcl car1 

itc:liieve a finer resolution of the spectrunl at  lower freclucncies. and this can 

result i11 i~~ipro\renieiits to forecast acc1u.ac.y at higher lead tinies. \Ye show 

sorne of the spectral properties of the ZAR(5) and AR(8) iilodels in F ig~~res  1G 

a i ~ d  17 respectively. We display the spectral densities of tlie interest rate and 

unenlploy~nent rat.e series and tlie coherency between theill. These reflcct a 

strong dependence at very low frequencies arid around freclue~icies associa.ted 

with tlie five-year ecoiioniic cycle. Tlie ZAR illode1 resolves soiile of the fea- 

tures more clearly. In fact there is evidence of spectral features a t  frequencies 

correspondirig to periods of 5 ,  10 and 2.5 years, tlie last of tliese being clear 

also in the growth rate spectruni which we do not show. 
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FIGURE 16 

Th.e spectru of the ~ :n , t e~es t  mtc! .cer.ies and n7senzployincr~t rnte series, togeth,er 

urith the coherency betureen the series, .as estimated by the vector ZrlH(5) nodel. 

Tlierc are still niany cp~cstiolw to be resol\wl regardilig tlie ZAR ~iioclel. for 

cx;u~iple the approl~rii~te c.1ioic.e of the ~Rr i l l l l~ t~1 '  0 ill itlly gi~oli  exalliplt~. Tliere 

lility be dangers in over-fitting tht. low freqllelicy s t r ~ ~ c t ~ u - e  of tlic series if  B 

FIGURE 17 

Th,e spectra of the interest rate series and unemployment rnte series, togeth,er 

with the coherency bet.u.ree.n the series: as estim.u.ted by th.e .vector A R(8) model. 



392 ESTAD~STICA, VOL. 53, 160, 161, JUNIO Y DICIEMBRE, 200 1 

is chosen too large. \.Ye require order selection criteria which are reliable and 

also assess the forecasting ability of the model at higher lead tilnes. The 

exaniple we have shown does however suggest that t,liis new class of niodels 

can achieve real ililproverllelits in forecast accuracy. 

4. CONCLUSION 

Wre have yreserited two new directions of developnient in nl~tltivarinte t i i i~e 

series modelirig, with real examples to dc:monstrate their value. &?'c liope they 

will provide useful additions to the range of riiocleli~ig iiictliods for ni~lltivariatc 

time series ivliich 11x5 b c ~ n  t)llilt up over t,he years. and nrllicli \v(! liavc: briefly 

reviewed. It may be possible to coiilbine the different aly>rowlic~s. s~lcli as the 

two methods we have presented here, to achieve filrtlicr aclva~iccs ill  tho ailus 

of multivariate tiuie series niodeling. 
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