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Abstract. Structural vector autoregressions allow dependence among contemporane-
ous variables. If such models have a recursive structure, the relationships among the
variables can be represented by directed acyclic graphs. The identification of these
relationships for stationary series may be enabled by the examination of the conditional
independence graph constructed from sample partial autocorrelations of the observed
series. In this article, we extend this approach to the case when the series follows an I(1)
vector autoregression. For such a model, estimated regression coefficients may have non-
standard asymptotic distributions and in small samples this affects the distribution of
sample partial autocorrelations. We show that, nevertheless, in large samples, exactly the
same inference procedures may be applied as in the stationary case.
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1. INTRODUCTION

In Reale and Tunnicliffe Wilson (2002), we considered the pth-order vector
autoregressive model [VAR(p)] of a stationary m-dimensional time series xt ¼
(xt,1, xt,2, . . . , xt,m)

0 in the form:

U0xt ¼ d þ U1xt�1 þ U2xt�2 þ � � � þ Upxt�p þ at ð1Þ

where d allows for a non-zero mean of xt and at is an independent multivariate
(white-noise) process with variance matrix D. We make two requirements for this
model:

(i) the elements of xt may be re-ordered so that the coefficient matrix U0 is
upper triangular with unit diagonals;

(ii) the variance matrix D is diagonal.

Such a model specification arises naturally under the causal sufficiency
assumption (Spirtes et al., 2000), where, in the ordered form, the model
describes how each current component of xt depends on one or more of the
current components which are subsequent in the ordering, and upon past values
of any of the components. Then the components of at are known as the orthogonal
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innovations (or residuals), and the model may be described as a structural vector
autoregression (SVAR).

Given a sample x1,x2, . . . , xT, our aim is to find, by empirical methods, a model
(1), whose form and statistical properties coincide with those described above, and
which is also sparse, i.e. has a relatively small number of coefficients.This model
should provide a good representation of the observed statistical properties of the
data, in particular, its sample second-order moments (autocorrelations). The
model (1) may be transformed to the canonical form of a VAR:

xt ¼ cþ U�1xt�1 þ U�2xt�2 þ � � � þ U�pxt�p þ et; ð2Þ

which does not include dependence among contemporaneous variables, by
dividing through by U0. The error term, et ¼ U�10 at, is the linear innovation, or
vector of canonical innovations (or residuals) of the series, having variance matrix
R related to D by

R�1 ¼ U00D
�1U0: ð3Þ

The transformation from model (1) to (2) is in general many to one (unless U0 is
diagonal). Corresponding to each possible ordering of the series, one may
determine, by Choleski factorization, a different matrix U0 which satisfies eqn (3).
Given a model in the form (2), inverting the transformation then leads to a set of
models having identical distributional properties, each of which is of the form of
the SVAR (1). It is not possible to distinguish, by statistical means, which of these
models might represent the true dependency between the series. However,
identification of a small number of models of this form which are also sparse, may
assist in the process of selecting a plausible structural representation which is
consistent with prior knowledge of the system generating the observations. For
convenience of terminology we will refer to any model of the form (1), and
satisfying the conditions (i) and (ii), as an SVAR.If the number of series is small,
each of the different orderings of contemporaneous dependence could be explored
directly, to find, by subset regression methods, those structural models which can
represent the series using sparse coefficient matrices, but for a larger number of
series, this would not be very practical.

Statistical procedures, which are part of the methodology of graphical
modelling, can potentially enhance this search. The statistical properties of
these procedures depend on the assumed structural form of the model used to
represent the series; the validity of the causality assumption is not required to
establish these properties. The model (1) may be represented by a directed acyclic
graph (DAG), in which the components of xt,xt�1, . . . , xt�p form the nodes, and
recursive dependence is indicated by directed edges linking nodes. The nature of
the model is that all edges end in nodes representing the contemporaneous
variables on the left-hand side of eqn (1). Some edges will start from the past, and
some from other contemporaneous variables. As an illustration, Figure 1 shows
the DAG representation of a seven-variable SVAR(1) based on a model for daily
US dollar term interest rates presented in Tunnicliffe Wilson et al. (2001). The
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VAR model coefficients are inserted adjacent to the edges describing the
dependence. A link is absent where there is no dependence, i.e. the coefficient is
zero. The model is completely represented by this diagram, in which no links are
shown between past variables, though, strictly,the same pattern of links should be
repeated between all lagged (and future) variables.To directly identify such a
DAG for a given time series would require estimating a multitude of possible
models. To limit this search we first use statistical methods for identifying an
undirected conditional independence graph (CIG) on the same nodes as the DAG.
For a given structural VAR, this CIG may be derived by application of the
moralization rule of Lauritzen and Spiegelhalter (1988), to the links shown in the
corresponding DAG. Figure 2 shows the CIG for the model represented in
Figure 1. Although the CIG does not in general uniquely characterize the DAG
from which it was derived, it may dramatically constrain the number of
possibilities. An important point is that, for Gaussian variables, the existence of a
link between two nodes in the CIG may be identified with the existence of a non-
zero partial autocorrelation between the corresponding pair of variables,
conditional upon all other variables.
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Figure 1. The DAG representation of the simulated structural VAR(7) model.
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Figure 2. The CIG derived from the DAG representation of the simulated structural VAR(7) model.
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The value of identifying the structural model (1) lies not only in the advantage
of a sparse representation. Swanson and Granger (1997) apply a method of
residual orthogonalization to the innovations et estimated from fitting a canonical
VAR, which is ‘meant to help in the specification of a sensible,data-determined
ordering of the errors’.They add that ‘the ordering of the variables is essential to
the interpretation of impulse response functions and forecast error variance
decompositions’. The CIG of these innovations is readily identified with
the subgraph of the complete VAR model, obtained by restriction to the
contemporary variables. By using additional information on links between
the contemporaneous and lagged values, our procedure can often uniquely
characterize the contemporaneous ordering or reduce the possibilities to a small
number, when the CIG constructed solely from canonical residuals permits many
possible orderings.

The use of sample lagged partial autocorrelations of the time-series data in
testing for the absence or presence of a link between two nodes in the CIG, is set
out in Reale and Tunnicliffe Wilson (2001). The distributional theory on which
this is based, is presented in Reale and Tunnicliffe Wilson (2002). In this article,
we seek to extend our methodology to the case when the vector of series is I(1), so
that the first difference of xt is I(0), but the series may have non-trivial
co-integration. In that case the autocorrelations, and therefore the partial
autocorrelations, between lagged variables are not strictly defined, and test
statistics for relationships between variables may have non-standard asymptotic
distributions. Nevertheless, methods based essentially on the screening of sample
partial autocorrelations have been applied to series that are generally considered
to be integrated or co-integrated when subject to standard tests. For example,
Awokuse and Bessler (2003) construct a structural VAR model of U.S. Economic
Indicators using a search algorithm to derive the graphical representation. Oxley
et al. (2004) present an example of modelling New Zealand financial indicators.
The main point of this article is to show that exactly the same inference
procedures, as are applied in the stationary, I(0) case, are justified for I(1) data in
large samples. We will illustrate the results by simulations from the model
represented in Figure 1; real examples may be found in the papers previously
cited.

2. EXTENSION TO I(1) PROCESSES

Let xt follow the model (1) with the further condition that the process is Gaussian,
and consider the DAG and CIG with nodes corresponding to the elements of
xt,xt�1, . . . , xt�p. In the CIG, a link between a contemporaneous element xt,i and
any other element xt�h, j, 0� h � p, is missing if and only if the partial correlation
between xt,i and xt�h, j is zero, given all the other variables in the graph. In the
given context, this is in fact equivalent to the condition that the coefficient Uh,i, j of
xt,i upon xt�h, j is zero in the minimum variance linear predictor of xt,i from all
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other contemporaneous and lagged variables. This latter condition provides a
more useful definition of the CIG corresponding to eqn (1), when we allow the
process to be I(1) rather than stationary. The reason is that autocorrelation
functions, in terms of which partial autocorrelations (and their sample values) are
naturally defined, only exist in the stationary context, whereas the prediction
coefficients are always well defined and well estimated. The moralization rule for
the DAG corresponding to eqn (1), can also be directly and readily verified using
the CIG based upon this definition, without requiring stationarity.

To determine from a sample x1,x2, . . . , xN, whether the stated link is missing, we
can therefore test the hypothesis that Uh,i, j ¼ 0. The following result provides the
required distributional properties for this test. We will assume that the true order
p of the process is known, otherwise it may be determined from the saturated
canonical VAR in eqn (2), by the use of a model selection criterion.

Theorem 1. Let xt follow an I(1) cointegrated structural VAR(p) process of the
form given by eqn (1), and form the data matrix X consisting of m(p þ 1) vectors of
length n ¼ N � p, composed of elements xt�u,i, t ¼ p þ 1, . . . ,N, for each series
i ¼ 1,2, . . . ,m and each lag u ¼ 0, 1, . . . , p. Perform the standard OLS regression of
the vector corresponding to xt,i in X, upon all other vectors of X and form the usual t
value for the estimate of the coefficient Uh,i, j of the vector corresponding to xt�h, j.
Then, under the hypothesis that Uh,i, j ¼ 0, the t statistic has an asymptotic standard
normal distribution.

The proof is presented in the Appendix. We remark that the regression t values
for estimated coefficients in I(1) VAR(p) models do not generally have an
asymptotic normal distribution. The proof of the theorem establishes that the
estimate of Uh,i, j has a component with a non-standard distribution, but that this
is always dominated in large samples by a component which is asymptotically
normal. Simulations presented in Section 3 illustrate this effect. Our final point in
this section is to note that implementation of this test does not require the fitting
of regressions with each contemporaneous value xt,i, taken in turn as the response.
Instead, construct a whole set of empirical partial correlations in exactly the same
manner as described for the sample partial correlations in the stationary case, by
Reale and Tunnicliffe Wilson (2001):

q̂ðxt�u;i; xt�v;j jfxt�w;kgÞ ¼
�Whlffiffi
ð

p
WhhWllÞ

; h 6¼ l; ð4Þ

where W ¼ V�1 is the inverse of the sample covariance matrix formed from X,
and h and l respectively index the lagged variables xt�u,i and xt�v,j in the matrices
V and W. The algebraic relationship between regression t-values and empirical
partial correlations, expressed as t ¼ Û=SEðÛÞ ¼ mq̂=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q̂2

p
, may then be

inverted to yield that t > z if jq̂j > z=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ m
p

� z=
ffiffiffiffi
N
p

, where z is an appropriate
critical value of the standard normal distribution and m is the residual degrees of
freedom in the regression. The empirical partial autocorrelations may then be
used to carry out the tests, exactly as for the stationary case.
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3. AN ILLUSTRATIVE SIMULATION

To illustrate the previous result we simulated the I(1) cointegrated sparse
structural VAR(1) model of seven series: U0xt ¼ U1xt�1 þ at, which is
represented in Figure 1. The coefficients of U0 and U1 are given in the
diagram, and the standard deviations of the components of at are, in order,
0.0457, 0.0646, 0.0782, 0.0197, 0.0336, 0.0178 and 0.0164. This was derived from
a model for seven term interest rate series presented in Tunnicliffe Wilson et al.
(2001). It is capable of producing simulated series that are very similar to those
of the real-term rates. However, we have slightly adjusted, to the value of unity,
the coefficients that relate xt,3 and xt,5 to their respective lagged values xt�1,3 and
xt�1,5. Each series xt,i is therefore individually I(1), but the vector series has five
cointegrating vectors, i.e. there are two I(1) components and five I(0)
components of xt. The CIG derived by moralization of Figure 1 is shown in
Figure 2.

We selected 10 pairs of variables that are not linked in Figure 2 and computed
the empirical partial correlation coefficient between these pairs for 10,000
replications of simulated series of length both 100 and 600. The proportions of
values exceeding the 5% critical threshold defined by our procedure, are shown in
Table I, for the length 600 series in the row labelled ‘A’, and for the length 100
series in the row labelled ‘B’. For the results from the length 600 simulations, the
proportions lie generally within the range of variability that is expected
asymptotically, with the overall proportion being 0.0508. However, the results
from the length 100 simulations show a consistent excess proportion, which
overall is 0.0604. This is consistent with the fact, given in the proof of the theorem,
that in small samples the regression ‘t’ values may contain a component with a
non-standard distribution associated with I(1) autoregression. A further length
100 simulation set was carried out, in which U1 is multiplied by 0.5, so that the
process was I(0). The results are displayed in the row labelled ‘C’ of the same
table, and show a small excess proportion (overall 0.0523), but much less than
that for the I(1) model. These results agree with the large sample theory
established in the article.

TABLE I

The Proportions of Selected Empirical Partial Correlations that Exceed Critical

Thresholds in 10,000 Simulations

Variable 1 xt,2 xt,3 xt,4 xt,2 xt,3 xt,4 xt,4 xt,4 xt,5 xt,6
Variable 2 xt,4 xt,6 xt,6 xt�1,4 xt�1,6 xt�1,1 xt�1,2 xt�1,6 xt�1,2 xt�1,3

A 0.044 0.056 0.051 0.050 0.055 0.050 0.046 0.053 0.048 0.055
B 0.061 0.056 0.061 0.059 0.063 0.059 0.062 0.060 0.063 0.060
C 0.054 0.053 0.050 0.050 0.052 0.057 0.054 0.049 0.051 0.053

Rows A and B show results for the I(1) model represented in Figure 1 with simulated series of lengths
600 and 100 respectively. Row C shows results for an I(0) model and series length 100.
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4. CONCLUSION

We have shown that the methodology for using conditional independence graphs
to identify structural VAR models, may, in large samples, be extended unchanged
to the case of I(1) time-series data. The method may be used to identify
contemporaneous relationships, which can be of importance for proper
interpretation of the impact of contemporaneous shocks on the future
behaviour of the series.

APPENDIX

Proof of Theorem. Without loss of generality consider inference for the coefficient Uh,1, j,

taking the response variable in the regression to be xt,1. The proof builds on the development
in Reinsel (1993, pp 165–8), which is based on a result of Ahn and Reinsel (1990). Some
modifications and notational changes are made to incorporate the structural form of model.
A 1:1 linear transformation can be made from the parameters U0, . . . ,Up of eqn (1) to a new

set of parameters C1,C2,u0, . . . ,up�1 in an error correction form of the model:

wt ¼ xt � xt�1 ¼ C1z1; t�1 þ C2z2; t�1 þ u0wt þ
Xp�1
j¼1

ujwt�j þ at; ð5Þ

where z1,t is a d-dimensional I(1) series and z2,t is an r-dimensional I(0) series; r ¼ m � d

being the co-integrating rank of xt. In terms of the new parameters, U0 ¼ I � u0, Uk ¼
uk � uk�1 for k ¼ 2, . . . , p � 1 and Up ¼ �up�1. However, the remaining coefficient, U1,
is expressed as

U1 ¼ u1 þ I � u0 þ C1Q1 þ C2Q2 ð6Þ

where Q1 and Q2 are full-rank matrices conforming to the dimensions of C1 and C2 in eqn

(5). They are defined by the partition Q0 ¼ ðQ01Q02Þ of the matrix Q in the Jordan canonical
form of

Xp

k¼1
U�10 Uk ¼ P

Id 0
0 Kr

� �
Q; ð7Þ

where P ¼ Q�1. We consider eqn (6) as defining a linear relationship, determined by the

matrix functions Q1 and Q2 of the true (but unknown) model, between the coefficient U1

(and the previously defined u1 and u0) and the two new coefficients C1 and C2. This
relationship also applies to the estimates of these same model coefficients and is used to

derive their properties. However, from eqn (7) we may establish that the true value of C1 is
zero, because (following Reinsel, 1993, p. 167), on partitioning P ¼ (P1,P2), we can express

C1 ¼ U0 �
Xp

k¼1
Uk

 !
P1:

The properties of the estimated coefficients in eqn (5), are based on the fact that the
regressors z1,t�1 are purely I(1) and the remainder are I(0). Because the true value of C1 is

zero, we have Ĉ1 ¼ OpðN�1Þ and

7CONDITIONAL INDEPENDENCE GRAPHS AND SVAR MODELS

� 2008 The Authors
Journal compilation � 2008 Blackwell Publishing Ltd.



Ĉ2 � C2; û0 � u0; . . . ; ûp�1 � up�1
� �

¼ OpðN�
1
2Þ: ð8Þ

Furthermore, the joint distribution of the estimated coefficients in eqn (8) is the same as for
an I(0) model, so standard OLS inference is valid in large samples. In particular, regression
‘t’ values are asymptotically standard-normal. Apart from U1, the estimates of Uj are linear

transformations of those in eqn (8), so are the same as for an I(0) model. For Û1 we refer to
eqn (6). The magnitude of Ĉ1 is Op(N

�1), so provided that the particular element of Û1 in
which we are interested also contains components from û0, û1 or Ĉ2, these, having

standard error of magnitude OpðN�
1
2Þ will dominate the distribution of the estimate for

large N, justifying the use of the I(0) inference.
The only case when the first two of these components are not present arises when p ¼ 1,

so that u1 is not present, and when the parameter of interest is U1,1,1, because there is no
component U0,1,1 in the structural model. We complete the proof by showing that even in
this final case, under our null hypothesis (which becomes U1,1,1 ¼ 0), Û1;1;1 will always
contain a component from Ĉ2. The component of Û1;1;1 contributed by Ĉ2 is, from eqn (6),

ĉ2q2, where ĉ2 is the first row of Ĉ2 and q2 is the first column of Q2. We only need to show
that q2 6¼ 0 to verify that ĉ2q2 will contribute a component of magnitude OðN�1

2Þ to Û1;1;1.
Now from eqn (7), and using that p ¼ 1, we find

I � U�10 U1

� �
column1

¼ P2ðIr � KrÞq2 ð9Þ

Thus q2 ¼ 0 implies that the first column of U�10 U1 is (1,0, . . . , 0)0. But because U0 has unit
diagonals, this implies that U1,1,1 ¼ 1, so contradicting the null hypothesis and demon-

strating that in fact q2 cannot be a zero column. h

NOTE
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