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Abstract. In canonical vector time series autoregressions, which permit depen- 
dence only on past values, the errors generally show contemporaneous correlation. 
By contrast structural vector autoregressions allow contemporaneous series de- 
pendence and assume errors with no contemporaneous correlation. Such models 
having a recursive structure can be described by a directed acyclic graph. We show, 
with the use of a real example, how the identification of these models may be as- 
sisted by examination of the conditional independence graph of contemporaneous 
and lagged variables. In this example we identify the causal dependence of monthly 
Italian bank loan interest rates on government bond and repurchase agreement rates. 
When the number of series is larger, the structural modelling of the canonical errors 
alone is a useful initial step, and we first present such an example to demonstrate 
the general approach to identifying a directed graphical model. 
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1 Introduction 

The canonical pth order vector autoregressive model, VAR(p), of a stationary, m 
dimensional time series x t  = (x t ,1 ,  x t , 2 , . . .  , x t , ~ ) '  is of the form: 

X t = C -}- ~ l X t _  1 + ~ 2 X t _ 2  + �9 . .  q- q ~ p X t _  p -]- e t  (1) 

where c allows for a non-zero mean of x t  and et is multivariate white noise with 
general covariance matrix V. Our working assumption is that the series is Gaussian 
but our methods should be applicable under wider conditions, such as et being 
I.I.D., presented for example in Anderson [2]. This model is attractive because 
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its estimation from a sample Zl, x2 , . . .  , Xn, by least squares applied separately 
to each component of x t ,  is straightforward. For large sample length n it is also 
fully efficient provided there are no subset constraints on these separate regres- 
sions, (Judge et  a l  [ 11]), the properties of the estimates given by the regression are 
reliable, and the estimate of V is independent of the estimates of ~k. The order p 
of the regression may be determined by various methods including inspection of a 
multivariate partial autocorrelation sequence, see Reinsel [16], pp 69-70, or mini- 
mization of an order selection criterion such as AIC, Akaike [1], HIC, Hannan and 
Quinn [9], or SIC, Schwarz [17]. Such criteria have been extensively used in time 
series contexts. Recently Swanson and White [20] have used them for linear and 
non-linear modeling of multiple time series and in our examples we also tabulate 
their values as an aid to model selection. 

There are various approaches to multiple time series modeling which seek ei- 
ther to transform models such as (1) to a form which includes contemporaneous 
relationships among the variables, or to identify directly such a form, see for exam- 
ple Box and Tiao [6] and Tiao and Tsay [21]. Our aim in this paper is similar; our 
approach is to consider the structural autoregressive model of the same form as (1) 
but with the addition of contemporaneous dependence through a matrix coefficient 

~o: 

~ o x t  = d + ~ X t - 1  Jr- ~ X t - - 2  ~- " " " -~- ~ ; X t - - p  q- a t .  (2) 

The general relationship between time series and structural econometric models 
was developed by Zellner and Palm [24]. In our present context the equivalence 
between (1) and (2) is given by ~ = ~0~i and ~ o e t  = at .  A requirement of (2) is 
that the variance matrix D of at  is diagonal. We require a further condition on ~0, 
that it represents a recursive (causal) dependence of each component of x t  on other 
contemporaneous components. This is equivalent to the existence of a re-ordering 
of the elements of x t  such that ~0 is triangular with unit diagonal. Each possible 
ordering of x t  therefore gives a potentially distinct form of (2), but these are all 
statistically equivalent, corresponding to factorizations of 

V - 1  =- ~ b ~ D - l ~ 0  . (3) 

This contrasts with the unique form of (1), which is the attractive feature of that 
model from a time-series modeling viewpoint. 

The value of (2) therefore lies in the possibility that there is one particular 
form which, as a consequence of its representing a true simple mechanism, is more 
parsimonious in its parameterization than either (1) or the other forms of (2). This 
would be reflected in the ability to exclude many of the elements of ~o and ~* 
from the model without penalizing the fit in comparison with the saturated forms 
of either (1) or (2). Identification of such a model may then provide added insight 
into the true mechanisms which generate the data. 

That is what we seek to achieve by the method described in this paper. However 
we introduce this method in section 2 without reference to dynamic structure. The 
relationship (3) shows that some, though not necessarily complete, information on 
the structure of ~b0 is available from the variance matrix of the innovations. We 
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therefore first illustrate the method, in section 2, without reference to any lagged 
structure, by its application to an innovation series et. This arises from a canonical 
autoregressive-moving average (ARMA) model fitted to a series of seven daily 
dollar term interest rates. In section 3 we consider how the method may then be 
extended to identify structural autoregressions. Section 4 contains an example which 
illustrates this approach using three monthly monetary time series. 

2 Recursive structure and partial correlations 

Neglecting, for the present treatment, any effects of time series model estimation, 
we suppose that we have observations on the vector Gaussian white noise innova- 
tions process et with the usual sample covariance matrix ~r. We wish to determine 
from the data the form of possible sparse structural matrices #0 which are compati- 
ble with V. There may be no unique such form without imposing further constraint 
using insight from the modeling context. Swanson and Granger [19] consider an 
almost identical problem, but focus more on testing for the constraints which are 
implied by a particular structural form of #0 which has commonly occurred in 
practice. Their tests are expressed in terms of partial autocorrelations which, as 
they remark, are not directional and would therefore appear less appropriate for 
recursive (causal) models. We also use pair-wise partial autocorrelations, but con- 
ditioning on all remaining variables (i.e. components of et) rather just one other 
variable at a time. This is because such partial correlations are used to construct 
the conditional independence graph (CIG) of the variables, following procedures 
presented for example in Whittaker [23]. As Swanson and Granger also remark, 
the structural form of dependence between the variables is naturally expressed by 
(and is equivalent to) a directed acyclic graph (DAG), in which nodes representing 
variables are linked with arrows indicating the direction of any causal dependence. 
A DAG implies a single CIG for the variables, but the possible DAGs which might 
explain a particular CIG may be several or none. The point is that, subject to sam- 
pling variability, the CIG is a constructible quantity and a useful one for expressing 
the data determined constraints on permissible DAG interpretations. 

The CIG consists of nodes representing the variables, two nodes being without a 
link if and only if they are independent conditional upon all the remaining variables. 
In a Gaussian context this conditional independence is indicated by a zero partial 
autocorrelation: 

p (et#, et,y]{et,k, k # i, j})  = O. (4) 

In the wider linear least squares context, defining linear partial autocorrelations as 
the same function of linear unconditional correlations as in the Gaussian context, 
(4) still usefully indicates lack of linear predictability of one variable by the other 
given the inclusion of all remaining variables. The link with Granger causality is 
quite evident. The set of all such partial correlations required to construct the CIG 
is conveniently calculated as 

p (et,i, et,y I{e~,k, k # i, j})  = -Wiy/x/~(WiiWjj)  (5) 
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Fig,  1. Six-month (solid line), two year (broken line) and ten year (dotted line) dollar term rate series 

where W = V -1. The sample values are obtained by substituting the sample value 
f~ofV. 

Our example uses the innovations from the series of daily dollar term rates over 
the period from 30th November 1987 to 12th April 1990, excluding non-trading 
days. The maturity terms are 6 month, 1, 2, 3, 5, 7 and 10 years. Fig. 1 illustrates just 
the six month, two year and ten year rates. The movements in the series are clearly 
highly correlated as supported by Table i which shows the correlation matrix of 
the linear innovations from a well-fitting canonical ARMA(1,1) model estimated 
for these seven series. These residual are related only by this contemporaneous 
correlation. Plots of their auto- and cross-correlations from lags 1 to 20 showed no 
evidence of departure from multivariate white noise, with almost all values within 
the two standard error limits (0.082) of zero. The multivariate portmanteau test 
statistic of Hosking [10], for multivariate white noise, was 961.3 on 882 degrees of 
freedom. This is close to the upper 2 �89 percentage point, but for a series of length 600 
it indicates a very good fit. The distribution of some of the residual series showed 
evidence of long tails, as is usual for such financial indicators. The sample kurtosis 
varied from 1.3 to 12.9, but the skewness was generally small. All our procedures 
are based on time series sample correlations whose asymptotic distribution, see 
Priestley ([14], p. 339), is unaffected by non-zero (but finite) kurtosis, so that tests 
based upon Gaussian assumptions remain valid in large samples. 

Table 2 shows the corresponding matrix of partial autocorrelations as defined 
by (5). 
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Table 1. Correlation 

et,1 
et,2 
et,3 
et,4 
et,5 
et,6 
et,7 

coefficients of dollar term rate innovations 

1.000 
0.799 1.000 
0.516 0.538 1.000 
0.502 0.515 0.944 1.000 
0.452 0.458 0.883 0.924 1.000 
0.418 0.425 0.838 0.887 0.965 1.000 
0.420 0.423 0.812 0.863 0.941 0.967 1.000 

et,1 et,2 et,3 et,4 et,5 et,6 et,7 

Table 2. Partial correlation coefficients of dollar term rate innovations with * indicating significance at 
the 5% level 

et,1 
et,2 
et,3 
et,4 
et,5 
et,6 
et,7 

1.00 
*0.720 1.00 
0.022 *0.113 1.00 
0.037 0.017 *0.689 1.00 
0.019 --0.021 "0.154 *0.270 1.00 

--0.045 --0.012 --0.050 0.042 *0.543 
0.038 0.006 --0.055 0.010 "0.115 

1.00 
*0.658 1.00 

et,1 et,2 et,3 et,4 et,5 et,6 et,7 

Some of these are marked to show significance at the 5% level. The significance 
levels are obtained by using the relationship between a regression t value and the 
sample partial correlation/5 given by/5 = t /v / ( ( t  2 + u) (see Greene [8], p. 180). 
Here v is the residual degrees of  freedom in the regression of  one of the variables in 
the partial autocorrelation, upon all the other variables. The t value is that attached, 
in this regression, to the other variable in the partial autocorrelation. This is a 
relationship deriving from the linear algebra of least squares, and is not reliant 
upon statistical assumptions. Standard assumptions are needed to support the usual 
distribution of t under the null hypothesis that the true value of the relevant variable 
is zero, which is equivalent to p = 0. There are of course statistical pitfalls in 
applying the test simultaneously to all sample partial autocorrelations. Our attitude 
is similar to that advocated by Box and Jenkins [5] for the identification, for example, 
of  autoregressive models using time series partial autocorrelations. We use these 
values to suggest possible models; after fitting these we apply more formal tests 
and diagnostic checks to converge on an acceptable model. 

In this example the critical value for significance at the 5% level is an absolute 
partial correlation exceeding 0.081. In fact all the marked values exceed the 1% 
critical value of 0.106, but we indicate the three lower valued significant partial 
correlations with broken lines in Fig. 2 which represents the tentative conclusions 
from Table 2 as a CIG. It's form is almost that of  the linear structure which was 
investigated by Swanson and Granger. This figure was presented and discussed 
by Tunnicliffe Wilson [22] but without any further modeling. Central to the inter- 
pretation of a CIG is the separation theorem. The CIG is constructed by pairwise 
separation of variables which are independent conditional on the remainder. The 
separation theorem states that if two blocks of variables are separated, i.e. there is 
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Fig. 2. Conditional Independence Graph derived from Table 2 for the dollar term rate innovation series 

no link between any member of the first block and any member of the second, then 
the two blocks are completely independent conditional on the remaining variables. 
See for example Whittaker ([23], pp. 64-67) for a general proof and references 
to more straightforward proofs in the Gaussian case, where the result can be read 
directly from the joint density. To illustrate the theorem, Fig. 2 implies that { 1,2} 
are independent of {6,7} given {3,4,5 }. Using a straightforward notation for joint 
and conditional densities, the first part of (6) is a consequence of this CIG. Similar 
arguments lead to the remaining parts of (6). 

fl...7 = fl,213,4,5f3,4,5f6,713,4,5 = fl,213f3,4,5f6,715 = fa12f213f3,4,5f6,TIr" (6) 

This brings us to the next step which is to determine what DAG structures can 
explain this CIG, and to estimate them. This is part of a much wider problem of the 
search for causal structure, covered for example by Spirtes, Glymour and Scheines 
[18]. The procedure to determine the CIG implied by a given DAG has become 
known as moralization,  following Lauritzen and Spiegelhalter [13]. A node B in 
a DAG is a parent  of a node A if there is an arrow f r o m  B directly linking to A .  
Moralization is the construction of a CIG by linking (marrying), for each node 
of a DAG, all of its parents. The original links are retained with their directional 
arrows deleted. In the Gaussian context it can be seen from (3) that moralization 
corresponds to the creation of non-zero entries in V - I ,  which characterizes the 
CIG, from the non-zero entries in ~0, which characterizes the DAG. 

If the graph in Fig. 2 were linear, with no links et,3 - et,5 or et,5 - -  et,7, there 
would be just seven possible DAG interpretations. These are obtained by choosing 
one node as a root o rp i vo t  and directing all arrows away from it. Arrows could not 
come together as that would create a new, moral, link. The links et,3 - -  et,5 and 
et,5 - et ,z introduce more possibilities. These can be listed by first considering the 
possible DAG interpretations of sub-graphs of Fig. 2 as shown in Table 3. 

Selected sub-graphs, one from each column, can be re-assembled to construct 
an overall DAG. This can only be done however, without creating a new moral link, 
provided neither nodes 3 or 5 have parents in two components. This results in 28 
possible combinations: 

1)c~Aa; 2)aAc; 3)aCa; 4)c~Cc; 5)/3Aa; 6)/3Ac; 7)/3Ca; 
8)/3Cc; 9)TAa; 10)TAc; 1 l)~/Ba; 12)7Bc; 13)7Ca; 14)~/Cc; 
15)~,Da; 16)'yDb; 17)~,Dc; 18)'~Dd; 19)q, De; 20)TDf; 21)flEa; 
22)-/Eb; 23)'7Ec; 24)3,Ed; 25)-yEe; 26)-yEf; 27)7Fa; 28),'/Fc. 

All these models are in fact statistically equivalent, as factorizations such as 6 
readily confirm. They may be estimated with full efficiency by separate regressions. 
For example Fig. 3 shows one possible DAG, 7Aa, with values attached to the links 
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Fig. 3. Graph ~Aa with link regression coefficients 

which correspond to the regressions coefficients of et,1 o n  et,2, et,2 on et,3, et,3 on 
none, eta on et,3, et,5 on {et,3,et,4}, et,6 on et,s and et,7 on {et,s,et,6}. To assess 
this model we use minus twice the log-likelihood, which we call the deviance. This 
is given by n ~ log ~2 where &~ are the MLEs of the residual variances from these 
regressions (not the bias corrected mean square errors). This may be compared with 
the deviance of the saturated model in which each variable is regressed upon all 
previous variables, or equivalently with n log det V. 

It is possible that some of the CIG links might be explained by moralization, for 
example the link et,3 --~ et,5 in subgraph C. This was checked by fitting the model 
without this link and a significant increase in the deviance indicated that it should not 
be removed. The link between et,s and et,7 was similarly retained. The assumption 
that the error covariance matrix D is diagonal is the basis of a diagnostic test applied 
to the sample correlations of the residuals from the model regressions. These are 
shown in Table 4 for the fitted model 7Ca and the correlation of 0.143 between 
residuals for et,1 and et,3 is significant. Consequently we introduced a further term 
into the model as shown in Fig. 4. The correlations between the residual pairs 
et,l,et,2 and et,l,et,3 were both reduced to less than 0.01 with very little change to 
the other correlations. There remains one correlation between the residuals for eta 
and et,6 with a value of 0.11 which is just significant. We could find no simple model 
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Table 4. Residual correlation matrix for the innovations model 

1.000 
-0.092 1.000 

0.143 0.000 1.000 
--0.044 0.025 0.000 

0.010 -0.071 0.000 
--0.025 --0.043 --0.056 

0.032 0.047 --0.024 

1.000 
0.000 1.000 
0.110 0 .050 1.000 
0.038 0.029 0.00l 1.000 

1 2 3 4 5 6 7 

�9169169 -@--�9 
Fig. 4. Graph ~'Aa with an added link 

extension that would account for this. Table 5 provides a comparison of  these two 
models with the saturated model  in terms of  the deviance and three model  selection 
criteria. For ease of  interpretation the table shows the deviance and criteria with 
the values for the saturated model  subtracted. Selective elimination of coefficients 
with small t values in a model  may cause the deviance increase to be larger than 
that typical of  the chi-squared distribution having degrees of freedom given by 
the reduction in number of  parameters. The selection criteria AIC, HIC and SIC 
provide protection against this. They are obtained by  adding to the deviance the 
respective penalties 2k, 2k log log n and k log n, where n is the series length and k 
is the number of  fitted parameters. A negative value of a criterion favours selection 
of  the indicated model, in comparison with the saturated model. The criteria are 
ordered by increasing penalty on the number of parameters. On the basis of  this 
table and the diagnostic residual correlations, we conclude that the final fitted DAG 
is an acceptable parsimonious model  for the structure of  the innovations series. It is 
not unique, but limits the range of  possible structures considered when the model  
is extended to include lagged variables. 

Table 5. Comparisons of the different models 

reduction in increase in relative relative relative 
model no. of pars. deviance AIC HIC SIC 
7Aa 13 38.63 12.63 -9.62 -44.53 

",/Aa improved 12 21.04 -2.95 -23.50 -55.72 
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3 Identifying structural autoregressions 

It will be usual that the order p of a canonical autoregression will have been, at least 
tentatively, identified for the series. Structural autoregressive model identification 
then proceeds by construction of the CIG using the data matrix X consisting of the 
collection of contemporaneous and lagged data vectors (Xp+ 1-k,i , . .  �9 ~ X n - k , i ) t  for 
each series i = 1 , . . .  , m and each lag k = 0 , . . .  , p. Assuming that the time series 
or data vectors have been mean corrected we use the covariance matrix estimate 
(z = X ' X / ( n  - p). A CIG is constructed from 1) in a similar manner as before, 
but with two differences: 

1. the significance levels used are z /x~(z  2 + u) ~, z/nx,/~-Z-p, where z is a critical 
value of the standard normal distribution. 

2. we retain only those links which are significant and are either between con- 
temporaneous variables or attach to contemporaneous variables from lagged 
variables. 

These differences arise from the time series context, where the usual properties 
of regression estimation hold only in large samples and for regression on lagged 
values. See for example Anderson ([2] p211). The main consequence is that we 
can assume only a large sample Normal distribution for the (so-called) t values in 
the autoregression. Also, these properties do not hold for a time series regression 
equation which includes both future and past regressors, because the errors are not 
then in general uncorrelated. A sample partial autocorrelation between Xt_h, i and 
Xt_k ,  j for some 0 < h, k < p can correspond only to a t value in the regression 
of one of these, say Xt_h ,  i on all the other values, including at least one past and 
one future value. The t value for Xt_k, j and therefore the sample partial correlation 
between Xt-h,i and Xt-k,j will not have the required properties. See however Reale 
and Tunnicliffe Wilson [ 15] for an account of how the sampling properties may be 
determined in this case. 

In summary, the significance levels specified in 1 can only be applied to the 
links specified in 2. These are however the only links we consider for selection of 
a structural autoregression which, viewed as a DAG, only contains such links. For 
a stationary VAR(p) model, the subgraph of the CIG that consists of just the links 
specified in this way will be unchanged if the maximum lag used in its construction 
is greater than the true order p, but there may be some loss of efficiency in the 
statistical inference. 

As an example consider the structural VAR(1) model expressed in (7) and 
represented by the DAG in Fig. 5(a), where for convenience we now refer to the 
three series as xt, Yt and zt. 

--'210 1 0 Yt = *~z, 1031 { ~ Y t - -  1 = V t  

0 -r 1 zt 0 0~31/ \ z t - 1  wt 
(7) 

On division by ~0 model (7) is brought to the canonical form in which, it 
may readily be determined, the only sparseness is the zero value of '121. Thus, 
including the innovation correlations, but not their variances, 11 parameters would 
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(a) (b) (c) 
Fig. 5. (a) The DAG representation of the model 7, (b) the subgraph of the CIG derived from (a), and 
(c) the DAG representations compatible with (b). 

be required in the canonical model, whereas only 6 are required in the structural 
form shown. Furthermore, the two other possible structural forms, corresponding 
to different orderings of the contemporaneous variables, would each be completely 
saturated, with 12 parameters. Where a sparse structural form might exist, it is 
therefore worthwhile investigating. In this example, with only three possible struc- 
tural orderings, each could be fitted and regression testing used to discover the most 
parsimonious. The graphical modeling approach does however provide immediate 
insight into the model selection. 

The CIG obtained by appropriate moralization of this time series DAG is shown 
in Fig. 5(b). Note that, following the points made above, the moral link between 
x t - 1  and z t _  1 implied by Fig. 5(a) is not shown in the CIG. 

We point out now that the CIG of the innovations et from the canonical form of 
a VAR(p) model, is the same as the subgraph associated with the contemporaneous 
values in the CIG constructed for the series xt. This is because the distribution of xt 
conditional upon p or more past values is by definition the same as the distribution 
of e t ,  apart from the conditional mean. For the example model (7) a linear CIG 
would therefore be found for the innovations from a canonical AR(I). This would 
allow three DAG interpretations, x t  --4 Yt  --4 z t ,  x t  +-- Yt  - 4  z t  and x t  +-- Yt  +- z t ,  

with the fourth possibility, x t  - 4  Yt  +-- z t ,  excluded because it would imply a 
moral link between x t  and z t  in the CIG. Now consider the possible structural 
VAR(I) models compatible with Fig. 5(b). The possible directions attachable to 
links between contemporaneous variables are those just listed. We then attach the 
direction of the arrow of time to the remaining links, but consider the possibility 
that some of them may be moral links. Note first that the link xt_x -4 xt must be 
true, it cannot be created as a moral link. That implies the direction xt -4 yt, else 
a moral link would form between x t - 1  and Yr. Then x~ - 4  Yt  - 4  z~ is the only 
possibility for contemporaneous dependence. The position is now that shown in 
Fig. 5(c). 

The direct links x t - 1  - 4  x t  , Y t - 1  - 4  y~ a n d  z t -  x - 4  z t  cannot be explained as 
moral links. Each of the remaining links y t - 1  - 4  z t ,  z t - 1  - 4  x t  and z~-i -4 Yt 
might be so explained but it is also compatible with Fig. 5(b) that they are all causal 
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links. Regression estimation of the model represented in Fig. 5(c) will establish if 
they are real. 

To summarize, the aims and strategy of CIG based identification are: 

1. to clarify the recursive ordering of contemporaneous variables, i.e. the direction 
of the links between these variables. An ordering (or possibly more than one) is 
selected which is generally consistent with the evidence presented in the CIG, 
taking into account the effects of moralization. 

2. for any such ordering, to determine the selection of links from lagged to con- 
temporaneous variables. An initial model including all such links which appear 
in the CIG is a useful starting point. Regression estimation of the selected DAG 
model can be used to remove any unnecessary links and establish which might 
be explained by moralization. 

Efficient estimation of the selected model is done by separate regressions of 
each contemporaneous variable on those causal variables indicated in the DAG. 
The overall model is again assesed by a deviance n / ~ log ~ ,  where n / -- n - p 
is here the length of data vectors used in the regression, and &~ are the MLEs of 
the residual variances from these regressions (not the bias corrected mean square 
estimates). 

Progress can only be made if the CIG is relatively sparse; no discrimination of 
structural models can be made if it saturated. Much depends on noting the absence 
of links which would be present if certain contemporanous directions were not 
avoided. One must be wary though of building up long chains of logic based upon 
the statistical evidence in the CIG. As we know from section 2, model fitting reveals 
a link xt,1 - xt,3 which Fig. 2 fails to reveal. Likelihood based comparisons with 
a saturated model will indicate which models are plausible and may discriminate 
clearly between some competing models. Checks should be applied to confirm that 
the residuals are orthogonal innovations, and used as a possible guide to model 
improvement. 

4 Structural autoregressive modeling - an example 

We now consider a real example of three monthly Italian monetary times series to 
assess the existence of the lending channel  of the monetary transmission. 

Bernanke and Blinder in 1988 [4] proposed a model for aggregate demand 
which allows the existence of another monetary transmission mechanism together 
with the existing money  channel.  

According to the latter we can distinguish only two different assets in the market: 
money and bonds; every other asset is a perfect substitute of one of them. In this case 
an open market sale of bonds by the central bank would force the bond interest rate 
up because the household sector, as a matter of accounting, must hold less money 
and more bonds: If there is not full and instantaneous adjustment of the prices there 
will be a loss of money in real terms for households; this will cause eventually an 
increase in real interest rates which in turn can have effects on investments and real 
economy. 
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The other view is called lending channel or credit channel. According to this 
theory bank loans and bonds are not perfect substitutes so that we can distinguish 
three different assets in the market: money, bonds and bank loans. Under these 
conditions monetary policy can work on either bond interest rate or loan interest 
rate or both so that an impact on the latter can he independent from an effect on the 
former. An example (see Kashyap and Stein [12]) is given by an open market sale, 
which, reducing banks' reserves, as a matter of accounting will make banks release 
less loans. If money and bonds are close substitutes there will be a minimal impact 
on bonds interest rate. Nevertheless the cut on loan supply will push up their cost 
with an influence on the real economy. In this case we have a weak money channel 
but a strong lending channel. 

In Bemanke and Blinder's model there are three necessary conditions for the 
existence of the lending channel: 

1. from the firms point of view intermediated loans and open market bonds must 
not be perfect substitutes; 

2. the central bank must be able, by changing the amount of reserves of the banking 
system, to affect the supply of intermediated loans; 

3. there must be an imperfect price adjustment to monetary policy shocks. 

There is a clear evidence that the Italian economy matches at least two of the 
above mentioned conditions and hence provides a suitable environment to verify 
the existence of the lending channel. In fact as Buttiglione and Ferri [7] pointed 
out: 

1. Italian firms, as their balance sheets show, are funded far more by banking 
credit than issued bonds or commercial paper, so that they can unlikely be seen 
as perfect substitutes. There isn't any commercial paper market indeed; 

2. during the eighties Italian banks reduced the amount of securities in their port- 
folios and now the adjustment is completed. Hence they can't neutralise a shock 
on reserves by asset management anymore. 
Moreover the lack of a secondary market for CDs has prevented hanks to using 
liability management in response to monetary restrictions. 

The third condition, concerning the speed of price adjustment, although central 
for any monetary economics theory, is normally less apparent and more difficult to 
assess. 

Recently Bagliano and Favero [3] carried out an empirical analysis to test 
whether the lending channel has worked in Italy. They estimated two different 
VAR models to investigate the transmission from the monetary policy impulse to 
the government bond and loan interest rate and hence to their difference. A widen- 
ing of the latter imply the existence of the credit channel (see Bernanke and Blinder 
[4]). It involves three variables: 1) the repurchase agreement interest rate (a), whose 
innovations may be viewed as monetary policy innovations; 2) the average interest 
rate on government bonds with residual life longer than one year (b); 3) the average 
interest rate on bank loans (c). With the second VAR system, of order five, they 
assessed the impulses of monetary policy to real economy. It includes four different 
variables: 1) the difference between bank loan and government bond; 2) the loan 
interest rate; 3) the industrial production; 4) the inflation. 
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Fig. 6. Three monthly Italian monetary time series: (i) the repurchase agreement interest rate, (ii) the 
average interest rate held on government bonds, (iii) the average interest rate on bank loans, shown over 
the period January 1986 to December 1993 

The results of their analysis supported the existence of the lending channel in 
the Italian monetary market. 

We partially used Bagliano and Favero's framework to apply our VAR model 
identification strategy, investigating the relationships among the variables of the 
first VAR system they estimated, to verify if there is a direct causal effect from a 
monetary policy impulse (the repurchase agreement interest rate) to the loan interest 
rate. To pursue our analysis we used the same monthly time series taken from the 
same sources (Bank of Italy) over the period January 1986-December 1993; they 
three are shown in Fig. 6. 

Bagliano and Favero found that a canonical autoregressive model of order 2 
adequately described the series. This is supported by all the order selection criteria, 
of Akaike [1], Hannan and Quinn [9] and Schwarz [17], which showed a clear 
minimum at this order. There are some large 'shocks' in the series which are visible 
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( 

Fig. 7. The subgraph of the CIG for the monetary policy series derived from table 6 

in the residuals close to the times 55 and 80, but these are not sufficiently extreme 
to be classed as outliers. The particular length of  data shown was one in which 
we believed that no major structural breaks, for example due to policy changes, 
had occured. We follow the procedure of the previous section, refering to our three 
series as x t ,  Y t  and z t ,  by first constructing the lagged data vectors for lags 0, 1, 
and 2 for each series. The resulting data matrix X is then used to construct the 
covariance matrix I / f r o m  which the sample partial correlations shown in Table 6 
are derived. The critical value for significance at the 5% level is 0.207. Fig. 7 shows 
the appropriate subgraph of  the CIG of the lagged variables constructed using this 
threshold, with the addition of  two links, z~ - x~- i  and zt - Y~-2 shown by broken 
lines. These are included because their partial autocorelations are very close to the 
threshold. The series are only of  moderate length so that some additional power for 
detecting non-zero partial correlations is justified. 

The main point to note is the clear absence of  a link Y t -  a - +  z t .  A moral link 
would be expected here unless we assign the direction between contemporaneous 
variables: Y t  --~ z t .  There is no such clear indication of the remaining choice 
of  contemporaneous links. Of  the three possibilities we consider first that with 
x t  --+ Y t  and x t  --+ z t .  We then fitted the DAG derived from Fig. 7 by assigning 
these contemporaneous directions and with all the other links directed from the past 
to the present. The results indicated that three links could be removed: Y t - 1  ~ x t ,  

Table 6. Partial autocorrelations of the lending policy series 

x t  y t  z t  x t -  1 y t  - -  1 zt  - 1 x t  _ 2 y t -  2 z t  _ 2 

x t  1.000 0.387 0.214 0.449 -0.353 -0.096 0,016 0.167 --0.033 
yt 1.000 0.364 --0.224 0.742 -0.393 0,015 --0.140 0.309 
zt 1.000 0.200 --0.080 0.876 -0.154 --0.199 -0.598 
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Fig. 8. The subgraphs of the models A and B for the monetary policy series 

z,-2 --+ y, and xt-1  --~ z,, the occurrence of the first two of these in Fig. 7 is 
explained by moralization. The DAG representing this as model A is shown in 
Fig. 8 and Table 7 shows the likelihood criteria relating to this model. According 
to these the model appears to be quite acceptable in comparison with the saturated 
VAR(2) model. A further possibility, model B, was investigated by reversing the link 
between x t  and y t  as also shown in Fig. 8. It was only possible to remove two links 
in this case, so the model has one more link than model A. The likelihood criteria 
in Table 7 for this model show that it is also acceptable. The model coefficients 
are shown on the graphs; their t values are all in excess of 3.0, except that for 
the link x t - 1  --+ Yt  the values for models A and B are respectively -1.87 and 2.03. 
Statistical criteria do not show a clear preference for one model, although economic 
considerations would strongly favour model A. Statistical evidence was however 
strongly against the reversal also of the link x t  --~ z t .  The main point of economic 
interest is the influence on the average bank loan rate of the two other series, and 
that is the same for both models. 

Moralization of both graphs in Fig. 8 yields the same CIG, but one which differs 
from Fig. 7 by having the extra links z t - 1  - x t ,  z t -  2 - x t ,  Y t -  2 - Y t  and Y t -  2 - x t .  

Only a careful study, possibly by simulation, would indicate whether we should 
have expected to detect these. Our general conclusion though is that study of Fig. 7 
lead us swiftly to the specification of a good structural model for these series. 

For both models A and B we performed CUSUM tests (Greene [8], p. 217) to 
check the absence of structural breaks and used recursive least squares to verify 
the stability of the parameters. The positive outcomes of these tests confirmed the 
suitability of the period chosen for the analysis and the stability of the models. 

Table 7. Comparisons of structural AR models for the monetary policy series 

reduction in increase in relative relative relative 
model no. of pars. deviance AIC HIC SIC 

A 11 17.14 - 4 . 8 6  -16 .16  -32 .83  
B 10 14.49 - 5 . 5 0  -15 .78  -30 .94  



64 M. Reale, G. Tunnicliffe Wilson 

5 Conclusion 

We have  invest igated how condi t ional  independence  mode l ing  may  be used in 

the select ion o f  structural A R  models .  The  a im has been  to ident i fy pars imonious  

structure, which  may  be  valuable  in var ious applicat ions o f  the model .  Our  practical  

exper iences  suggest  that the approach is o f  considerable  value  in achieving our 

stated aim. In our  example  the mode l  supports and quantifies a part icular  lending 

channel  hypothesis  which  is important  for  monetary  policy. The  support  given to 

the mode l  by the select ion cri teria also confi rms that its predict ive  ability, in a 

l inear  least squares sense, is as good  as that o f  a saturated canonical  model ,  but 

wi th  the advantage o f  pars imony o f  parameter isat ion.  The  methods  we have used 

are accessible  and visual ly  appeal ing and we hope  this work  will  encourage  their  

wider  applicat ion in this context.  
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