
August 22, 2008 1

A hybrid Hooke and Jeeves—Direct method for
non-smooth optimization.

C. J. Price, B. L. Robertson, and M. Reale,
Department of Mathematics and Statistics,

University of Canterbury,
Private Bag 4800,

Christchurch, New Zealand.

Abstract

A direct search optimization method for finding local optima of non-smooth uncon-
strained optimization problems is described. The method is a combination of that of
Hooke and Jeeves, and the global optimization algorithm direct of Jones, Perttunen,
and Stuckman. The method performs modified iterations of Hooke and Jeeves until no
further progress is forthcoming. A modified form of the direct algorithm is then ap-
plied in a neighbourhood of the current iterate in order to make further progress. Once
such progress has been obtained the method reverts to that of Hooke and Jeeves. The
method is applicable to non-smooth and some discontinuous problems. On a discontinu-
ous function it is guaranteed to find a point which is minimal on a dense subset of a region
containing that point under mild conditions. If the function is continuous at that point,
then it is a local minimizer. Additionally, the method is able to determine empirically
if the objective function is partially separable. If so, partial separability is exploited by
selecting the order in which the Hooke and Jeeves and direct subalgorithms poll each
dimension. Numerical results show that the method is effective in practice.

keywords: direct search, Hooke and Jeeves, non-smooth, numerical results, Jones, Pert-
tunen, and Stuckman.

1 Introduction

In this paper we are interested in direct search methods for solving the unconstrained opti-
mization problem

min
x

f(x) (1)

where the objective function f maps Rn into R ∪ {+∞}. Our interest lies particularly with
objective functions which are not smooth or discontinuous. Examples of such functions are
exact penalty functions and functions with deterministic noise of, for example, numerical
origin. The inclusion of +∞ as a possible value for f means that the algorithm can be applied
to extreme barrier functions and functions which are not defined everywhere by assigning f
the value +∞ in regions where it is not otherwise defined [1].

Direct search methods for (1) were popular in the 1960’s, but then fell out of favour with
researchers [17] until the late 1990’s. In 1997, Torczon [16] provided a general convergence
theory for Generalized Pattern Search (gps) methods. These are direct search methods
which employ nested sequences of meshes to solve (1) when f is C 1. The theory behind gps

methods has since been extended in a variety of ways. Audet and Dennis [1] showed that
convergence is still guaranteed provided f is strictly differentiable only at each cluster point

August 22, 2008 2

of the sequence of iterates. Price and Coope [13] extended this to the case when the grids are
no longer nested. Audet and Dennis [2] further extended gps to yield a method called Mesh
Adaptive Direct Search (mads) which has partial convergence results when f is non-smooth
or discontinuous. These results are partial in the sense that they guarantee non-negativity
of the Clarke derivative [4] in all relevant directions at each cluster point of the sequence of
iterates, but do not guarantee non-existence of descent directions at these cluster points.

The Clarke derivative of a locally Lipschitz function f at x in the direction v is

f◦(x, v) = lim sup
y→x,t↓0

f(y + tv) − f(y)

t
.

Consider a directionally differentiable function f . Using y ≡ x it is clear that f ◦(x, v) < 0
implies the directional derivative Dvf(x) along v at x is also negative. Hence f ◦(x, v) ≥ 0
is a necessary, but not sufficient condition for x to be a local minimizer of f . An illustrative
example is the function

Ψ =

{

3(2|x2| − x1) + (0.9 +
√

5/2)x1 x1 ≥ 2|x2|
0.9x1 +

√

x2
1 + x2

2 otherwise.

This function has a cone of descent directions at the origin centred on the direction e1 =
(1, 0)T , as is shown in Figure 1. Nevertheless the Clarke derivative Ψ◦(0, v) is positive for
all non-zero directions v. The directional derivative at the origin is positive for all v 6= 0
pointing into the region where x1 ≤ 2|x2|. For the remaining directions we have v1 > 2|v2|,
with v1 > 0. Evaluating the directional derivative DvΨ of Ψ at a point (0, x2) with x2 > 0
we get 0.9v1 + v2, which is positive for all v1 > 2|v2|.

It has been shown [14] that finding a descent step for a nonsmooth optimization problem
is closely linked to solving a global optimization problem. We replace the Clarke derivative
approach with one using the global optimization algorithm direct of Jones et al [11]. Our
method alternates between two modes of operation. Preferentially it executes iterations of a
modified Hooke and Jeeves [10] algorithm until descent is no longer forthcoming. At this point
standard Hooke and Jeeves reduces the stepsize. Instead our algorithm (hereafter hjdirect)
applies direct until a lower point is found, then reverts to the altered Hooke and Jeeves.
This repeated restarting of direct is an effective strategy [3].

A partially separable function [9] is a function of the form

f(x) =
∑

fi(x)

where each element fi depends only on a small number of the elements in x. There are several
ways to exploit partial separability in optimization. For example [5, 6] use it to minimize the
effort required to form an approximation to the Hessian. A somewhat different approach
occurs in [15], which exploits partial separability by

(a) calculating function values more cheaply by altering one variable at a time and only
recalculating function elements containing that variable; and

(b) combining changes from several variables, no two of which appear in the same element,
to get extra function values for free.

August 22, 2008 3

Figure 1: Graph of a two dimensional function Ψ with negative directional derivative at the
origin along e1 = (1, 0)T . The Clarke derivative Ψ◦ is positive for all directions at x = 0.

August 22, 2008 4

Strategy (a) requires explicit knowledge of the partial separability structure, and access to
the individual function elements. We use strategy (a) only in generating some numerical
results, so that comparison with the results in [15] is fair. For strategy (b), a set of decision
variables is called non-interacting if at most one of those variables appears in any single
element fi [15]. This means changes to these variables are independent of one another. So
if one looks at changes to each of a set of non-interacting variables in turn, and accepts
each change which reduces f , one automatically gets the combination of these changes which
gives the smallest possible f value. Hooke and Jeeves does this, which means hjdirect is
capable of exploiting partial separability structure provided it can order the elements of x
so that sets of non-interacting variables are searched contiguously. Since partial separability
information is not assumed to be available, this must be estimated. To do this Hooke and
Jeeves is modified so that function values are calculated for a ‘square’ of four points lying in
the plane of two consecutively polled coordinate directions. The fourth point of each square is
an additional function evaluation, and if the two relevant variables do not interact this fourth
point is valueless. This presents two possibilities: one could order for minimal interaction
between consecutive variables, and suffer the cost of the worthless fourth points; or order for
maximum interaction and try and extract as much value out of the fourth points as possible.
Both options are explored. This estimation process is useful even when partial separability is
only approximate or local.

The main part of our algorithm is described in detail in the next section. Section 3 de-
scribes the modified direct subalgorithm. Convergence results are given in Section 4. These
apply when f either belongs to a class of non-smooth functions, or is strictly differentiable
at point(s) the algorithm identifies as solution(s) to (1). Numerical results are presented in
Section 5, and concluding remarks are in Section 6.

2 The Algorithm

The algorithm searches over a succession of grids, where the mth grid Gm is defined by one
point (ym) on it and the grid size hm:

Gm =

{

ym + hm

n
∑

i=1

ηiei : η1, . . . , ηm integer

}

.

Here ei is the ith column of the identity matrix. The algorithm uses Hooke and Jeeves
iterations to search over Gm for a point zm satisfying

f(zm ± hmei) ≥ f(zm) ∀i = 1, . . . , n. (2)

Any point satisfying (2) is called a grid local minimizer of Gm [7]. For the first grid y1 = x0.
For subsequent grids, ym = zm−1. A precise statement of the algorithm is given in Figure 2.

The algorithm consists of an initialization phase (step 1) and two loops. Step 1 selects
an initial point x0, and sets the initial Hooke and Jeeves pattern move v to zero. It also
initializes the iteration and grid counters, k and m.

An iteration of the outer loop (steps 2–6) begins by calling the inner loop (steps 2–4).
The inner loop performs iterations of the modified Hooke and Jeeves method on Gm until
it is not able to make further progress in reducing f . The inner loop then halts with best
known point zm. A modified direct algorithm is applied in step 5. direct searches over

August 22, 2008 5

1. Initialize: Set k = 0 and m = 1. Choose x0 and h0 > 0. Set v0 = 0.

2. Calculate f(xk + vk), and form the modified Hooke and Jeeves exploratory

step Ek from xk + vk.

3. Pattern move: If f(xk + vk + Ek) < fk then

(a) set xk+1 = xk + vk + Ek and vk+1 = vk + Ek.

(b) Conduct an Armijo linesearch along the ray xk+1 + αvk+1, α > 0.

(c) Increment k and go to step 2.

4. If vk 6= 0 set vk = 0 and go to step 2.

5. Set zm = xk. Execute the modified direct method about zm until a

point xk+1 lower than zm is found or stopping conditions are satisfied.

Select hm+1 and set vk+1 = xk+1 − zm.

6. If stopping conditions do not hold, increment m and k, and goto step 2.

Figure 2: The main Hooke and Jeeves—direct algorithm hjdirect.

a hypercube shaped box centred on zm = xk, with edge length 2hd. It searches for a point
lower than zm, and halts when successful or if the maximum number of function evaluations
has been reached. If successful, this lower point becomes xk+1, and hm+1 is chosen so that
zm and xk+1 both lie on Gm+1. This permits vk+1 = xk+1 − zm to be used. A new outer
loop iteration is started at step 2 unless the stopping conditions are satisfied. These halt the
algorithm when hm falls below a minimum grid size Hmin. Additionally the algorithm stops
if an upper limit Nmax on the number of function evaluations is exceeded.

In the inner loop, step 2 performs a modified Hooke and Jeeves exploratory phase about
the point xk + vk, yielding the exploratory step Ek. This exploratory phase has n − 1 more
points than that of standard Hooke and Jeeves. These extra points are designed to extract
partial separability information about the function. The exploratory phase is described in
detail in subsection 2.1.

Step 3 is executed if xk + vk + Ek is lower than xk. This step performs an Armijo ray
search (see subsection 2.2) along the ray xk+1 + αvk+1, α ≥ 0, and then a new iteration of
the inner loop is started at step 2. Otherwise (step 4), if vk is non-zero, the algorithm sets v
to zero and performs exploratory step about xk by going to step 2. Finally, if vk = 0, then
the algorithm has located a grid local minimizer, the inner loop terminates, and the method
proceeds to step 5.

2.1 The exploratory phase

The method performs a modified version of the exploratory phase of Hooke and Jeeves. There
are three differences between the modified and original forms of this phase. First, the order in
which the decision variables are perturbed is changed each iteration in order to best exploit
the known levels of interactions between the decision variables. Second, extra function values

August 22, 2008 6

are used in order to estimate the interactions between the decision variables. Third, a decision
variable xi is decremented first if the last successful change to xi was a decrement.

2.1.1 Interaction

The measure of interaction between two decision variables xi and xj is calculated using four
function values fa, . . . , fd at points xa, xb = xa+hei, xc = xa+hej and xd = xa+hei +hej . If
the variables do not interact then the changes in f due to altering xi and xj are independent
of one another. This implies fa + fd = fb + fc. The interaction Hij measures the degree of
departure from this condition, and is given by

Hij =
|fa + fd − fb − fc|

ε + max{fa, fb, fc, fd} − min{fa, fb, fc, fd}

where ε is a small positive constant used to avoid divide by zero problems. It also prevents
round-off error producing spurious interaction values when the four function values are very
nearly equal. Clearly

|fa + fd − fb − fc| ≤ 2 (max{fa, fb, fc, fd} − min{fa, fb, fc, fd}) ,

and so Hij ∈ [0, 2). The interactions are stored in a matrix H, with the convention that
Hii = 2 for all i.

The decision variables are re-ordered to either maximize or minimize the interaction be-
tween consecutive variables. The intentions behind these two choices are quite different, but
the processes are quite similar. Interactions are generated for pairs of variables xi xj which
are polled consecutively during the exploratory phase. Three of the values fa, . . . , fd are
generated by standard Hooke and Jeeves exploratory search. Our exploratory search also cal-
culates the fourth. The order in which the decision variables are polled changes each iteration
in order to obtain as many Hij values as possible, and to take advantage of known interac-
tion information. These two aims are reasonably compatible. For example if one wishes to
maximize interaction, then initially Hij = 2 is used for all distinct i and j. At each iteration
the variables are placed in an order that maximizes interaction between consecutive variables.
This yields the interactions for each such consecutive pair. If the calculated Hij is small, then
xi and xj will not be consecutive in the following iteration.

2.1.2 Maximizing Interaction

When interaction is maximized the aim is to get maximum value out of the extra point used to
estimate the interaction between consecutive variables. There is no advantage in maximizing
the interaction between larger groups of consecutive variables, and so this is not done. A
greedy algorithm is used to determine the order of the decision variables. An ordered list of
decision variables is formed, and the exploratory phase polls these variables in that order.
The list is initialized as {x`}, where ` = (k mod n)+1. The algorithm then finds the unlisted
variable with the largest interaction with the last member on the list. This new variable is
placed on the end of the list. The process is repeated until all variables have been listed.
All interactions are initially set at 2, which ensures that all possible pairs of variables are
eventually used.

August 22, 2008 7

1. Set G = H.

2. Let ` = (k mod n) + 1 and set s1 = `.

3. For i = 2 to n do

(a) Let j 6∈ {s1 . . . si−1} be the smallest value which minimizes G`j. Set

si = j.

(b) If G`j ≤ τ set G`r = max{G`r, Gjr} for r = 1 to n. Otherwise set ` =
j.

Figure 3: The subalgorithm for selecting a minimally interacting order {s1, . . . , sn} for the
decision variables.

2.1.3 Minimizing Interaction

Here the aim is to exploit the (local or global) partial separability of f and get extra function
values for free [15]. In this case there are definite advantages to grouping as many non-
interacting variables together as possible. Once again the algorithm selects x` first, with `
as before. This forms the start of the first group of variables. The variable which minimizes
the maximum of its interactions with variables already in the group is selected next. If this
maximum is less than a preset value τ then this variable is added to the first group, and
the process is repeated. Otherwise this variable is considered to be the first in a new group.
In either case this selected variable becomes the next in the list of variables after x`. The
process is repeated until all variables have been placed in the list. A more precise statement
is given in the algorithm listed in Figure 3. When the interactions are being estimated all
interactions are initially set to zero. This ensures the method will consider a large number of
possible consecutive pairs of variables.

2.2 The ray search

A standard forward-tracking ray search was used. The ray search looked along the ray xk+1 +
αvk+1, and considered values α = 1, 2, 4, 8, . . . , αmax, accepting the largest value for which the
corresponding sequence of function values is strictly decreasing. In the implementation, αmax

was chosen as the smallest power of 2 greater than 106. Any integer value greater than 1 is
acceptable for αmax. The ray search was included as it was found to significantly improve the
algorithm’s performance.

3 The Direct subalgorithm

The direct algorithm of Jones, Perttunen, and Stuckman [11] is designed to locate a global
minimizer of a piecewise smooth function on an n dimensional interval (or box) Ω of the form

Ω = {x ∈ Rn : ` ≤ x ≤ u}

where `, u ∈ Rn are finite and satisfy ` < u. At each iteration direct has a list of boxes
which cover Ω. The function values at the centre points of these boxes are known. Using these

August 22, 2008 8

function values and the relative sizes of the boxes, some boxes are selected for subdivision.
Once subdivided the function values at the centre points of each new box are calculated unless
they are already known. Stopping conditions are then checked, and if not satisfied, a new
iteration is begun.

The standard form of direct differs substantially from ours in how boxes are selected for
subdivision, subdivided, and in the stopping criteria, and so the modified version of direct is
discussed from now on. The subdivision process is straightforward. Let B = {x : a ≤ x ≤ b}
be a box selected for subdivision. Let i be a value for which the length of the ith box edge
eT
i (b − a) is maximal. The box B is subdivided into three identically shaped boxes using the

two cutting planes eT
i (x − (2a + b)/3) = 0 and eT

i (x − (a + 2b)/3) = 0. When more than one
edge has maximal length, the edge along which subdivision occurs is selected as follows. If the
variables have been ordered for maximum interaction, the first edge in that order which is of
maximal length is chosen. Otherwise the variables are placed in the order ρ, . . . n, 1, . . . , ρ− 1
and the first maximal edge is chosen, where ρ is half the current number of boxes. This choice
avoids favouring lower numbered dimensions by not always exploring them first.

The direct subalgorithm searches over the region zm + hd[−1, 1]n for a point xd, where
f(xd) < f(zm). Once successful, direct halts and returns xd as the new iterate xk+1. It also
returns a new grid size hm+1, which is defined by

hm+1 = min{|(zm)i − (xd)i| : i ∈ 1, . . . , n and (zm)i 6= (xd)i} (3)

where (zm)i denotes the ith component of zm, and similarly for xd. This choice of hm ensures
that both zm and xk+1 lie on the new grid. This allows direct to set vk+1 = xk+1 − zm.

The size hd of direct’s search region is chosen as follows. If f is known to be smooth, or
if hm > hmacro then hd = 3hm/2. This choice means that the 2n+1 known function values at
xk and xk ± hmei, i = 1, . . . , n from the most recent Hooke and Jeeves iteration can be used
as the first 2n + 1 points for the direct subalgorithm. These n pairs of points xk ± hmei,
i = 1, . . . , n are placed in ascending order of the quantity

min{f(xk + hmei), f(xk − hmei)}.

The direct algorithm proceeds as if it had generated these n pairs of points initially in
ascending order. If f is potentially non-smooth and hm ≤ hmacro then hd is chosen as

hd = 3

2
min{hmacro,max{81hm, hmeso}}. (4)

In this case the 2n extra points from the most recent Hooke and Jeeves iteration are not
useable as they are in the wrong positions, and so direct begins with the single point xk in
the centre of its search region.

The parameters hmacro and hmeso are the upper and lower limits of what is termed ‘the
mesoscale.’ When hm > hmacro direct searches in a box of the same scale as the Hooke
and Jeeves increments. In the mesoscale direct searches on a larger scale than Hooke and
Jeeves, and direct’s scale is bounded below by hmeso. This strictly positive lower bound is
crucial to the algorithm’s convergence properties on nonsmooth problems. The ‘81hm’ term
in (4) allows hm to increase once in the mesoscale. The quantity hmacro/hmeso is required to
be a multiple of 3 for convergence on nonsmooth problems.

Boxes are selected for subdivision according to two values associated with each box. The
first is the box’s ‘height’ which is the function value at the centre point of the box. The

August 22, 2008 9

second is the box’s ‘level,’ which is the number of times Ω has to be subdivided in order to
generate the box in question. Any box which is Pareto optimal in terms of height and level
is subdivided unless the box is too small to subdivide further. A box is considered Pareto
optimal if every other box is higher or has a greater level than that box. The maximum
number of times a box can be subdivided is set at

max (n(2 + dlog(hmeso/Hmin)e, 2ndlog(Nmax − Nnow)e) (5)

where dxe denotes the least integer not less than x, and the logarithms are to the base e.
The purpose of this maximum is to force direct to open more low level boxes when the
current number of function valuations Nnow is getting close to the maximum number of
function evaluations Nmax. The first term in (5) ensures that direct is able to perform
enough subdivisions to select hm smaller than Hmin, guaranteeing that the stopping condition
hm < Hmin can actually be satisfied. The second term ensures that enough subdivisions can
be done to use up all remaining points (Nmax −Nnow), if needed. When Nmax = ∞ this limit
on the number of subdivisions disappears.

This selection strategy has the property that it subdivides at least one (specifically the
lowest) box in the lowest non-empty level at each iteration. The way direct selects boxes for
subdivision is a crucial to the convergence theory. Our selection strategy has the following
property.

Definition 1 A selection strategy Γ is called valid if at least one box of the lowest non-empty
level is subdivided in each iteration of direct.

In the convergence analysis valid selection strategies are treated collectively. This allows us
to obtain results uniformly applying to every execution of the direct subalgorithm.

4 Convergence Results

The algorithm’s convergence properties are analyzed when Nmax = ∞ and Hmin = 0. First
we show the set of points generated by direct is uniformly dense in the search region, for all
valid box selection strategies.

Proposition 2 Let ξ ∈ Ξ, be arbitrary, where Ξ = zm + hmeso[−1, 1]n. Let {δr}∞r=1 be the
sequence of points generated by direct for an arbitrary valid box selection strategy Γ, and let

∆(r) = max
Γ

max
ξ∈Ξ

{

min
i=1,...,r

(‖ξ − δi‖)
}

Then ∆(r) → 0 as r → ∞.

Proof: Clearly ξ lies in at least one of the r boxes with centres δ1, . . . , δr generated by
direct. Hence min(‖ξ − δi‖) is at most n times the maximum of all edge lengths of the r
boxes generated by direct. The number of such maximal boxes is always finite, and the
one such box is subdivided each iteration, because the selection strategy Γ is valid. No new
maximal sized boxes are created as there are no larger boxes to subdivide, and so after a finite
number of iterations (independent of Γ and ξ) all boxes of the maximal size are eliminated.
The only possible values edge lengths can take are 2.3−shd, where hd ∈ [hmeso, hmacro] for
some non-negative integer s, so minr(‖ξ − δi‖) goes to zero as r → ∞. Since Γ and ξ were
arbitrary, the result follows. 2

The convergence result for the smooth version of the algorithm can now be given.

August 22, 2008 10

Theorem 3

(a) Assume the sequences {zm} and {xk} are finite. If f is strictly differentiable at the final
value zm∗

of {zm}, then ∇f(zm∗
) = 0.

(b) If z∗ is a cluster point of the sequence of grid local minimizers {zm} and if f is strictly
differentiable at z∗, then ∇f(z∗) = 0.

Proof: If the sequences {zm} and {xk} are finite then the final execution of direct

must be an infinite process. Proposition 2 implies f(x) ≥ f(zm∗
) for all x in a dense set in

zm∗
+ hmeso[−1, 1]n. The definition of strict differentiability [4] implies result (a).
Result (b) follows immediately from Corollary 4.5 of [13]. 2

It is possible that {zm} is an infinite sequence with no cluster points, in which case
{zm} must be unbounded. This can be excluded by assuming that {zm} is bounded, but it is
possible for {zm} to be both unbounded and have cluster points. In the latter case Theorem 3
is still valid for these cluster points.

The non-smooth convergence result shows that every cluster point of the sequence {zm}
is an open set essential local minimizer of f .

Definition 4 An essential local minimizer z∗ is a point for which the set

L(z∗, ε) = {z ∈ Rn : f(z) < f(z∗) and ‖z − z∗‖ < ε}

has Lebesgue measure zero for all sufficiently small positive ε.

If f is continuous at z∗, then z∗ is also a local minimizer of f in the traditional sense. However
it is easily seen that {zm} does not always converge to an essential local minimizer. A simple
counterexample is the function

f =

{

‖x‖2 x rational
−1 otherwise.

Clearly z = 0 is not an essential local minimizer of f . If grids {Gm} contain only rational
points, then hjdirect will misidentify z = 0 as a local minimizer. Hence the definition of
essential local minimizer is modified somewhat, as follows.

Definition 5 An open set essential local minimizer z∗ is a point for which the set L(z∗, ε)
contains no open set in the standard topology for all sufficiently small positive ε.

We show the grids become arbitrarily fine, and then give the non-smooth convergence
result.

Proposition 6 Let {zm}m∈M be a bounded infinite subsequence of {zm}. Then

lim inf
m∈M

hm = 0 and lim sup
m∈M

Nm = ∞

where Nm is the number of function evaluations used by the mth execution of direct.

August 22, 2008 11

Proof: The proof is by contradiction. Assume hm > H for all m ∈ M, where H > 0.
Then every member of {zm}m∈M lies on the union of at most two grids. The first contains
x0 and has a grid size equal to the smallest hm used before the mesoscale is encountered.
The second grid has grid size equal to the smallest hm used after the mesoscale has been
encountered. It also contains the first iterate generated after the mesoscale is reached. The
two grids are not necessarily related to one another because hmeso need not be a rational
multiple of h0. The fact that hmacro = 3shmeso for some positive integer s means the second
grid exists. Now {f(zm)} is a strictly decreasing monotonic sequence, so all zm, m ∈ M are
distinct. The fact that {zm}m∈M is bounded means it must be a finite sequence, which yields
the contradiction.

For the second limit, the construction of hm+1 in (3) means that hm+1 ≥ hmeso3
d−Nm/ne,

which yields the required result. 2

Theorem 7 Exactly one of the following possibilities holds:

(a) {zm} is an infinite sequence and each cluster point z∗ of it is an open set essential local
minimizer of f ; or

(b) both {zm} and {xk} are finite sequences and the final zm is an open set essential local
minimizer; or

(c) {zm} is finite and {xk} is an infinite unbounded sequence.

Proof: Clearly at most one of these possibilities holds because no sequence can be both
finite and infinite.

Let {zm} be an infinite sequence, and let z∗ be a cluster point of that sequence. By passing
to a subsequence if necessary, let zm → z∗ and Nm → ∞ as m → ∞. Proposition 6 shows
that the latter limit is achievable for a suitable subsequence.

Assume z∗ is not an open set essential local minimizer. Then there exists an open ball
B(θ, η), centre θ, radius η in z∗ + 1

2
hmeso[−1, 1]n on which f(x) < f(z∗) for all x ∈ B(θ, η).

Now B(θ, η) lies in zm +hmeso[−1, 1]n for all m sufficiently large. The closest point generated
by the mth use of direct is at most ∆(Nm) from θ, for m sufficiently large. Proposition 2
implies there exists a sufficiently large m such that ∆(Nm) < η. This implies direct finds a
lower point than z∗ — contradiction. Hence z∗ must be an open set essential local minimizer,
which is case (a).

Let {zm} be a finite sequence, and let m∗ be the final value of m. This can only occur if
the final execution of the algorithm’s outer loop is an infinite process. There are two ways
this can happen: the inner loop can be infinite, or direct can fail to halt. For the former
we have f(xk) < f(xk−1) for all k, and xk ∈ Gm∗

for all k sufficiently large. Hence {xk}
must be infinite and unbounded, which is case (c). For the latter, Proposition 2 implies
f(x) ≥ f(zm∗

) for all x in a dense set in zm∗
+ hmeso[−1, 1]n. Hence zm∗

is an open set
essential local minimizer, which is case (b). 2

5 Numerical Results and Discussion

Two versions of our algorithm hjdirect were tested: smooth and non-smooth. The former
uses hd = 3hm/2 always, and is provably convergent on C1 functions via Theorem 3. The

August 22, 2008 12

Table 1: Non-smooth results for test set A.

Results from [14] Max interact Min interact
Function f nf f nf f nf n p
Rosenbrock 5E-8 4438 8E-8 897 2E-8 1154 2 2
Brown 2 dim 2E-3 10598 4E-4 950 4E-4 950 2 3
Beale 4E-8 3638 2E-7 1232 2E-8 1119 2 3
Helical val 7E-8 8406 3E-10 1951 1E-9 2773 3 3
Gulf 1E-5 15583 1E-5 19071 6E-6 31306 3 99
Powell 4 dim 4E-7 11074 7E-3 4570 3E-3 3659 4 4
Woods 3E-7 15610 1E-4 7630 5E-4 4682 4 6
Trigonometric 5E-8 14209 2E-7 7235 4E-8 6678 5 5
Variably dim 2E-7 34679 2E-6 35491 5E-7 55647 8 10

Table 2: Non-smooth results for test set B using exact interation. information

Max interact Min interact
Function f nf k m f nf k m
Arrowhead 3E-6 853 13 6 6E-5 897 19 5
Boundary value 8E-5 3183 51 6 2E-4 3152 39 6
Broyden 3 dim 2E-4 3163 34 7 2E-4 2672 38 6
Broyden banded 3E-4 5256 35 7 9E-5 5407 48 8
ex Rosenbrock 5E-4 2206 42 12 6E-4 3747 67 22
nzf1 3E-5 3644 38 7 3E-5 3165 32 10
Tridiagonal 5E-6 820 37 7 4E-5 569 29 6
ex Woods 2E-3 6008 85 21 2E-3 8607 80 34
ex Variably dim 2E-2 20013 93 33 4E-1 20003 96 43
Brown almost lin 8E-3 17298 183 16 5E-3 20005 130 27
Powell lin fcn 3E-4 8629 56 6 3E-4 8489 53 6

Table 3: Non-smooth results for test set B using estimated interaction information.

Max interact Min interact
Function f nf k m f nf k m
Arrowhead 4E-5 691 14 3 7E-5 902 20 5
Boundary value 7E-5 2864 43 5 3E-4 3406 53 6
Broyden 3 dim 4E-4 2541 36 6 3E-4 2538 34 6
Broyden banded 3E-4 4865 53 7 3E-4 5054 41 8
ex Rosenbrock 5E-4 3010 56 17 1E-3 4301 54 22
nzf1 2E-5 3392 25 8 1E-5 3224 40 8
Tridiagonal 5E-6 812 39 8 4E-5 568 29 6
ex Woods 3E-3 8407 105 35 2E-3 7269 77 33
ex Variably dim 3E-2 20005 130 36 1E-1 20015 138 51
Brown almost lin 1E-1 17067 100 19 9E-4 20001 147 29
Powell lin fcn 1E-4 9238 53 6 3E-4 8634 64 6

August 22, 2008 13

Table 4: Comparison with problems from test set B which are smooth at x∗. Estimated
interaction information has been used and the variables have been ordered for maximum
interaction.

Results from [15] hjdirect

Function f nf f nf k m
Arrowhead 6E-16 105 1E-11 266 21 6
Boundary value 2E-7 16994 2E-9 1055 88 8
Broyden 3 dim 5E-9 420 5E-8 460 36 6
Broyden banded 1E-9 1444 2E-9 989 41 8
ex Rosenbrock 4E-6 3268 4E-7 1002 109 6
nzf1 5E-11 155 2E-9 561 34 6
Tridiagonal 2E-10 532 4E-10 331 39 6
ex Woods 2E-8 446 2E-7 529 69 6
ex Variably dim 2E-8 4566 2E-8 2307 95 7
Brown almost lin 5E-8 8674 4E-8 2462 116 6
Powell lin fcn 1E-10 1158 5E-10 959 40 6

Table 5: Results for problems from test set B which are smooth at x∗. The non-smooth
version of Hooke and Jeeves—direct with estimated interaction information has been used.

Function n ` p f nf k m
Arrowhead 10 9 9 1E-7 1024 16 3
Boundary value 10 10 10 3E-6 3301 55 6
Broyden 3 dim 10 10 10 1E-6 2754 44 6
Broyden banded 10 10 10 2E-6 4376 33 6
ex Rosenbrock 10 5 10 4E-6 2880 69 11
nzf1 13 5 5 1E-7 5285 34 9
Tridiagonal 3 3 3 2E-7 579 29 5
ex Woods 16 4 24 7E-5 3308 85 11
ex Variably dim 22 6 40 5E-5 20025 251 16
Brown almost lin 22 6 30 3E-6 11041 109 11
Powell lin fcn 22 6 30 2E-7 11715 48 6

August 22, 2008 14

Table 6: Test set B results for C1 problems using estimated interaction information and
reordering for maximum interaction.

Results from [15] hjdirect

Function f nf f nf k m
Arrowhead 7E-12 105 1E-8 256 20 6
Boundary value 5E-6 10838 6E-7 938 79 6
Broyden 3 dim 5E-7 372 1E-6 454 37 6
Broyden banded 2E-7 1587 4E-7 933 42 6
ex Rosenbrock 0.14 85 3E-3 1424 145 6
nzf1 2E-8 188 6E-7 542 33 6
Tridiagonal 2E-8 536 9E-9 328 39 6
ex Woods 3E-4 3492 9E-6 654 84 7
ex Variably dim 1E-3 74622 3E-5 3836 179 6
Brown almost lin 5E-6 9848 1E-5 2203 98 6
Powell lin fcn 9E-8 1163 2E-7 1094 48 6

latter uses the mesoscale (4) and is provably convergent on smooth and non-smooth functions
via Theorem 7.

hjdirect was tested on two sets of problems. Test set A is drawn from problems in [12],
and has been used previously in [14]. Test set B is drawn from the CUTEr [8] testset and
results exploiting partial separability appear in [15]. The problems in test set A are set up
as black box functions and are not partially separable. These problems allow comparison
with another method for non-smooth optimization. The algorithm in [15] is not provably
convergent on non-smooth problems.

In their original forms, all of these test functions are sums of squares of the form

f =
p

∑

i=1

|fi(x)|β (6)

with β = 2, and with the additional property that the optimal function value is zero. This
latter detail allows us to modify these functions to get nonsmooth test functions with known
global minimizers. Three types of test problems are used. A non-smooth set is obtained by
using β = 1. These problems have multiple kinks, all of which pass through the solution point.
The second set uses β = 3/2 yielding C1 problems. These problems have discontinuous second
derivatives at the solution points and elsewhere. The main effect of this is to exacerbate any
ill-conditioning present in their β = 2 versions. The third set of problems uses the form

f =
p

∑

i=1

min
(

f2
i (x), |fi(x)|

)

. (7)

These problems have multiple kinks, but are smooth near the solution. The nature of these
kinks is fairly benign, and these problems are much like their β = 2 counterparts.

Most of the problems in both test sets are standard. The ‘nzf1’ problem in test set B
is fully defined in [15]. The extended Woods function is simply four non-overlapping copies
of the Woods function in 16 dimensions. The extended variably dimensioned, Brown almost

August 22, 2008 15

linear, and Powell linear functions are constructed by taking five 6–dimensional copies of these
functions and overlapping them so that the last two variables in each copy are the first two
variables of the following copy. Table 5 contains further information in the final three columns.
Here n, `, and p are the dimension, number of elements in the partially separable form, and
number of absolute value terms. These last two quantities are different. For example the
extended Rosenbrock’s function is of the form

5
∑

i=1

fi (x2i, x2i+1) where fi (x2i, x2i+1) =
(

|x2i − 1| + 10|x2i+1 − x2
2i|

)

.

This has 5 elements containing 10 absolute value terms. Similar information about test set A
is listed in the two right hand columns of Table 1.

The algorithm was implemented with a stopping grid size of Hmin = 10−5. The initial
grid size was h0 = e/3. This apparently strange value was chosen in preference to h0 = 1
because the latter placed both the initial point and solution on the initial grid for several test
problems. This allowed the algorithm to step exactly to the solution in a very small number
of iterations, giving a misleading impression of what the method is capable of. The values
hmacro = e/27 and hmeso = e/37 were used. The interactions were calculated with ε = 10−10

and variables ordered for minimal interaction with τ = 0.0005.
For set B, the partial separability structure of each problem is explicitly available. This

is used to calculate function values more cheaply in the same manner used in [15], allowing
a fair comparison with the results from [15]. This also allows us to compare the effectiveness
of how interactions are estimated. When the partial separability structure of f is used to
generate the interactions, the estimated interaction values are replaced with the following.
For i 6= j, Hij is set to one if xi and xj interact, and Hij = 0 otherwise. This does not take
into account the differing strengths of the interactions between various pairs of variables as
this information is not contained in the partial separability structure.

Numerical results are listed in 6 tables. The legend for the tables is as follows. The
column headed f lists the function value at the final iterate. Columns headed ‘nf’, k and m
list the numbers of function evaluations, Hooke and Jeeves iterations and direct iterations
used in achieving that function value. The multicolumn headings ‘Max interact’ and ‘Min
interact’ refer to results when the variables are respectively ordered to maximize or minimize
interaction between consecutive variables.

Table 1 lists results for the nonsmooth functions (β = 1) in test set A. A comparison
with the results from [14] is given. Our method was superior on 5 of the 9 problems listed.
On the Powell 4 dimensional and Woods functions it found less accurate answers in fewer
function evaluations. For the Gulf and variably dimensioned problems it was somewhat
slower, performing huge numbers of Hooke and Jeeves iterations between locating grid local
minima.

Tables 2 and 3 show results for test set B used as nonsmooth problems (i.e. β = 1). Those
which calculated the interactions from known partial separability information are listed in
Table 2 and those which estimate the interactions are given in Table 3. Both tables list
results for the cases when the variables are ordered for maximal and minimal interaction
between consecutive variables. In each case Nmax = 20000 was used. A final function value
of 10−3 here corresponds to a final function value of 10−6 for the ‘sum of squares’ case,
so any value less than about 10−3 is considered acceptable. The results for the extended
Woods and Brown almost linear functions are marginal. The method was not able to solve

August 22, 2008 16

the extended variably dimensioned problem in 20000 function evaluations (along with the
Brown almost linear problem in one case). The results show there is little difference between
generating the interaction matrix using partial separability information and estimating the
interactions numerically. An examination of the interaction matrices H showed that hjdirect

almost always deduced the correct partial separability structure quickly. The results also
show that there is little difference between ordering for minimal and for maximal interaction,
with perhaps a slight favouring of the latter. Interestingly, the smooth version of hjdirect

managed to solve all but four of the non-smooth test problems in set B: failing on extended
Rosenbrock, extended Woods, extended variably dimensioned, and extended Brown almost
linear.

Tables 4 and 5 list results for test set B using the problem form (7). In Table 4 comparisons
are made with results from [15], which show that our method outperforms that of [15] on
average. The problems on which our hjdirect is slower are four of the five quickest problems
to solve. On the harder problems hjdirect is clearly superior. Table 5 lists results for the
same problems using the non-smooth form of hjdirect. A comparison between the hjdirect

results for Tables 4 and 5 shows that the number of grids (m) and function evaluations used
are higher for the non-smooth algorithm, but the number of Hooke and Jeeves iterations (k) is
broadly similar. This is because direct is doing much more work in the non-smooth version
once the mesoscale is reached.

Table 6 lists results for the same problems using β = 3/2. Once again hjdirect is faster
on most problems and much faster on the harder ones. On three of the easiest problems it is
slower. It is noted that the method of [15] failed to solve the extended Rosenbrock’s problem
with β = 3/2.

Although results are only presented for an accuracy of Hmin = 10−5, hjdirect has been
tested with accuracies down to near machine precision (Hmin = 10−15). hjdirect performed
well over the range of Hmin values, with an approximately linear rate of convergence.

In retrospect, the bound on the number of subdivisions (5) is too crude. It allows the
possibility that direct will find a lower point extremely close to zm when m is small. This
would give an unjustifiably small value for hm+1, which might lead to premature termination
of the algorithm. A better approach would be to slowly increase the maximum number of
subdivisions as direct progresses. Nevertheless, this weakness did not appear to adversely
affect the numerical results.

6 Conclusion

A direct search method for nonsmooth unconstrained optimization has been presented. The
method is a hybrid of the classical Hooke and Jeeves method, and the direct algorithm
of Jones, Pertunnen, and Stuckman. It can detect and exploit partial separability through
choice of the order in which Hooke and Jeeves polls each decision variable. Convergence on
non-smooth problems has been demonstrated under mild conditions. Numerical results have
been presented for problems of up to 22 dimensions. These verify the convergence theory and
show that our method is competitive in practice. Comparisons with two other direct search
algorithms show that our method is faster than both.

August 22, 2008 17

References

[1] C. Audet and J. E. Dennis Jr., Analysis of generalized pattern searches, SIAM J. Opt.,
13 (2003), 889–903.

[2] C. Audet and J. E. Dennis Jr., Mesh adaptive direct search algorithms for constrained
optimization, SIAM J. Opt., 17 (2006), 188–217.

[3] M. C. Bartholomew-Biggs, S. C. Parkhurst, and S. P. Wilson, Using direct to solve an
aircraft routing problem, Computational Opt. and Applications, 21 (2002), 311–323.

[4] F. H. Clarke, Optimization and Nonsmooth Analysis, SIAM classics in Applied Mathe-
matics, 1990.

[5] B.Colson and Ph. L. Toint, Exploiting sparsity in unconstrained optimization without
derivatives, Optimization in Engineering, 2 (2001), 349–412.

[6] B. Colson, and Ph. L. Toint, Optimizing partially separable functions without derivatives,
Optimization Methods and Software, 20 (2005), 493–508.

[7] I. D. Coope and C. J. Price, On the convergence of grid-based methods for unconstrained
optimization, SIAM J. Opt., 11 (2001), 859–869.

[8] N. I. M Gould, D. Orban, and Ph. L. Toint, CUTEr (and SifDec), a constrained and
unconstrained testing environment, revisited, Technical Report RAL-TR-2002-009, Com-
putational Science and Engineering Department, Rutherford Appleton Laboratory, 2002.

[9] A. Griewank and Ph. L. Toint, On the unconstrained optimization of partially separable
functions, In: M. J. D. Powell (Ed.), Nonlinear Optimization 1981, (London: Academic
Press), pp. 301–312.

[10] R. Hooke and T. A. Jeeves, Direct search solution of numerical and statistical problems,
Assoc. Computing Machinery J., 8 (1960), 212–229.

[11] D. Jones, C. D. Perttunen, and B. E. Stuckman, Lipschitzian optimization without the
Lipschitz constant, J. Opt. Theory Applic., 79 (1993), 157–181.

[12] J. J. Moré, B. S. Garbow, and K. E. Hillstrom, Testing unconstrained optimization
software, ACM Trans. Math. Software, 7:1 (1981), 17–41.

[13] C. J. Price and I. D. Coope, Frames and grids in unconstrained and linearly constrained
optimization: a non-smooth approach, SIAM J. Opt., 14 (2003), 415–438.

[14] C. J. Price, M. Reale, and B. L. Robertson, A direct search method for smooth and
nonsmooth unconstrained optimization, ANZIAM J., 48 (2006), C927–C948.

[15] C. J. Price and Ph. L. Toint, Exploiting problem structure in pattern search methods for
unconstrained optimization, Optimization Methods and Software, 21, (2006), 479–491.

[16] V. Torczon, On the convergence of pattern search algorithms, SIAM J. Opt., 7 (1997),
1–25.

August 22, 2008 18

[17] M. H. Wright, Direct search methods: once scorned now respectable, in Proceedings of
the 1995 Dundee Biennial Conference in Numerical Analysis, Longman, Harlow, UK
(1996), 191–208.

