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Abstract

The concept of an autocatalytic network of reactions that can form and persist,
starting from just an available food source, has been formalised by the notion
of a Reflexively-Autocatalytic and Food generated (RAF) set. The theory and
algorithmic results concerning RAFs have been applied to a range of settings,
from metabolic questions arising at the origin of life, to ecological networks, and
cognitive models in cultural evolution. In this paper, we present new structural
and algorithmic results concerning RAF sets, by studying more complex modes
of catalysis that allow certain reactions to require multiple catalysts (or to not
require catalysis at all), and discuss the differing ways catalysis has been viewed
in the literature. We then focus on the structure and analysis of minimal RAFs,
and derive structural results and polynomial-time algorithms, with applications
to metabolic network data described briefly.
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1 Introduction

A central property of the chemistry of living systems is that they combine two basic
features: (i) the ability to survive on an ambient food source and (ii) each biochemical
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reaction in the system requires only reactants and a catalyst that are provided by
other reactions in the system (or are present in the food set). The notion of a self-
sustaining ‘collectively autocatalytic set’ captures these basic features, and their study
was pioneered by Stuart Kauffman [24, 25]. By investigating a simple binary polymer
model, Kauffman showed that collectively autocatalytic sets invariably emerge once
the network of polymers becomes sufficiently large.

The notion of a collectively autocatalytic set was subsequently formalized more pre-
cisely as a ‘reflexively autocatalytic and food-generated’ (RAF) set (defined shortly).
RAF sets (RAFs) are related to, but somewhat different from Robert Rosen’s (M,
R) systems (a partial connection between the two was described in [22]). RAF the-
ory can also be investigated within the framework of Chemical Organisation Theory
(COT) [4]; for example, certain types of RAFs correspond to chemical organisations,
as described in [19] (see also [40] Section 4).

RAF algorithms have also been used in the analysis of simple autocatalytic net-
works of polymers in laboratory studies, either from RNA molecules RNA molecules
[16] or from peptides [15], and have been discussed further in modelling the origin of
life (see e.g., [6, 44]). More recently, RAFs have also played a pivotal role in model-
ing self-reproduction and self-organisation before the emergence of a genetic code in
the polymer world. When modelling this early stage of chemical evolution [46, 47],
RAFs provide a framework for studying the organisation of small molecules in complex
chemical networks that would then lead to polymers as RNA and protein. A general
framework to model complex catalysis is required here: multiple small-molecules can
be involved in catalysis of the same reaction, whereas some reactions can occur spon-
taneously. There are many examples of this in biochemistry; for example, the enzyme
L-threonine dehydrogenase, important in amino acid metabolism requires an organic
cofactor, namely NAD, and a metal [23]. Moreover, in the data set analysed in [46]
1052 of the 5994 biochemical reactions involved catalysts combinations of two or more
molecules to be present.

Two important features of the RAF approach are the degree of generality RAFs
allow, and the fact that very large systems can be analysed precisely by fast algorithms.
The generality of RAF theory means that a ‘reaction’ need not refer specifically to
a chemical reaction, but to any process in which certain items are combined and
transformed into new items, and where similar items facilitate (or catalyse) the process
without being used up in the process. This has led to the application of RAF theory to
processes beyond biochemistry, such as cognitive modelling in cultural evolution [7, 8],
ecology [9, 10], and economics [10]. This generality is not unique to RAFs; for example,
Chemical Organisation Theory has been applied to diverse settings including sociology
[5], ecology [11], cybernetics [13] and modelling of worldviews [45]. Petri Nets have
also been also been applied to biochemical modelling, including self-reproduction [37]
and to other non-biochemical settings (e.g. [27]). In addition, a number of other recent
structural approaches to autocatalytic networks have been applied in the origin-of-life
setting [2, 35].

In this paper, we describe further extensions and applications of RAF theory. We
describe an extension of the RAF approach that provides a unified handling of complex
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catalysis, leading to new mathematical results [Sections 2.2, 3]. We then focus on the
structure and algorithmic properties of minimal RAFs in [Section 4.1].

2 Catalytic reaction systems

2.1 Reaction Systems

A reaction system is a pair (X,R) consisting of a finite nonempty set X of elements
(e.g., molecule types) and a finite set R of reactions. Here a reaction r ∈ R refers to an
ordered pair (A,B) where A and B are multisets of elements from X. We will write
r : a1 + · · ·+ ak → b1 + · · ·+ bl to denote the reaction that has reactants {a1, . . . , ak},
and products {b1, . . . , bl}1. We let ρ(r) denote the set corresponding to A (i.e., ignoring
multiplicities), and π(r) denote the set corresponding to B (ignoring multiplicities);
it is assumed implicitly that ρ(r), π(r) 6= ∅. For a subset R′ of R, it is convenient to
let π(R′) =

⋃
r∈R′ π(r) denote the set of the products of the reactions in R′.

Next, consider a reaction system (X,R) together with a particular subset F of
X. The set F can be interpreted as a set of elements that are freely available to the
system; accordingly, F is referred to as a food set. A subset R′ is F-generated if the
reactions in R′ can be placed in some linear order, say r1, r2, . . . , rk, such that the
following property holds: for ρ(r1) ⊆ F and for all values of j between 2 and k, we have
ρ(rj) ⊆ F ∪ π({r1, . . . , rj−1}). In other words, the reactions in R′ are F-generated if
they can proceed in some order so that the reactant(s) of each reaction are available by
the time they are first required. We call such an ordered sequence of R′ an admissible
ordering. Since there are k! ways to order k reactions, it may not be immediately
obvious that the F-generated condition can be verified in polynomial time; however,
there is a simple way to do so, as we now describe.

We first recall some further terminology. Given a subset R′ of reactions R, a subset
W of X is said to be R′-closed precisely when each reaction r ∈ R′ that has all
its reactant(s) in W also has all its the product(s) in W (i.e. r ∈ R′, ρ(r) ⊆ W ⇒
π(r) ⊆ W ). The union of two closed sets need not be closed; nevertheless, given any
nonempty subset W0 of X there is a unique minimal R′-closed set containing W0,
denoted clR′(W0). This can be computed in polynomial time in the size of the system
by constructing a nested increasing sequence of subsets of the elements W0 ⊂W1, . . . ⊂
Wk where:

Wi+1 = Wi ∪ {x ∈ X : ∃r ∈ R′ : ρ(r) ⊆Wi, x ∈ π(r)},
for i ≥ 0, and by letting Wk denote the terminal set in this sequence (i.e. k is the first
value of i for which Wi = Wi+1).

2.2 Catalytic reaction systems (allowing complex catalysis)

A catalytic reaction system (CRS) is a reaction system with a food set (X,R, F )
together with a subset χ of 2X ×R. Thus χ is a collection of pairs (U, r) where U ⊆ X
and r ∈ R. For (U, r) ∈ χ we refer to U as a catalyst set for r. This is a generalisation

1In applications, a bidirectional reaction is generally regarded as a pair of reactions (forward and
backward) with the same catalysis assignment.
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of earlier treatments in which χ consisted of a subset of X×R (i.e. simple catalysis by
single elements). Our extension here to this more general catalysis framework allows
for complex (i.e. conjunctive) catalysis rules, where catalysts of a reaction may require
the presence of two or more elements of X (e.g., cofactors of enzymes). However,
the treatment of complex catalysis in [41] required the introduction of fictitious new
reactions and elements to the original CRS. Here, our more direct approach allows both
simple and complex catalysis rules that require no additional reactions or elements to
be introduced. It also permits the further option that particular uncatalysed reactions
can appear in an autocatalytic system (since the definition of χ allows (∅, r) ∈ χ),
thereby addressing a recent concern discussed in Section 2.5.

We denote a CRS by writing Q = (X,R, χ, F ), and we let |Q| = |X| + |R| + |χ|
denote the size of Q and we write

r : a1 + · · ·+ ak[U1, . . . , Um]→ b1 + · · ·+ bl

to denote the reaction that has reactants {a1, . . . , ak}, products {b1, . . . , bl} and cat-
alyst sets {U1, . . . , Um}, where (Ui, r) ∈ χ for all i. When Ui is a singleton set (say
{ci}), we will often write ci in place of {ci} in our example systems.

2.3 RAFs

Given a CRS Q = (X,R, χ, F ), a subset R′ of R is said to be Reflexively-Autocatalytic
and Food generated (more briefly a RAF) if R′ is nonempty and if for each r ∈ R′, the
reactants of r and at least one catalyst set U for r (as specified by χ) is a subset of
clR′(F ).

An equivalent definition for a nonempty set R′ to be a RAF for Q is that R′ is F-
generated, and each reaction r ∈ R′ has a catalyst set U that is a subset of F ∪π(R′).
A further equivalent definition is the following:

R′ can be ordered r1, r2, . . . , rk so that for each i ≥ 1, the reactants of ri are present
in Xi, where X1 = F and Xi = F ∪ π({r1, . . . , ri−1}), and at least one catalyst set
U of ri is a subset of Xk.

If a CRS Q has a RAF, then it has a unique maximal RAF (which is the union of
all the RAFs for Q), which is denoted maxRAF(Q). A RAF R for Q is said to be an
irreducible RAF (more briefly an iRAF) if R \ {r} is not a RAF for Q and contains
no RAF for Q.

A stronger notion than a RAF is a CAF (constructively-autocatalytic and F-
generated set) where the third equivalent definition of a RAF (above) is strengthened
to ‘and at least catalyst set U of ri is a subset of Xi’ (rather than ‘of Xk’). In other
words, R′ is a CAF if it has an admissible ordering in which at least one catalyst set
has each of its elements already present in the food set or produced by an earlier reac-
tion in the ordering. Every CAF is also a RAF, but the converse containment does
not hold. Although RAFs and CAFs appear to be very similar concepts, they exhibit
quite different properties. For example, if a CRS Q has a CAF, then this CAF must
contain a reaction r for which all the reactants of r and at least one catalyst of r lie
in F , in which case {r} is itself a CAF of size 1. By contrast, a large RAF need not
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contain any ‘small’ RAF within it. Moreover, theoretical and simulation studies on
polymer systems reveal that the level of catalysis required for a CAF to be present
is exponentially higher than that required for a RAF [32], and in real biochemical
systems that have been studied (e.g., [38, 46]), the maxRAF is generally not a CAF.
Thus, in this paper, we focus on the more general notion of a RAF.

2.4 Examples

We now describe three examples to illustrate the concepts above. The first example
(from [16]) illustrates the concept of a RAF in the simpler setting where catalysis
involves only singleton elements, the second example illustrates complex catalysis and
the third example is from an experimental system.

Consider the following CRS where F = {f1, f2, f3, f4}, X = F ∪ {p1, . . . , p6},
and R′ = {r1, . . . , r6} indicated by squares in Fig. 1. In this figure, reactants and
product pathways are indicated by solids arrows, and catalysis is indicated by dashed
arrows.The maxRAF for this system consists of the four reactions (r1–r4), and there
is one iRAF for this CRS, namely {r1, r2}.
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Fig. 1 A simple example of a CRS with food set {f1, f2, f3, f4} six reactions (r1–r6) and with
catalysis indicated via dashed arrows (adapted from [16]). The maxRAF consists of the four reactions
within the blue border.

Next consider the following CRS where X = {a, b, c, d, e, g}, F = {a, b} and R =
{r1, r2, r3, r4} and χ are as follows:

r1 : a+ a [{c, d}, e]→ c, r2 : b+ c [∅]→ d,

r3 : b+ b [ ]→ e, r4 : a+ e [a]→ b,

r5 : c+ d [d]→ g + g.

Note the subtle difference between the catalyst set in r2 and r3. In r2 we have χ = {∅}
so ∅ ∈ χ which means r2 does not require a catalyst (either present in F or as a
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product of another reaction), whereas for r3, χ = ∅ so no catalyst set (U) exists for
r2. This system has {r1, r2, r5} as its maxRAF, and {r1, r2} as its unique iRAF. No
CAF is present in this CRS.

A third example of a RAF arising in an experimental system (involving simple
rather than complex catalysis) is provided in Fig. 2.

For t≥ 0, let RAFn,t(Q) be the set of RAFs R0 for Q for which:

n(r, R0) ! t for all r [ R0: (3:2)

Thus for this interpretation of ν(r, R0) in terms of rates, a
RAF in RAFn,t(Q) is one for which all reactions in R0 are
able to proceed at a rate of at least t. However, one could
also consider other types of functions ν that satisfy the
monotonicity property (3.1).

The following theorem provides an immediate algorithm
that is polynomial-time (in the size of Q ) that determines
whether or not Q has a RAF that satisfies condition (3.2)
and, if so, constructing a unique maximal one, provided
that ν satisfies condition (3.1). The proof is provided in the
electronic supplementary material.

Theorem 3.2. LetQ ¼ (X, R, C, F) be a CRS with a RAF, and con-
sider any scoring function ν that satisfies condition (3.1). If
RAFn,t(Q) = ; then RAFn,t(Q) has a unique maximal element
Rn,t(Q) and this set is the terminal set Rk of the followingnested decreas-
ing sequence of subsets: R ¼ R0 . R1 . # # # . Rk(¼Rkþ1), where

Riþ1 ¼ wRAF({r [ Ri : n(r, Ri)) ! t}),

for i= 0, …, k− 1. On the other hand, if RAFn,t(Q) ¼ ;, then the
nested decreasing sequence Ri terminates with Rk ¼ ;.

3.3. A generalization, applying theorems 3.1 and 3.2
Given a CRS Q, suppose that we have a collection of func-
tions (wa : 2R ! 2R; a [ A) that satisfy the interior operator
properties (I1)–(I3) described earlier. Consider the following
partial order W on A, defined by:

a W a0 , for all R0 # Rone has wa(R
0) # wa0 (R

0): (3:3)

For example, we could take A ¼ {0, RAF, CAF,
pRAF, 1}, where 0 and 1 refer to the functions 0(R0) ¼ ; and
1(R0) =R0 for all R0 ∈R. For this choice of A, we obtain a
total ordering

0 W CAF W RAF W pRAF W 1:

A larger class is obtained by considering RAFn,t(Q) as
described in §3.2, where ν satisfies condition (3.1) and with t
fixed. In that case, consider the function wRAFn,t that maps each
subset R0 of R to the unique maximal RAF contained in R0 that
satisfies condition (3.2) (or to the empty-set if no such RAF
exists). Such a function is well defined by theorem 3.2 and it
satisfies properties (I1)–(I3). Similarly, we can consider CAFn,t(Q)
and pRAFn,t(Q), where ν again satisfies condition (3.1),

We then have: RAFn,t0 W RAFn,t W RAFn,0 ¼ RAF for all
0≤ t≤ t0, and similarly for CAFs and pRAFs. The collection
A ¼ {0, 1}<

S
t!0 {RAFn,t, CAFn,t, pRAFn,t, 1} is then a par-

tially ordered set that includes CAF, RAF and pRAF, and
with RAFn,t W CAFn,t W pRAFn,t for each given t.

We can now state and establish a generalization of theo-
rem 3.1(a), the proof of which is provided in the electronic
supplementary material.

Theorem 3.3. Given a CRS Q ¼ (X, R, C, F), let (wa, a [ A) be
any collection of RAF, CAF or pRAF operators (as described above)
that satisfy conditions (I1)–(I3), and where A is partially ordered by
(3.3). Let R1 and R2 be any two subsets of the reaction set R and let
a, b, b0 [ A satisfy α≤ β and α≤ β0. Then:

(i) wa(wb(R1)) ¼ wb(wa(R1)) ¼ wa(R1).
(ii) wa(wb(R1)> wb0 (R2)) ¼ wa(R1 > R2):

Remark. Theorem 3.1(a) corresponds to the case α = β = β0 =
RAF in part (ii) of theorem 3.3. As another (typical, but ran-
domly chosen) application of theorem 3.3(ii), the maxCAF of
the intersection of the R1 and the pRAF of R2 is always the
same as the maxCAF of the intersection of the maxRAF of
R1 and the maxRAF of R2 (both are equal to the maxCAF
of R1 > R2 ).

3.4. Closed RAFs, and quotient RAFs
Let Q ¼ (X, R, C, F) be a CRS and let R0 be a non-empty
subset of R. We say that R0 is a closed subset of R if it has fol-
lowing property: for each reaction r in R (the full reaction set),
if all of the reactants of r and at least one catalyst of r are pre-
sent in F< p(R0) then r is present in R0. The closure of a R0,
denoted R0, is the intersection of all closed subsets of R con-
taining R0. Since the full reaction set R is (trivially) closed,
the definition of closure is well defined and R0 is closed
(indeed, R0 ¼ R0 if and only if R0 is closed).

Let C[Q] denote the set of closed non-empty subsets of
reactions in Q and let CRAF[Q] denote the set of all closed
RAFs for Q. Define CCAF[Q] and CpRAF[Q] similarly. Closed
RAFs correspond to a particular type of ‘chemical organiz-
ation’ within the framework of ‘chemical organization
theory’ [28] and also play a central role in the recent
semigroup-based approach of [29]. For the experimental
system shown in figure 3, this RAF contains one other
closed RAF (namely {r4, r5, r6, r7}) and 65 other RAFs that
are not closed.

When Q has a RAF (respectively CAF or RAF), then the
maxRAF (respectively, maxCAF or max-pRAF) is closed.
The maxRAF may contain many closed RAFs as strict sub-
sets, however, determining whether the maxRAF contains a
closed RAF as a strict subset has recently been shown to be
NP-hard [30]. By contrast, the maxCAF contains no other
closed CAF. Indeed, Q has a CAF if and only if C[Q] = ;,
in which case C[Q] ¼ CCAF[Q], which consists just of the
maxCAF for Q. It can be shown that a closed RAF R0 for a
CRS Q is fully determined by Q and r(R)< p(R0) and can
be reconstructed from this set ([31], lemma 1).

r5 r4
r7

r6

r3r1

r2

x5
x4

x6

x3

x7

x1

x2

f

Figure 3. A seven-reaction system that comprises a RAF (from [20] based on
[19]). As with figure 1, this RAF is a maxRAF (by default, since it is the entire
set of reactions, though in general this is not necessary), and this maxRAF
contains 65 RAF subsets (subRAFs), but no CAF. Dashed arrows indicate cat-
alysis. Figure produced by CatlyNet.
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Fig. 2 Left: An experimental RNA system described in [43] involving 16 reactions, and 18 molecule
types (including a food set of size 2, which form the reactants of each reaction). The reactions are
denoted by squares, elements (in this case, RNA replicators) are denoted by circles, reaction pathways
are indicated by solid arrows, and catalysis is indicated by dotted arrows. This system forms a RAF
[16]. Right: A subset of seven of the reactions from the full set (with the two food elements combined
into a single element f), which forms a RAF. This RAF, analysed in [16] contains within it 67 other
subsets that form RAFs including four irreducible RAFs (iRAFs). This RAF is not a CAF (nor does
it contain one). Figures produced by CatlyNet [21].

.

2.5 The interpretation of catalysis and autocatalysis in RAFs

Note that if (∅, r) ∈ χ, then r does not require any element of X for its catalysis, and
so RAFs under our more general definition can contain uncatalysed reactions in
settings where this is appropriate. This is particularly relevant, as a number of papers
(e.g., [1, 14, 28, 26]) have pointed to the restrictive nature of RAFs in requiring that
all reactions in the RAF must be catalysed. For example, the authors of [1] stated:

“Here, the assumption that all reactions are catalysed appears very unrealistic. Unfortu-
nately, the algorithms for recognizing RAFs [...] do not seem to generalise to arbitrary
networks composed of non-catalysed reactions.”

and in [14] the author states:

“The requirement that every reaction be catalyzed by another molecule seems too strong
when we are dealing with simple metabolisms in the earliest forms of life. In modern
organisms, almost every reaction of small-molecule metabolites is catalyzed by enzymes.
However, prior to the existence of RNA and proteins, there were no enzymes, so we need a
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theory that deals with the reactions of small molecules without insisting that the reactions
be catalyzed.”

In fact, in previous applications of RAF theory to the origins of metabolism
[46, 47] a fictional catalyst ‘Spontaneous’ was assigned to reactions known to occur
uncatalysed. This catalyst was added to the food set in all simulations. Also, prior to
the advent of genetic coding and enzymes, catalysis must have existed in the small-
molecule world as well. Small molecules are increasingly being shown to catalyse
multiple reactions in the absence of enzymes [3, 33]. However, the use of a fictional cat-
alyst ‘Spontaneous’ is less direct than our approach introduced here (see Section 2.2)
where we generalise the notion of catalysis by describing it via a subset χ of 2X × R
(thereby allowing pairs of the form (∅, r), and so a ‘Spontaneous’ catalyst is no longer
required).

RAF theory also treats ‘catalysis’ in a general way and this allows for efficient
graph-theoretic algorithms, which apply independently of any detailed kinetic (or even
stoichiometric) considerations. This generality also allows for applications in a variety
of areas outside chemistry. Essentially, we regard a catalyst as any element that facil-
itates, speeds-up, or synchronises a reaction without taking part in the reaction itself
(as a reactant).

For example, in economic applications, a factory facilitates (i.e. catalyses) the
production of items from the incoming raw materials, but is not itself consumed by
that process. In cognitive modelling [7], a reaction that combines ideas to form a new
idea could be enhanced (i.e. catalysed) by a need, thought, memory, or stimuli. In
ecology [9], a catalyst is a species that enables some other interaction in an ecological
network. In biochemistry, it can also be helpful to treat catalysis in a quite general way;
for instance, the formation of a lipid boundary to encompass a primitive metabolism
can be viewed as a sequence of reactions which, once complete, forms a structural
element (a complete lipid membrane) that catalyses all the reactions within the newly
formed protocell (since the system within it no longer disperses) [17].

Moreover, in biochemistry, food elements can be direct catalysts for multiple reac-
tions, as is the case with universally-essential metal ions. The generality of RAF theory
allows for this, in contrast to some other models of network autocatalysis.

It is tempting to treat a catalyst x of a reaction r as simply an additional reactant
and product of r (i.e., adding x to both sides of the reaction, as is sometimes used in
chemical notation), thereby reducing the notion of a RAF to simply an F-generated
subset of the resulting (modified) reaction system. In other words, the catalysed reac-
tion x+y[c]→ z (where c is a catalyst) might be viewed as x+y+c→ z+c. However,
this misses an important distinction. Namely, in RAF theory, it is assumed that a
reaction r may proceed (at a slow rate intially) provided that all its reactants are
available even if no catalyst is initially available; however r will subsequently be part
of a RAF set, provided that a catalyst of r is (eventually) produced by at least one
other reaction in the RAF. Indeed, it is entirely possible for a CRS to contain a RAF
yet the modified reaction system (adding catalysts to both sides of a reaction) might
have no F-generated subset (indeed, this has been observed in real biochemical net-
works [16, 38, 46]). Misunderstandings concerning the related notion of ‘autocatalysis’
have been discussed in [18] and [36].
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3 Mathematical aspects of RAFs

We now recall the concept of the maxRAF operator ϕ (from [42], Section 3). For any
subset R′ of R, let Q|R′ be the CRS (X,R′, χ′, F ) where χ′ is the restriction of χ to
2X ×R′, and let ϕ : 2R → 2R be the function defined as follows:

ϕ(R′) =

{
maxRAF(Q|R′), if Q|R′ has a RAF;

∅, otherwise.
(1)

The function ϕ(R′) can be determined in a computationally efficient way, as follows:

ϕ(R′) =
⋂
i≥1

Ri,

where R1 = R′ and for i > 1,

Ri = {r ∈ Ri−1 : ρ(r) ⊆ clRi−1
(F ) and (U, r) ∈ χ for some U ⊆ clRi−1

(F )}. (2)

Notice that the sets Ri defined in Eqn. (2) form a decreasing nested sequence, and
so ϕ(R′) is precisely the set Rj for the first value of j ≥ 1 for which Rj+1 = Rj . In
particular, a nonempty subset R′ of R is a RAF if and only if ϕ(R′) = R′. Moreover,
ϕ(R) is precisely the maxRAF of Q (if it exists), or is the empty set otherwise.

Example: To illustrate this algorithm, consider the second example described
in Section 2.4. For R′ = R = {r1, . . . , r5} we have R1 = R, and so clR1

(F ) =
{a, b, c, d, e, g}, and all but one of the reactions (namely, r3) satisfy the property that
(U, r) ∈ χ for some U ⊆ clR1

(F ). Thus, (by Eqn. (2)), R2 = {r1, r2, r4, r5}. Next,
R3 = {r1, r2, r5} since one of the reactants of r4 ∈ R2 (namely e) is not present in
clR2

(F ). Finally, R4 = R3, and so ϕ(R) = R3 forms the maxRAF for Q.

A number of interesting algebraic (semigroup) properties of the map ϕ have been
explored recently in [29] (see also [30], which considers a more general notion than
a RAF, which corresponds to what have been called ‘pseudo-RAFs’ in the RAF
literature).

The map ϕ is also an example of the more general notion of an interior operator
(on 2R), and several basic results in RAF theory can be derived by this property
alone. To explain this further, an arbitrary function ψ : 2Y → 2Y is said to be an
interior operator2 if it satisfies the following three properties (nesting, monotonicity,
and idempotence) for all subsets A,A′ of Y :

(I1): ψ(A) ⊆ A,
(I2): A ⊆ A′ ⇒ ψ(A) ⊆ ψ(A′), and
(I3): ψ(ψ(A)) = ψ(A).

2The term ‘interior operator’ comes from topology, since the function that assigns to any subspace S of
a topological space the topological interior of S satisfies the three properties described.
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Lemma 1. Given any CRS Q = (X,R, χ, F ) the maxRAF function ϕ : 2R → 2R is
an interior operator.

Many results of RAF theory (including some we discuss later) depend mainly on
the interior operator property of ϕ. A natural question is whether any interior operator
on a finite set can be represented as the maxRAF operator of a set of reactions
associated with the elements of the set. It was recently shown that if Y is a finite set
of size at least 12, then there exist interior operator on Y that cannot be represented
as a maxRAF operator of a suitably chosen CRS (X,RY , χ, F ) where RY is a set
of reactions bijectively associated with Y and where χ ⊆ X × RY (i.e. the original
CRS setting which does not allow complex catalysis rules) [39]. Thus some generic
properties of RAFs in this setting cannot be established by using the interior operator
properties alone. However, if one allows complex catalysis rules, we have the following
contrasting result (further details and a proof are provided in the Appendix).

Proposition 1. For any finite set Y , any interior operator ψ on 2Y can be represented
as the maxRAF operator ϕ for a suitably chosen CRS Q = (X,RY , χ, F ), where RY
is bijectively associated with Y and χ ⊆ 2X × RY permits complex catalysis rules.
Moreover, RY can be chosen so that each of its reactions has the same single reactant
f (from the food set) and a single associated product.

Proposition 1 has an interesting consequence for the structure of RAFs in any
CRS. Specifically, it implies that it is possible to simplify the reactions and the food
set, while preserving the number, sizes, and containment structure of the RAFs (albeit
at the price of possibly increasing substantially the number and complexity of cata-
lysts for the reactions). More precisely, we have the following result (obtained from
Proposition 1 by taking ψ to be the maxRAF operator of Q).

Corollary 1. For any CRS Q = (X,R, χ, F ), there is a matching CRS
Q′ = (X ′, R′, χ′, F ′), where (i) each of the reactions in R′ has a single reactant f
which comprises the food set F , and a single distinct product and (ii) there is a canon-
ical bijective correspondence between R and R′ that induces a bijection between the
RAFs of Q and the RAFs of Q′.

A worked example to illustrate this result is provided in the Appendix. We return
to interior operators in Section 4.2.

3.1 Strictly autocatalytic RAFs

If a CRS Q has the property that each reaction is catalysed by at least one element
of the food set, then the RAF sets for Q coincide precisely with the F -generated sets.
More generally, for any CRS, it is possible for a RAF set to have the property that
some (or all) of its reactions are catalysed by elements of the food set, which renders
the notion of ‘autocatalytic’ less applicable (though not entirely, since each reaction in
the RAF might still also be catalysed by at least one product of the other reactions in
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the RAF). To formalise this notion further, we introduce a new definition and describe
a result that characterises the condition which captures a more focused notion of an
‘autocatalytic’ RAF.

Given a CRS Q = (X,R, χ, F ), we say that a subset R′ of R is strictly autocatalytic
if each reaction in R′ has at least one catalyst that involves one or or more products of
reactions of R′ and is not a subset of the food set. We say R′ is a strictly autocatalytic
RAF for Q if R′ is a RAF and is strictly autocatalytic.

Example: Consider the following catalytic reaction system:

r1 : a+ b [{a, d}]→ e

r2 : b+ c [{a, b}, e]→ d

r3 : d [{a, b}]→ c

where X = {a, b, c, d, e} and F = {a, b, c}. Then, {r2}, {r1, r2}, {r2, r3} and {r1, r2, r3}
are RAFs, however {r1, r2} is the only strictly autocatalytic RAF. �

Let R̂i, i ≥ 1 be the nested decreasing sequence of subsets of R defined as follows:
R̂1 = R, and for i > 1, consider the following modification of Eqn. (2):

R̂i = {r ∈ R̂i−1 : ρ(r) ⊆ clR̂i−1
(F ) and (U, r) ∈ χ for some U ⊆ clR̂i−1

(F ) and U 6⊆ F}.
(3)

The following result shows that there is a polynomial-time algorithm (in |Q|) to deter-
mine whether or not Q has a strictly autocatalytic RAF and, if so, to construct a
maximal one. The proof is provided in the Appendix.

Proposition 2. Let Q = (X,R, χ, F ) be a CRS. Then Q has a strictly autocatalytic
RAF if and only if

⋂
i≥1 R̂i 6= ∅, in which case,

⋂
i≥1 R̂i is the unique maximal strictly

autocatalytic RAF for Q.

Application: We investigated the large primitive metabolic data-set used in [46]
based on 6039 reactions and a food set of size 68, which resulted in a maxRAF of size
1357. Applying the strictly autocatalytic RAF algorithm determined that no such RAF
exists. This, in turn, implies that in any RAF for this system, one or more elements
in the food set play a pivotal role in catalysing some reaction(s). This is consistent
with the aforementioned essentiality of metals in biocatalysis of central metabolism.
At the same time, this result reveals that there are unknown prebiotic routes (or
unknown non-enzymatic catalysts) to the production of organic cofactors which must
be investigated in the laboratory. For example, there are no routes in this network for
the production of organic cofactors as NAD [47] and the investigation of the prebiotic
route for its synthesis is subject of active investigation [12, 34].
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4 Irreducible (minimal) RAFs

Recall that an irreducible RAF (iRAF) is a RAF that contains no RAF as a proper
subset. Such RAFs are of particular interest, as they represent the minimal possible
autocatalytic networks within a CRS. A smallest sized RAF in any CRS is necessarily
an iRAF, however, iRAFs can be of different sizes. Moreover, even without complex
catalysis rules, a CRS Q can have exponentially many iRAFs, and although finding
one iRAF is easy, finding a smallest one turns out to be NP-hard [40].

4.1 Identifying all iRAFs in a CRS

Let Q = (X,R, χ, F ) be a fixed CRS that contains a RAF. Recall that a RAF R
for Q is said to be an iRAF (irreducible RAF) if R \ {r} is not a RAF for Q and
contains no RAF for Q. Every RAF of a CRS contains an iRAF, and there is a simple
(polynomial-time in |Q|) algorithm for finding one or more iRAFs within any given
RAF; however, the number of iRAFs for Q can grow exponentially with |Q| (Theorem
1 of [20]). Moreover, determining the size of a smallest iRAF is known to be NP-hard
[40]. Nevertheless, there is a simple (and polynomial-time) algorithm to determine
whether Q has just one iRAF; we simply ask whether the set

Core(Q) := {r ∈ R : ϕ(R \ {r}) = ∅}

is a RAF. Then it can be shown that this set is a RAF if and only if Q has a unique
iRAF. and in that case, Core(Q) is the unique iRAF forQ. The result for CRS systems
without complex catalysis was established in see [42] Theorem 4.1, however since the
proof involved only interior operator properties for ϕ it applies to the more general
setting here (by Lemma 1).

Moreover, it can easily be seen that there is a simple way to test whether or not
an iRAF R1 is the only iRAF for Q; this holds provided that:

ϕ(ϕ(R) \ {r}) = ∅, for all r ∈ R1.

This is computationally less-intensive than computing Core(Q), since it involves
searching over the reactions that are just in R1 rather than all of R.

In a similar way, it can be shown that if Q has (at least) two iRAFs, R1 and
R2 then these are the only iRAFs for Q if and only if for all r ∈ R1 \ R2, we have
ϕ(ϕ(R) \ {r}) = R2, and for all r ∈ R2 \R1, we have ϕ(ϕ(R) \ {r}) = R1.

A direct extension of this last result to three or more iRAFs is problematic, since
although two iRAFs cannot be nested (i.e. neither can be a subset of the other) in
the case of three iRAFs, it is possible for each one to be a subset of the union of the
two others. An example is provided by the CRS Q = (X,R, χ, F ), where F = {f},
R = {r1, r2, r3} and

r1 : f [x1]→ x2 + x3

r2 : f [x2]→ x1 + x3

r3 : f [x3]→ x1 + x2
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This system has three iRAFs, namely, {r1, r2}, {r1, r3}, and {r2, r3}, each of which
contained in the union of the other two.

However, the following result shows that testing a small number (say, k) of iRAFs
is feasible in polynomial time in |Q| (provided that k is fixed). The result is a slight
strengthening of Theorem 2 of [40]; its significance is that it allows one to determine
whether a given set of k iRAFs is the set of all iRAFs for Q in polynomial time in
|Q|, provided that k is fixed (however, the algorithm is exponential in k). The proof
of the following result is given in the Appendix.

Proposition 3. A given collection R1, . . . , Rk of iRAFs for Q is the set of all iRAFs
for Q if and only if the following condition holds: For all choices (r1, . . . , rk) where
ri ∈ Ri, we have ϕ(ϕ(R) \ {r1, . . . , rk}) = ∅.

Proposition 3 assumes that the iRAFs are given in advance (e.g., found by heuristic
search); however, the approach can be extended to identify the complete set of iRAFs
of Q even if they are not given in advance.

Thus, when the number of iRAF is small (say, less than some value k), the following
algorithm is polynomial-time in |Q| (but is exponential in k). The algorithm proceeds
as follows and when it terminates, it produces the complete list of iRAFs of Q.

• Given Q = (X,R, χ, F ), determine the maxRAF; providing that it exists, compute
an iRAF, denoted R1.

• For i ≥ 1, construct a sequence of iRAFs starting with R1, as follows.

(i) For each integer j with 1 ≤ j ≤ i and each choice of i reactions {r1, r2, . . . , ri}
where rj ∈ Rj for each j, compute ϕ(ϕ(R) \ {r1, . . . , ri}). If this set is the empty
set for all such choices of {r1, . . . , ri}, then R1, . . . , Ri is the complete set of iRAFs
for Q, so the algorithm terminates.

(ii) Otherwise, if ϕ(ϕ(R) \ {r1, . . . , ri}) 6= ∅ for some choice of {r1, . . . , ri}, then
compute an iRAF of ϕ(ϕ(R) \ {r1, . . . , ri}) and set Ri+1 equal to this iRAF, and
proceed to step (iii).

(iii) Repeat step (i) and, if necessary, step (ii).

4.2 Finding an iRAF that contains a given reaction

Given any CRS Q = (X,R, χ, F ), a natural question is whether a given reaction in R
is present in at least one iRAF for Q. We show shortly that this problem is NP-hard.
First, we describe how the union of all the iRAFs present in a CRS can be described
via a further interior operator. Given a CRS Q = (X,R, χ, F ), and a nonempty subset
R′ of R, let ϕ̃(R′) denote the union of the subsets of R′ that are iRAFs for Q. The
proof of the following lemma is given in the Appendix, as a consequence of a more
general result.

Lemma 2. The map ϕ̃ : 2R → 2R is an interior operator.

Although the computation of ϕ(R′) is polynomial time in |Q| for any CRS
Q = (X,R, χ, F ) and any subset R′ of R, computing ϕ̃(R) is NP-complete, even for
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quite simple CRS systems, as we now state more formally (a proof is provided in the
Appendix).

Proposition 4. Given a CRS Q = (X,R, χ, F ) the problem of determining whether
or not a given reaction r ∈ R is present in at least one iRAF for Q is NP-complete.
Moreover, this holds even for systems were each reaction in R has the same single food-
set reactant and where each catalyst consists of single elements (i.e. without complex
catalysis).

Next suppose that a CRS Q = (X,R, χ, F ) and that an element x ∈ X \ F is
produced by some reaction in maxRAF(Q). A relevant question in certain applications
is to find a minimal subset R′ of reactions within maxRAF(Q) that is both a RAF
and produces one or more particular elements of interest (e.g., it plays a key role in
a metabolic network, such as ATP or NAD, the universal currencies of energy and
redox power in metabolism, respectively). In other words, R′ is a RAF that produces
x, and every proper subset of R′ either fails to be a RAF or fails to produce all of the
specified elements. It turns out that finding such a minimal set has a polynomial-time
solution, as we now show (the proof is provided in the Appendix).

Proposition 5. Suppose that one or more particular elements x1, . . . , xk ∈ X \F are
produced by some reaction in maxRAF(Q). Let Q+{x1,...,xk} be the CRS obtained from
Q by replacing each catalyst (U, r) ∈ χ with (U ∪ {x1, . . . , xk}, r). Then the collection
of minimal subsets of maxRAF(Q) that are simultaneously RAFs of Q and produce
each of the elements x1, . . . , xk are precisely the iRAFs of Q+{x1,...,xk}.

As an example with the 16-reaction CRS shown in Fig. 2, for each element x of
X \ F the minimal subset that is both a RAF and generates x has size either 1 or 2.

4.3 Describing a RAF in terms of a composition sequence
involving iRAFs

Any RAF contains the union of its iRAFs; however, it may be strictly larger than this
union. A simple example is provided by the simple catalytic reaction system:

r1 : f [y]→ y

r2 : y [z]→ z

where F = {f} and X = {f, y, z}. This system is a RAF but its only iRAF is {r1}.
In general, a RAF R′ is the union of its iRAFs if and only if each reaction in R′ is
contained in an iRAF.

Nevertheless, any RAF R′ in a CRS Q = (X,R, χ, F ) can be described by a
sequence of iRAFs and associated catalytic reaction systems. This is loosely analogous
to the description of finite groups in abstract algebra via a ‘composition series’, in
which a group is reduced to the trivial group via quotients that are simple groups.
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Here the analogue of a group (respectively, a simple group) is a subset of reactions
(respectively, an iRAF), and the analogue of a quotient group is the complement of a
iRAF in a set of reactions. However, this analogy is only suggestive; for a finite group
the set of associated simple groups is uniquely determined by the group, however, we
do not expect the same uniqueness to hold concerning the set of associated iRAFs in
our decomposiion.

To describe this in our setting, suppose we have a CRS, Q = (X,R, χ, F ) and
any nonempty subset R′ ⊆ R. A composition sequence for R′ is a nested decreasing
sequence of subsets of R′, R1, . . . , with R1 = R′ and with Ri+1 = Ri \ R̂i where R̂i is
an iRAF of Qi = (X,Ri, χ, F ∪π(R̂i−1)) for each i ≥ 1 for which Qi has a (nonempty)
RAF. Since the sets Ri form a nested decreasing sequence of sets, we refer to the final
distinct set (i.e.

⋂
i≥1Ri) as the terminal set of the sequence.

It is clear that every subset R′ of R has a composition sequence, and that this can
be constructed in polynomial time in |Q|. Moreover, by definition, the iRAF sets R̂i
are disjoint. In the simple 2-reaction example above, the unique composition sequence
for R′ = {r1, r2} is: {r1, r2}, {r2}, ∅. The proof of the following result is provided in
the Appendix.

Proposition 6. Let Q = (X,R, χ, F ) be a CRS, let R′ be a nonempty subset of R,
and let R1, R2, . . . be a composition sequence for R′. The following are equivalent:

(i) R′ is a RAF for Q;
(ii) R1, R2, . . . has terminal set ∅.

(iii) The associated iRAF sets (R̂i, i ≥ 1) partition R′.

Note that the iRAF sets R̂i in (iii) are not, in general, iRAFs of the original CRS
Q, and since the sets R̂i are (by definition) disjoint, the partitioning condition in (iii)
is equivalent to the condition that the union of the sets R̂i is equal to R′.

5 Concluding comments

Autocatalytic networks have provided a formal tool to investigate processes in early
biochemistry and certain other settings that involve the formation and evolution of
complex structures. The discrete nature of the model provides a way to develop and
implement efficient algorithms that can be applied to large data sets, and to elucidate
their structural properties, such as their building blocks in terms of iRAFs or the
ordering of reactions.

In this paper, we have developed further techniques that open the door to more
detailed investigations into the structural properties of RAFs and iRAFs, their exten-
sions to more general catalytic scenarios, and the investigation of the constraints on
the order of reactions and the appearance of particular elements of interest. Several
of the techniques described here have been implemented in the open-source software
package CatlyNet [21], which we plan to apply to investigate further aspects of early
metabolism and related evolutionary questions.

14

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 10, 2023. ; https://doi.org/10.1101/2023.09.01.556005doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.01.556005
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 Acknowledgements
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7 Appendix: Mathematical details

Proof of Lemma 1: For a subset R′ of R, let

λ(R′) = {r ∈ R′ : ρ(r) ⊆ clR′(F ) and (U, r) ∈ χ for some U ⊆ clR′(F )}.

It is clear that the function λ satisfies properties (I1) and (I2) (but not necessarily
(I3)), and since ϕ(R′) =

⋂
i≥1Hi(R

′) where H1(R′) = R′ and Hi+1(R′) = λ(Hi(R
′))

for all i ≥ 1, Property (I3) holds by Proposition 1 of [39]. �

Proof of Proposition 1: Let ψ be an arbitrary interior operator on 2Y . We construct
a CRS Qψ = (X,RY , χ, F ) that permits complex catalysis rules, as follows. Let F =
{f}, let X = {xy : y ∈ Y } ∪ {f}, and let RY = {ry : y ∈ Y } where ry is the reaction
f → xy. It remains to describe, for each reaction ry ∈ RY , its associated catalyst sets
(i.e. the subsets U of X for which (U, ry) ∈ χ). Let

C(y) = {A ⊆ Y : y ∈ A,ψ(A) = A}, (4)

the fixed sets of ψ that contain y. Then we let (U, ry) be an element of χ if and only
if U = {xa : a ∈ A} for some set A ∈ C(y).

Let b : Y → RY denote the bijection y 7→ ry.

Claim 1: A nonempty set A of Y is a fixed set of ψ if and only if b(A) = {ry : y ∈ A}
is a RAF for Qψ.

To establish this claim, suppose first that A is a fixed set of ψ (i.e. ψ(A) = A).
Since any nonempty subset of RY is F -generated (because each reaction in RY has
only the single reactant f which lies in the food set), it suffices to show that each
reaction ry in b(A) has an associated catalyst set U with the property that each of its
elements is produced by at least one reaction in b(A). Suppose that ry ∈ b(A). Then
y ∈ A, and, by assumption, A is a fixed set of ψ, so A ∈ C(y); moreover, the elements
{xa : a ∈ A} are products of reactions in b(A). Thus, taking U = {xa : a ∈ A} we have
(U, ry) ∈ χ; in other words, ry is catalysed by products of reactions in b(A). Since this
holds for all ry ∈ b(A), it follows that b(A) is a RAF.

Conversely, suppose that b(W ) is a RAF for Qψ for some subset W of Y . Then for
each w ∈ W , the reaction rw : f → xw has a catalyst set of the form {xa : a ∈ Aw}
where Aw is a nonempty subset of W satisfying w ∈ Aw and ψ(Aw) = Aw. It remains
to show that ψ(W ) = W . Since ψ(W ) ⊆ W it suffices to determine the converse
containment. We have:

W ⊆
⋃
w∈W

Aw =
⋃
w∈W

ψ(Aw) = ψ

( ⋃
w∈W

Aw

)
⊆ ψ(W ),

as required to establish Claim 1.
Next observe that the RAFs for Qψ are simply the nonempty fixed sets of ϕ (the

maxRAF operator on RY for the CRS Qψ), and so ψ and b−1 ◦ ϕ ◦ b are two interior
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operators on 2Y , and these two functions the same fixed sets by Claim 1 (noting also
that ϕ and ψ also trivially fix ∅). However, any two interior operators on 2Y that have
the same collection of fixed sets are identical functions. This is because any interior
map ν on a set 2Y is completely determined by its fixed sets since for any set Y ′ ⊆ Y
we have:

ν(Y ′) =
⋃
{U ⊆ Y ′ : ν(U) = U}.

Thus ψ = b−1 ◦ ϕ ◦ b, completing the proof. �

Remark: It can be shown that Claim 1 also holds if we restrict the catalyst sets
U = {xa : a ∈ A} to just those that correspond to the minimal sets A ∈ C(y) (where
minimal refers to set inclusion).

An example to illustrate Corollary 1: Consider the following CRS (based on Kauffman’s
binary polymer model with food set F = {0, 1, 00, 01, 10, 11} from Fig. 1 of [41]):

r1 : 10 + 0 [01100]→ 100

r2 : 01 + 100 [0]→ 01100

r3 : 10 + 1 [0]→ 101

r4 : 11 + 10 [101]→ 1110

r5 : 1110 + 0 [101]→ 11100

This system is itself a RAF and it contains six other RAFs as subsets, namely
{r1, r2}, {r3}, {r1, r2, r3}, {r3, r4}, {r3, r4, r5}, {r1, r2, r3, r4}. Following the procedure
described in the proof, we associate with ri the reaction r′i : f [Ui] → xi where the
set of (complex) catalysts is Ui = {{xj : rj ∈ A} : A is a RAF containing ri}. For
example, for r1 we have:

U1 = {{x1, x2}, {x1, x2, x3}, {x1, x2, x3, x4}, {x1, x2, x3, x4, x5}}.

We can further simply U1 in line with remark following the proof of Proposition 1
above. For U1 we only need to keep the single set {x1, x2} since all other sets in U1

contain this set. Applying this simplification to the other sets Ui leads to the resulting
reduced system:

r′1 : f [{x1, x2}]→ x1

r′2 : f [{x1, x2}]→ x2

r′3 : f [{x3}]→ x3

r′4 : f [{x3, x4}]→ x4

r′5 : f [{x3, x4, x5}]→ x5

The RAFs of this system (with F = {f}) then correspond bijectively to the RAFs of
the original system (under the bijection ri ↔ r′i for each i).
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Proof of Lemma 2: We establish the following more general result from which
Lemma 2 follows by taking ψ to be the maxRAF operator (ϕ) for a CRS.

Given any function ψ : 2Y → 2Y define an associated derived function ψ̃ : 2Y → 2Y

as follows: For X ⊆ Y , let Fψ(X) = {U ⊆ X : ψ(U) = U} (the ‘fixed sets’ of ψ) and
set:

ψ̃(X) =
⋃
{U ∈ Fψ(X) : ψ(U \ {u}) = ∅,∀u ∈ U}. (5)

In words, ψ̃(X) is the set of elements in X that lie in at least minimal fixed set of ψ.

Lemma 3. If ψ is an interior operator on 2Y then ψ̃ is also an interior operator on
2Y , and ψ̃(X) ⊆ ψ(X) for all X ∈ 2Y .

Proof: Condition (I1) holds for ψ̃ since ψ(X) ⊆ X for all X ∈ 2Y and so U ∈ Fψ(X)

implies that U ⊆ X, and by definition ψ̃(X) is a union of sets in Fψ(X). Condition

(I2) holds for ψ̃ since if X ⊆ X ′ and U ∈ Fψ(X) then U ∈ Fψ(X ′). Thus it remains

to establish (I3). We have ψ̃(ψ̃(X)) ⊆ ψ̃(X) by condition (I1), and so it suffices to
establish the reverse containment. Suppose that U ∈ Fψ(X). Then since U ⊆ X and
ψ(U) = U , it follows that U = ψ(U) ⊆ ψ(X). Thus,

{U ∈ Fψ(X) : ψ(U \ {u}) = ∅,∀u ∈ U} ⊆ {U ∈ Fψ(ψ(X)) : ψ(U \ {u}) = ∅,∀u ∈ U},

and so the union of the sets on the left (i.e. ψ̃(X))) is a subset of the union of the
sets on the right (i.e. ψ̃(ψ̃(X))). Thus, by Eqn. (5), (I3) holds for ψ̃, and so ψ̃ is an
interior operator on 2Y .

The containment ψ̃(X) ⊆ ψ(X) for all X ∈ 2Y follows by observing from Eqn. (5)
that ψ̃(X) is a union of a sub-collection of the set of subsets of X that are fixed by
ψ, and the union of all such ψ–fixed subsets of X is ψ(X). �

Proof of Proposition 2: Suppose that Rint :=
⋂
i≥1 R̂i 6= ∅. Then Rint is a RAF,

and every reaction of Rint has a catalyst Ui that is not a subset of F , and so Rint is a
strictly autocatalytic RAF. On the other hand, if R′ is a strictly autocatalytic RAF,
then since R′ ⊆ R we have (by induction on i ≥ 1) R′ ⊆ R̂i for each i. Thus, since
Rint = R̂k for some value of k we have R′ ⊆ Rint and so Rint is the unique maximal
strictly autocatalytic RAF for Q. �

Proof of Proposition 3: The argument just relies on the interior operator properties
of ϕ established in Lemma 1. If ϕ(ϕ(R) \ {r1, . . . , rk}) 6= ∅ then ϕ(R) \ {r1, . . . , rk}
contains an iRAF, and this iRAF cannot be one of R1, . . . , Rk, since for each i, ri was
chosen from Ri yet ri 6∈ ϕ(ϕ(R) \ {r1, . . . , rk}) by definition. Conversely, if there is an
iRAF R′ of R that is different from R1, . . . , Rk, then selecting ri in Ri \R′ for each i
(this is possible since Ri is not a subset of R′), R′ is an iRAF of ϕ(R) \ {r1, . . . , rk}
and so R′ = ϕ(R′) ⊆ ϕ(ϕ(R) \ {r1, . . . , rk}), thus this set is nonempty. �

Proof of Proposition 4: First note that the problem described lies in the complexity
class NP, since it can readily be verified (in polynomial time in |Q|) whether or not a

20

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 10, 2023. ; https://doi.org/10.1101/2023.09.01.556005doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.01.556005
http://creativecommons.org/licenses/by-nc-nd/4.0/


given subset of reactions is an iRAF for Q that contains a given reaction. We reduce
an instance of the problem described to the following graph-theoretic problem: Given
a finite directed graph G = (V,A), and a vertex v ∈ V , determine whether or not
there exist a chordless cycle in G that contains v. This problem was shown to be
NP-complete in [31] (Theorem 1).

Given an arbitrary finite directed graph G = (V,A), consider the following CRS
QG = (X,R, χ, F ) where F = {f}, X = V ∪ F , R = {rv : v ∈ V } where rv is the
reaction rv : f [u1, . . . , un]→ v for each ordered pair (ui, v) ∈ A. Notice that QG is a
CRS for which there is a single reactant for each reaction (namely f) which comprises
the food set. Moreover, each reaction has singleton catalysts (i.e. complex catalysis is
not involved).

Now any CRS Q = (X,R, χ, F ) that has the property that (i) each of its reactions
has all its reactants in the food set, and (ii) each catalyst of each reaction is a singleton
element in X \F , then the iRAFs for Q correspond precisely to the subsets of R that
form a chordless cycle of the graph GQ := (R,A) where (r, r′) ∈ A if a product of
r is a catalyst of r′, (Theorem 2.1(ii) of [41]). It follows that the iRAFs for QG are
precisely the chordless cycles of G, which establishes the claimed reduction.

Proof of Proposition 5: Suppose that R′ is a minimal subset of maxRAF(Q) that
is a RAF and produces all of the elements x1, . . . , xk. Then R′ is a RAF of Q+ :=
Q+{x1,x2,...,xk}. Moreover, if R′′ is a strict subset of R′ that is a both a RAF and that
produces x1, . . . , xk, then R′′ is also a RAF of Q+ and so R′ is not a minimal set with
the joint properties of being a RAF and producing x1, . . . , xk. Thus R′ is an iRAF of
Q+. Conversely, suppose that R′ is an iRAF of Q+. Then R′ is a RAF of Q and R′

must produce all of the elements x1, . . . , xk (since all reactions in Q+ require each of
the elements x1, . . . , xk to be produced because none of these elements lie in the food
set F (by assumption)). Moreover, R′ is minimal subset of R that is a RAF for Q and
produces x1, . . . , xk; for otherwise R′ contains a strict subset with these properties and
so would be a RAF of Q+ contradicting the assumption that R′ is an iRAF of Q+. �

Proof of Proposition 6: We begin with a lemma.
Lemma 4. Suppose that R′ and R′′ ( R′ are both RAFs for Q = (X,R, χ, F ). Then
R′ \R′′ is a RAF for (X,R, χ, F ∪ π(R′′)).

To see why this holds, simply observe that if o′ is an admissible ordering for R′

and o− is the induced ordering of R′ \R′′ then o− is an admissible ordering of R′ \R′′
for the CRS with expanded food set (X,R, χ, F ∪ π(R′′)).

Returning to the proof of Proposition 6, observe that (ii) and (iii) equivalent (by
the comments following the last lemma) so it suffices to show that (iii) implies (i),
and, conversely, that (i) implies (iii). Suppose first that (iii) holds. Since R′ equals the
(disjoint) union of the sets R̂i we can select an admissible ordering of R̂i for each i,
and extend this to an ordering of the reactions of R′ in which all reactions from R̂i
come before those of R̂i+1 for each i. This ordering is an admissible ordering of R′,
and each reaction in R′ is either catalysed by an element of the food set or by the
product of another reaction from R′. Thus R′ is a RAF for Q.
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The proof of the converse direction ((i) implies (iii)) follows from Lemma 4, by
induction on the length of the sequence R1, R2, . . . and the fact that every RAF
contains an iRAF. �
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