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Abstract

Gene loss is an important process in gene and genome evolution. If a gene is present at the1

root of a rooted binary phylogenetic tree and can be lost in one descendant lineage, it can2

be lost in other descendant lineages as well, and potentially can be lost in all of them,3

leading to extinction of the gene on the tree. In that case, just before the gene goes extinct4

in the rooted phylogeny, there will be one lineage that still retains the gene for some period5

of time, representing a ‘last-one-out’ distribution. If there are many (hundreds) of leaves in6

one clade of a phylogenetic tree, yet only one leaf possesses the gene, it will look like the7

result of a recent gene acquisition, even though the distribution at the tips was generated8

by loss. Here we derive the probability of observing last-one-out distributions under a9

Markovian loss model and a given gene loss rate µ. We find that the probability of10

observing such cases can be calculated mathematically, and can be surprisingly high,11

depending upon the tree and the rate of gene loss. Examples from real data show that gene12

loss can readily account for the observed frequency of last-one-out gene distribution13

patterns that might otherwise be attributed to lateral gene transfer.14
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Introduction17

Gene loss is an important and ubiquitous mechanism of genome evolution. In18

prokaryotes, gene loss acting on the whole genome is traditionally called reductive19

evolution (Andersson and Kurland, 1998; van Ham et al., 2003; Oshima et al., 2004;20

Hosokawa et al., 2006) and can result in miniscule genome sizes in parasites and21

endosymbiotic bacteria, the current record being Macrosteles quadrilineatus (Moran and22

Bennett, 2014) an endosymbiotic bacterium of leafhoppers that harbours only 13723

protein-coding genes. Reductive evolution is also observed in symbiotic archaea (Waters24

et al., 2003) and in eukaryotes, especially among intracellular parasites (Tovar et al., 2003;25

Nicholson et al., 2022). Genome reduction through gene loss is also the leitmotif of genomic26

evolution in the endosymbiotic organelles of eukaryotic cells (Moore and Archibald, 2009),27

though many genes lost from organelle genomes have been transferred to the nucleus28

(Martin et al., 1998; Timmis et al., 2004). In eukaryotes, gene loss is also very common and29

widespread after whole-genome duplications (Blanc and Wolfe, 2004; Kellis et al., 2004;30

Brunet et al., 2006; Scannel et al., 2006). In general, if a gene belonging to a clade can be31

lost once in one lineage during evolution, it can be lost again in other lineages as well.32

In comparative analyses, gene loss is easy to detect if losses are rare (Figure 1). If33

most genomes in a sample contain the gene, but one or a few do not, there can be little34

doubt that gene loss has occurred in the genomes lacking the gene. The more common loss35

is, the more difficult it becomes to distinguish from lateral gene transfer (LGT). If a given36

gene is present in about half of the genomes in a sample, the decision between loss and37

LGT becomes a matter of weighing the relative probabilities of LGT and gene loss,38

entailing an a priori assumption that LGT is roughly as common as loss. Many analytical39

tools to study prokaryotic genomes are currently in use that employ different and usually40
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PROBABILITY OF A UNIQUE GENE 3

predetermined gain/loss ratios that are designed to differentiate between loss and LGT41

(Goodman et al., 1979; Page, 1994; Bansal et al., 2012; Szöllősi et al., 2013). In many42

cases, the overall average ratio of gene loss to LGT ends up being close to 1 in such43

applications, for obvious reasons. If loss predominates, then genomes steadily decrease in44

size across the reference tree (that is, ancestral genomes inflate), and if LGT predominates,45

genomes steadily increase in size across the reference tree (that is, ancestral genomes46

become too small) (Dagan and Martin, 2007). Some tools for estimating loss vs. LGT in47

current use can entail differences in loss vs. transfer probabilities for individual genes that48

differ by 20 orders of magnitude (Bremer et al., 2022).49

 

gene present
gene absent

a b c

Fig. 1. Hypothetical phylogenetic species trees showing the presence and absence of genes across all species in the
trees. A blue circle with a cross indicates that the gene is present in this species, a red circle indicates that a gene is
absent. (a) A distribution where gene loss most likely appeared on the branches to two species. (b) A case where
the distribution of the genes that are present and absent is almost equal across the species tree. The decision
between lateral gene transfer (LGT) and gene loss is highly dependent on the weighing of their relative
probabilities. (c): illustrates a case where the gene is only present in one species. An easy (but not necessarily true)
explanation for this would be LGT. This gene distribution across the tree can also be the result of a minimum of
four gene losses if the gene was already present at the root node.

If gene loss is the predominant mode of genome evolution for a given gene in a50

given group, it will become lost in many lineages, ultimately in all. Just before the gene51

goes extinct in the group, however, there will exist a state in which the gene is present in52

only a few genomes, and finally, over time, only in one genome of the group. If this gene is53
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in a eukaryote, but has homologs in prokaryotes, gene loss will produce a pattern that54

looks exactly like LGT: The gene is present in prokaryotes and one (or a few) eukaryotes.55

Under a loss-only mode of evolution, the last-one-out looks like an LGT, but the pattern56

was generated solely through gene loss. Here, we address the question of how likely it is to57

observe a last-one-out gene distribution under loss-only models.58

Mathematical modelling and algorithms59

We now describe mathematical and computational methods to investigate the60

probability of last-one-out scenarios in both synthetic and real trees. We assume that each61

gene in a phylogeny can be lost along each lineage of a tree according to a continuous-time62

Markov process with loss rate µ, and which operates independently across genes and63

lineages.64

Recursions for a given tree65

Let T be a rooted tree with a stem edge of length `, and let T1, T2, . . . Tk denote the66

subtrees of T incident with this stem edge, as shown in Figure 2. Although the lengths of67

edges may correspond to time, and so be ultrametric, the algorithm described in this first68

section does not assume that edge lengths are ultrametric. Let π+
T denote the probability69

that a gene g that is present at start of the stem edge of T is present in exactly one leaf of70

T , and let π+
i denote π+

Ti
(the corresponding probabilities for the subtrees T1, . . . , Tk). To71

calculate π+
T recursively, we also need to calculate the probability πT that g is not present72

at any of the leaves of T , and we let πi denote πTi .73

Note that if T consists of just a single stem edge of length ` (the base case in the74

recursion), then πT = 1− e−µ` and π+
T = e−µ`. Thus we may suppose that k > 2. The75

following result (proved in the Appendix) provides a polynomial-time way to compute76

these quantities recursively via dynamic programming (progressing from the leaves to the77

root). Note that both Part (i) and (ii) are required for computing π+
T .78
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ℓ

T1

T2

Tk

T

Fig. 2.

Proposition 1 For the tree shown in Figure 2, the following recursions hold:79

(i)

πT = (1− e−µ`) + e−µ`π1π2 · · · πk.

(ii)

π+
T = e−µ`π1π2 · · · πk

(
π+
1

π1
+
π+
2

π2
+ · · ·+ π+

k

πk

)
.

For binary trees, the second equation simplifies to:

π+
T = e−µ`(π1π

+
2 + π+

1 π2).

(iii) If there are G > 1 genes present at the top of the stem edge of T , the number of genes80

that appear in just one leaf of T has a binomial distribution with parameters (G, π+
T ).81

To illustrate Proposition 2 with a simple example, consider the tree in Figure 2,82

where each of the subtrees T1 . . . , Tk is a single leaf at the same distance from the root, and83

` = 0 (the ‘star tree’). Under the gene-loss model, a gene that is present at the root of the84

tree will be present at exactly one leaf of this tree precisely if there are exactly k − 1 loss85

events. This might seem very unlikely for large values of k. However, if µ is chosen86

carefully, then the probability of this event can be at least e−1 = 0.367 regardless of how87

large k is. Nevertheless, if we consider the posterior value of this probability by taking a88

uniform prior on 1− e−µ (setting the height of the tree to 1), then this posterior probability89

tends to 0 as the number of leaves of the tree (k) grows. The proof of these claims and the90
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6 BREMER, MARTIN AND STEEL

analysis of this star tree when we allow ` > 0 are provided in the Appendix. Of course, the91

star tree is a highly non-binary tree, which raises the question of whether π+
T can be close92

to e−1 when T is binary and the number of leaves is large. This is indeed possible: we can93

simply resolve the polytomy at the root by using very short interior edges to obtain a94

binary tree for which π+
T will be close to the corresponding value for a star tree and hence95

can be close to e−1 for a suitably chosen value of µ. However, for trees generated by simple96

phylodynamic models, this is no longer the case, as we demonstrate in the next section.97

Random trees98

Suppose now that T is generated by a standard birth–death model (Kendall, 1948;99

Lambert and Stadler, 2013) with speciation rate λ and extinction rate ν, starting from a100

single lineage at time t in the past. The tree T is now a random variable, denoted Tt, and101

the number of species at the present (denoted Nt) is also a random variable and has a102

(modified) geometric distribution with expected value E[Nt] = e(λ−ν)t. We will suppose103

that λ > ν since otherwise the tree Tt is guaranteed to die out as t grows. Let π+
t be the104

probability that a gene g that is present at start of the stem edge of Tt is present in exactly105

one leaf of Tt. The following result precisely describes the maximum value that π+
t can take106

as µ (the rate of gene loss) varies over all possible positive values. The short proof is107

provided in the Appendix.108

Proposition 2

max
µ

π+
t =

1

(1 + λt)2
=

1(
1 + lnE[Nt]

1−ν/λ

)2 . (1)

Notice that although maxµ π
+
t → 0 for Yule trees as they grow in their expected109

size, the convergence is quite slow as a function of the expected number of leaves of the110

tree, due to the presence of the logarithmic function on the right of Eqn. (1). Also, if there111

are G > 1 genes present at time 0, then the expected number of genes that will be present112

in just leaf of Tt is G · π+
t . However, in contrast to Proposition 1(iii), the number of genes113
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PROBABILITY OF A UNIQUE GENE 7

present in just one leaf of Tt is no longer binomially distributed, since this number is now a114

compound random variable because it is dependent on the random variable Tt.115

To illustrate Proposition 2, consider (pure–birth) Yule trees (i.e., ν = 0) with an116

expected number of 150 leaves. Then maxµ π
+
t ≈ 0.028, and so for 10,000 independent117

genes and this optimal rate of gene loss, the expected number of genes that would be118

last-one-out (i.e., present in just one leaf of these Yule trees) would be around 280. This119

provides some insight into the results described in the next section.120

Analysis of real genome data121

To test this algorithm on real genome data we chose the example of genes in122

eukaryotic genomes that have homologues in prokaryotes but that are present in only one123

or a few eukaryotic lineages. Such patterns are taken as evidence for the workings of124

differential loss, under the assumption that loss will generate such patterns (Ku et al.125

2015), or as evidence for the workings of LGT (Cote-L’Heureux et al., 2022) under the126

assumption that LGT rather than loss generates such patterns. The calculation of the127

probability of a gene being present at the root node and remaining in exactly one leaf of a128

eukaryotic tree requires a rooted species tree and a gene loss rate µ. Reconstructing a129

eukaryotic species tree is challenging, and there is currently no consensus on the position of130

the root (Keeling and Burki, 2019; Burki et al., 2020). Although the loss rates can be131

adjusted and averaged across a range of values, the backbone trees with all their nodes,132

branches and branch lengths are not that easily adjustable.133

We therefore analyzed a set of ten eukaryotic gene trees with 150 leaves each. These134

gene trees need not be representative of the true phylogeny of eukaryotes, nor need they135

show a pattern of gene distribution that could be indicated as LGT. The different trees136

were selected merely to show that different phylogenies can have an influence on the137

calculated probability of a gene being present at the root node and remaining only in one138

leaf of a eukaryotic tree. Furthermore, the different gene trees with 150 leaves provide an139
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Fig. 3. Ten eukaryotic gene tree phylogenies with 150 leaves each and the corresponding probabilities for a
last-one-out scenario against 1 − e−µ (µ = gene loss rate). The trees show various possibilities of species trees
without assuming that those trees represent a real eukaryotic backbone tree. They show that the phylogeny itself
has an influence on the probability of a last-one-out scenario, but that the overall probability is comparably high.

opportunity to estimate the overall probability of observing a last-one-out pattern if we140

consider thousands of eukaryotic genes with prokaryotic homologs (Figure 3). In Figure 3,141

we assume that 10,000 genes were present in the last common ancestor of 150 eukaryotes.142

For those trees, the mean probabilities result in 232 (lowest mean) to 790 (highest mean)143

last-one-out cases that look like LGT but actually are the result of differential loss in a144

loss-only mode of evolution for a 10,000 gene ancestral genome. Looking at the median, we145

would find 11 (lowest median) to 755 (highest median) cases, depending on the tree itself.146

Since loss rates are not constant over time, we cannot assume that these percentages147

resemble the ‘real’ amount of those cases due to differential loss. What they do show,148

however, is that last-one-out cases are not so rare that they can be excluded a priori. If the149
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PROBABILITY OF A UNIQUE GENE 9

loss rate is ideal, meaning that the maximum probability of last-one-out cases for the given150

tree is achieved, we would see between 532 (lowest maximum) and 2,502 (highest151

maximum) out of the 10,000 genes resulting in a last-one-out scenario, which is a152

substantial frequency. That is, in a study of 10,000 gene families present in the eukaryotic153

common ancestor, one would expect to observe dozens, hundreds, or even thousands of154

last-one-out patterns in trees sampling 150 genomes obtained solely as the result of155

differential loss. These cases would appear, in a gene phylogeny, as a single eukaryote (or156

group thereof) branching within prokaryotic homologues.157

Reinspecting some eukaryote LGT claims having last-one-out topologies158

The surprisingly high probability to observe a gene that is present in the root node159

and only in one species or clade and lost in all other leaves of a tree offers a new approach160

to investigate data that looks like evidence for LGT based on a rare or sparse gene161

distribution. Differential loss can–and will–produce last-one-out patterns that look just like162

lineage specific LGT. It is therefore possible, if not probable, that many reports claiming163

evidence for LGT are in fact due to differential loss.164

A recent study provides a case in point. Cote-L’Heureux et al. (2022) looked for165

lineage-specific presence of prokaryotic genes in eukaryotes that would provide the166

strongest possible evidence, in their view, for the workings of LGT from prokaryotes to167

eukaryotes. They sampled 13,600 gene families, 189 eukaryotic genomes and 540 eukaryotic168

transcriptomes, looking for recent lineage-specific LGT (topologies that we call169

last-one-out patterns). Among the 13,600 eukaryotic gene families sampled, they found170

approximately 94 putative cases of LGT that represent a last-one-out pattern, that is, a171

restricted single-tip distribution of a prokaryotic gene in a eukaryotic genome or group,172

which they interpreted as strong evidence for LGT. Our present findings (Figure 3)173

indicate that in Cote-L’Heureux et al. (2022) the number of cases identified in their study174

(94) is very close to the lower bound of the expectations for last-one-out topologies of175
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10 BREMER, MARTIN AND STEEL

similarly sized data sets, in which all the last-one-out topologies can be accounted for by176

differential loss alone, with no need to invoke LGT.177

One clear prediction of lineage-specific LGT versus loss for last-one-out cases is this:178

If lineage-specific acquisition is the mechanism behind the observed rare presence pattern179

for a eukaryotic gene, then the acquisition would need to be evolutionarily late (i.e., a tip180

acquisition). That is, the prokaryotic donor and the eukaryotic gene should share a higher181

degree of sequence similarity, on average, in comparison to genes that trace back to the182

eukaryotic common ancestor. This is the reasoning behind the analysis of Ku et al. (2015)183

and Ku and Martin (2016), who looked for evidence of recent acquisitions of prokaryotic184

genes in sequenced eukaryotic genomes. Ku et al. (2015) found that, in eukaryotic genomes,185

rare genes that have prokaryotic homologs were not more recently acquired (more similar186

to prokaryotic homologs) than genes that trace back to the eukaryotic common ancestor,187

suggesting that their rare occurrence is the result of differential loss rather than188

lineage-specific acquisition (Ku et al., 2015; Ku and Martin, 2016) (Figure 4a,b).189

Cote-L’Heureux et al. (2022) employed the same test, making the same kind of190

comparison that Ku et al. performed, namely, they looked for cases in which the191

prokaryotic gene was acquired recently by the eukaryotic lineage, using the criterion of192

sequence similarity. What they found was the distribution shown in Figure 4c, namely that193

the cases they suspected to be LGTs were just as old, in terms of sequence divergence, as194

genes that were acquired from the mitochondrion. In other words, there were no obviously195

recent acquisitions, as all of the prokaryotic genes that they interpreted as recent LGTs196

had the hallmark of ancient acquisition, just as Ku et al. (2015) suggested. Cote-L’Heureux197

et al. (2022) offered no explanation for the finding that genes they interpreted as recent198

acquisitions via LGT were just as ancient, in terms of sequence identity, as genes acquired199

from mitochondria (Fig. 4c). One interpretation is that the genes in their LGT class were200

not LGTs after all but were the result of differential loss instead. Differential loss directly201

explains why such genes show just as much sequence divergence to prokaryotic homologues202
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prokaryote
eukaryote

b

c

Fig. 4. Similarity of eukaryotic last-one-out cases to prokaryotic homologs. (a) Phylogenetic distribution of genes
where the eukaryotic gene is considered to be the result of LGT due to its high similarity to one prokaryotic
homolog. (b) The eukaryotic gene does not have a substantially high similarity to its prokaryotic homologs. It can
therefore not be the result of recent LGT and is more likely the result of differential gene loss. (c) Supplementary
Figure 9 from Cote-L’Heureux et al. (2022) showing that genes assumed to be the result of LGT are at most 70%
similar to their prokaryotic homologs. This finding supports the ‘70% rule’ of Ku and Martin (2016) and
furthermore shows that these cases are more likely to be the result of differential loss instead of LGT. EGT:
endosymbiotic gene transfer (genes acquired from chloroplasts or mitochondria); LGT: lateral gene transfer; VGT:
vertical gene transmission.

(Ku et al. 2015) (Figure 4c) as genes present in the eukaryotic common ancestor. LGT203

models would need to invoke an ad hoc corollary assumption of substitution rate204

acceleration for every gene with a last-one-out pattern to account for the absence (Figure205

4c) of eukaryotic LGTs having high (> 70%) sequence similarity to prokaryotic homologs.206

Differential loss requires no rate acceleration corollary. Furthermore, the model presented207

here closely predicts the frequency of observing last-one-out patterns under a variety of208
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topologies and loss rates.209

Conclusion210

Sparse gene distributions in eukaryotes are often interpreted as evidence for gene211

acquisition via LGT from prokaryotes. However, gene loss can generate the same patterns,212

and estimates for the probability of observing a single gene at the tip of a phylogenetic tree213

as the result of differential loss within a given clade, as opposed to LGT, have been lacking.214

Here, we have derived the probability of observing such cases, which we call last-one-out215

patterns, because under a loss-only model, the last gene to be lost looks like an instance of216

LGT. The probability depends on the size and shape of the tree, and the loss rate µ. We217

find that the probability of observing a last-one-out topology can be (surprisingly) high. A218

simple algorithm applied to simulated eukaryotic trees provides estimates for the frequency219

of last-one-out patterns resulting from a loss only model that are slightly higher than, but220

generally in good agreement with, observations from a recent study in which all221

last-one-out topologies were interpreted as evidence for LGT. Gene loss is a prevalent222

process in genome evolution. If one lineage can lose a given gene, others can as well. Gene223

loss can, and does, generate patterns that look just like LGT. Even for large data sets, the224

probability of last-one-out topologies can be surprisingly large, because, depending upon225

the tree, the number of losses required to account for a last-one-out topology can be small.226
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Data availability232
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Appendix: Mathematical details235

Proof of Proposition 1:236

Both parts involve straightforward applications of the law of total probability and237

conditional independence (due to the Markovian nature of the model).238

Part (i): A gene present at the top of the stem edge but at none of the leaves has239

either disappeared on the stem edge of length ` (an event that has probability 1− e−µ`) or240

it is present at the end of the stem edge (with probability e−µ`) and is not present in any241

leaf of the k subtrees, T1, . . . Tk. Since these k latter events are independent, we can242

multiply their probabilities to obtain the required joint probability.243

Part (ii) follows by considering the k ways in which a gene present at the top of the244

stem edge can be present in exactly one of the leaves of T (depending on which trees245

T1, . . . Tk that this leaf appears in). The term e−µ` ensures that the gene survives to the246

other end of the stem edge, and each of the k summation terms involves the gene being247

present in exactly one leaf of exactly one of the subtrees (say Ti) with probability π+
i and248

not present in any leaf of the other subtrees (with probability πi for i 6= k). Again, by249

independence, we can multiply these probabilities together.250

Part (iii) follows from the assumptions that gene loss events are independent and251

that the tree on which they take place is fixed.252

Analysis of the star tree253

Consider the star tree T with n leaves, with no stem edge (i.e., ` = 0), and let254

y = 1− e−µt. In this case, by Proposition 1, we have: π+
T = n(1− y)yn−1. Solving the255
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equation d
dy
π+
T = 0 gives y = 1− 1/n, and for this value of y we obtain the maximal value256

of π+
T , namely (1− 1/n)n−1. For example, for n = 4 this gives y = 3/4 and257

π+
T = (3/4)3 = 0.421. Notice that as n grows, π+

T converges to e−1 = 0.367...258

Now suppose we set t = 1 and consider a uniform prior on 1− e−µ. Let Y denote the

uniform random variable on [0, 1]. Then Y = 1− eµ and so µ = − ln(1− Y ). It follows that

the the density function for µ (denoted fµ) is given by fµ(x) = e−x for x > 0. Conditional

on µ = x we have π+
T (x) = ne−x(1− e−x)n−1, and so the expected value of π+

T is:∫ ∞
0

π+
T (x)fµ(x)dx = n

∫ ∞
0

e−2x(1− e−x)n−1dx.

If we now set u = 1− e−x, this expression becomes n
∫ 1

0
(1− u)2un−1du = 2

(n+1)(n+1)
which259

tends to 0 at an inverse quadratic rate as n→∞.260

Next, consider the slightly more general setting of a tree T that has an edge from

its root to a star tree with n leaves, and with an additional leaf adjacent to the root (thus

this tree also has n+ 1 leaves in total). Without loss of generality, let the edges of the star

tree each have length 1, and let the stem edge connecting it to the root of T have length `.

Thus, the tree has height `+ 1. We have: π+
T = π1π

+
n + π+

1 πn, where πn refers to the star

tree, and π1 refers to the leaf incident with the root. We have: π1 = 1− e−µ(1+`) and

π+
1 = e−µ(1+`). Furthermore,

πn = 1− e−µ` + e−µ`(1− e−µ)n and π+
n = n(1− e−µ)n−1e−µ(1+`).

Thus,

π+
T = n(1− e−µ(1+`))(1− e−µ)n−1e−µ(`+1) + e−µ(1+`)(1− e−µ` + e−µ`(1− e−µ)n).

For example, when n = 2 and ` = 2, π+
T has a maximal value of 0.326 (as µ varies). For261

n = 3 and ` = 5, π+
T has a maximal value of 0.231.262

Proof of Proposition 2:263

Consider a birth–death tree with speciation and extinction rates λ and µ,

respectively (with λ > µ), grown for time t from a single individual at time 0. On this tree,
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superimpose a continuous-time Markov process of gene loss along the branches of the tree,

starting with an initial single gene present at time 0. Let Xt (t > 0) denote the number of

leaves of the tree (at time t) that are carrying the initial gene. Then Xt is described by a

birth–death process with birth rate λ and death rate θ = µ+ ν. Consequently,

P(Xt = 1) =

{
(λ−θ)2e−rt
(λ−θe−rt)2 , if λ 6= θ;

1
(1+λt)2

, if λ = θ,

where r = θ− λ (Kendall, 1948). Now, P(Xt = 1) = ϕ2, where ϕ = (λ−θ)e−rt/2
(λ−θe−rt) . Therefore, to

find the maximal value of P(Xt = 1) = ϕ2 as we vary µ > 0 (recalling that ν < λ), we solve

the equation:
d

dθ
ϕ2 = 2ϕ

d

dθ
ϕ = 0.

This leads to the solution θ = λ, which provides the unique value that maximises ϕ.264

Straightforward algebra then leads to the claimed result.265
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