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ABSTRACT. Leaf-labelled trivalent trees are widely used to
represent evolutionary relationships in biology; the labels of
the leaves correspond to different species. Any binary prop-
erty of the species (such as the presence or absence of wings)
can be represented by a 2-colouring of the leaves of the asso-
ciated tree T. Such a 2-colouring induces a natural weight
called the (parsimony) length of T which is the basis of the
maximum parsimony approach for reconstructing trees from
discrete data. A natural question in biostatistics asks for the
distribution of the parsimony length of a randomly chosen
leaf-labelled trivalent tree relative to a random 2-colouration
in which each leaf is assigned a colour independently with
constant probabilities. In this paper we show that this dis-
tribution is asymptotically normal and determine the leading
terms of its mean and variance.

1. Introduction

The reconstruction of phylogenetic trees from discrete data
is an important problem in evolutionary biology; see, e.g., [19].
Such trees are typically trivalent trees with n (n > 3) leaves
(endnodes) labelled 1,2,...,n and n —2 unlabelled interior



nodes of degree 3. We will write T;, to denote such a tree;
there are (2n—5)!' =1-3-5---(2n —5) such trees (up to
isomorphism), a result going back at least to [14].

In biology the label set {1,2,...,n} typically corresponds
to a set of extant biological species under study, while the in-
terior nodes correspond to hypothetical ancestral species. Dis-
crete biological data generally occur in the form of what biolo- -
gists refer to as characters; these are functions from {1,2,...,n}
into some set C of states, which we will refer to here as colours.
A character x:{1,2,...,n} — C induces a colouration of the
leaves of T}, in which the leaf labelled ¢ is assigned the colour
x(¢). Under this interpretation, the (parsimony) length of T,
relative to x is the minimum number w = w(T,,,x) of edges
of T, that join nodes with different colours over all the |C|*~2
extensions of x to a C-colouration of all the nodes of T,.
Note that 0 < w(T,,x) < n— maz{|x *(c)| : c € C}, where
the upper bound arises by assigning the most frequently occur-
ring colour ¢ to all interior nodes of T, to obtain a (possibly
non-optimal) extension. In particular, 0 < w(T,,x) < n/2
when |C| = 2. We remark also that w(T),,x) can be calcu-
lated by a O(n) algorithm due to Fitch [6]; see also [7]. An
example of a character x with parsimony length 3 on a tree
T is given in Figure 1.

The function w is fundamental to the reconstruction of
phylogenetic trees from a sequence of characters by the max-
imum parsimony approach. Under this approach, a tree is
selected that minimizes the sum of w(T,,x,) over the char-
~ acters X;,X,_,X. in the sequence. One rationale for this
approach is that it seeks a tree that requires the fewest evolu-
tionary events to explain the observed data on a tree (see [19]
for further biological background). In order to assess the sta-
tistical significance of results produced by such approaches it is
helpful to know the distribution of the function w under sim-
ple null models (such an approach was adopted, for example,
in [1], [16], and [17]). One simple null model is to select a tree
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uniformly at random (from the set of all trivalent trees, leaf la-
belled from {1,2,...,n}) and generate characters randomly
by assigning colours to each element of {1,2,...,n} indepen-
dently and according to the same probability law (which need
not necessarily be uniform across C).

Fig. 1. A trivalent tree T%, leaf labelled by {1,2,...,7},
together with a character x : {1,2,...,7} — {a,8} with
w(T,,x) = 3. An extension of x to all the nodes of T is
indicated by the values shown in parentheses.

This model was investigated by Hamel and Steel [10] with
the aim of calculating the asymptotic mean upn of the dis-
tribution of w, where u is a constant that depends only on
|C| and the probability distribution of colour assignments to
each leaf. They gave an explicit formula for  when |C| =2
(see equation (1.1) below); and, in general, they showed that
p could be expressed in terms of the (unique) solution of a
system of simultaneous quadratic equations. Butler [2] also
" investigated this model when |C| =2 to address related but
slightly different questions.

In this paper we also consider the case |C| = 2 and show
that the distribution of w under the null model described is
asymptotically normal, with mean E(n) and V(n) given,
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respectively, by
E(n)=pn+0(1) and V(n)=o’n+0(n!/?)
where
(1.1) p=3%{1-(1-3p9"%}
and
1.2) o =p(l-p)d-14p+9°)(2 - 3p) 7

and where p is the probability that any given leaf is assigned
a particular colour from C.

This result complements two earlier central limit theorems
involving the parsimony length function w. Moon and Steel
[12] established the asymptotic normality of w when |C| =2
and the tree T, is selected uniformly at random but where the
character is selected so that the proportion of leaves assigned
a particular colour from C is equal to — or very close to — p
(we describe this result more formally in the next section). In
this case the asymptotic mean and variance are also of the form
w'n and s?n, for constants p’ and s, and indeed u' = p;
however, s # o when p # 1/2 and, as we shall see, they
behave quite differently as functions of p. Steel, Goldstein
and Waterman [18] established a different type of central limit
theorem involving w. In their paper the tree T, is fixed (for
any given n) instead of being randomly selected; the leaves of
the trees are again randomly and independently coloured (but
now C may have more than two elements and the probability
distribution on the colours for each leaf may vary from leaf to
leaf, subject to a mild technical condition). ’

These last two central limit theorems can thus be viewed
as results in which either the proportion of leaves assigned a
particular colour or the tree T, itself is held constant, whereas
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in the present paper we regard both the colourations and the
trees as being randomly selected.

2. Preliminaries and Summary

We shall assume henceforth that C has just two states. Let
a and b denote non-negative integers such that a 4+ b = n.
Let x! denote a 2-colouring that assigns the first colour to a
leaves of a leaf labelled trivalent tree T, and the second colour
to the remaining b leaves. For any non-negative integer k,
let p(n,k;a,b) denote the probability that w' = w(Th,x))
equals k for a tree T, selected uniformly at random from
the set of (2n — 5)!! such trees. (We remark that, by sym-
metry, it follows that the distribution of w’ is independent of
which a leaves are assigned the first colour.) For example,
if min(a,b) = 0, then p(n,k;a,b) =1 if £k =0 and zero
otherwise. In general, if min(a,b) # 0, then

(2.1) |

L (2n—-3k)  (2a—k)!

P kiat) =2 %) @=h)
(2b — k)! (n—k)!

b—k) (k- 1)i2n — 2k)!

if 1 <k < min(a,b) and zero otherwise (see [3], [5], or [15]).

Now let p and ¢ be fixed positive constants such that
p+¢q=1. Let us suppose that |a —pn|= |b— gn| < nl/3-2
for some fixed €, 0< e < 1/6. It was shown in [12] that the
distribution of the variable (w’—pu'n)/s /n is asymptotically
normal with zero mean and unit variance, where

(2.2) W =2{1-(1-3pg)'?}
and |
(2.3) & =p?(1-p)(2—-3u)~2%
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Our object here is to consider an extension of this problem.
Let x, denote a random 2-colouring in which each leaf of
T, is independently assigned the first colour with probability
p and the second colour with probability ¢q. Let P(n,k) =
P(n,k;p,q) denote the probability that w = w(Thn, x,) equals
k over all the (2n — 5)!! trivalent trees T5,. In Section 3 we
give an expression for P(n, k) as the product of two quantities.
In Sections 4 and 5 we consider the asymptotic behaviour of
these two quantities; and then in Section 6 we consider the as-
ymptotic behaviour of P(n,k) itself. It will follow from these
results that the distribution of the variable (w—pun)/o /n is
also asymptotically normal with zero mean and unit variance,
where p and o are as defined in (1.1) and (1.2).

3. An Expression for P(n,k)

Before proceeding, we recall that if y(t) = 2{1-(1-4t)}/2},
then y=t(1—y)™*

o0
h 2n—h
: - h _ n
. n=h
for h=1,2,.... (See, e.g. [4; p. 164].) In what follows we

let [t"]Y(t) denote the coefficient of ¢ in the power series
Y(3).

Lemma 1. Suppose that 1 <k <n/2 and let

_ ok 2n—3k n! (n—k)!

(32) Fuk k k! (2n—2k)!

and

(33)  Snk =Sk q) = ["|{ (w@)y(a) "},
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where
y(t) = 1{1-(1-4¢)/%}.

Then

(3.4) P(n, k) = Fn,k - Sn,lc-

Proof. If a+b = n, then the probability that the random
2-colouring x, assigns the first colour to a leaves of T,
and the second colour to the b remaining leaves is (2) p2q®.
Hence,

P(n,k)= ) (n) p°¢" - p(n, k;a,b).

a
at+b=n

If we substitute the expression for p(n,k;a,b) given in (2.1)
into the right hand side of this equation, factor out the quan-
tities that are independent of a and b, and then appeal to
(3.1), we find that :

k 2n—3k n! (n—k)!
kK (n—2k)

; Z 2a;ik (2aa—k) pa%i——lz (be—k) 7
= n,k-[t”]{(y(pt)y(qt))k} |

= Fok - Snks

P(n,k) =2

as required.



Corollary 1.1. If p=g=1/2, then

Pk = 23k (n—k) Lyt

n—k k 2
Proof. If p=¢=1/2, then

Sn,k — [tn]{(y(t/z))mc} — - E - (21‘1, - 2k> (%)n, _

n

in view of (3.1). The required conclusion now follows from
(3.4).

We remark that Corollary 1.1 is equivalent to Theorem 4 in
[15].

4. Estimates for F,;

We observe for later use that it follows readily from defini-
tion (1.1) that p < 1/3 with equality holding if and only if

p=g=1/2.

Lemma 2. Let
p=12%{1-(1-3pg)"?}

and suppose the integers k and n tend to infinity in such a

way that
A=k —pn = O(n?3)

as k,ﬁ — 00. Then
(4.1) |
— —- k n
Fn,k — 2 3# (8(1 ﬂ)) (4(1 ]:— u)) exp{ - A2/2“(1 _ u)n}

p2V2 N
x {1+0(1/n) +O(A/n) + O(A3/n?)}
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" holds uniformly as k,n — co. Furthermore,

(4.2) Fop=0(1) (8(1; "))'c (4(11_u))nexp{ — A2/2n)

forall k and n, 1<k<n/2.

Proof. We recall that if r and n are integers tending to
infinity in such a way that r = pn+ R, where p is a positive
constant and |R/pn| < 1/2, say, then it follows from Stirling’s

formula and Taylor’s theorem that ‘

(4.3)
rl = /2mpn (pn/e) exp{ R+ R*/2pn}

x {14 0(1/n) + O(R/n) + O(R®/n?)}

as 7,m — o0, where the constants implicit in the O-terms
depend only on p. When we apply relation (4.3) to the fac-
torials in definition (3.2) and simplify, we obtain conclusion
(4.1).

It remains to prove (4.2). Let N = |un]; it follows from
definition (3.2) that if k=N +3<n/2, j>1, then

(4.4)
FN4j/Fan < 22N77(2n — 2N)25/(n — N);

J
=8N (n-NY [[{1-G-3)/(n- N}

=1

' J
<8N (n— NYesp{ - (i—})/n}
=1

= 0(1)(8(1 - p)/u) exp{ - 5% /2n}.
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And, if k=N—j, 1<j<N,then

(4.5) |
i 2m—=3N+3j N—j+1
—j <277
Fon-ilFan 27 =5 3N~ "N

- x Ni(n—N+7);/(2n — 2N + 2§)2;

j
— 08N — Ny [[ {1+ G- 1/(n=N)}

i=1 \

< O8I Ni(n = M) [[ {1 - (i - D)/n)
= O(1)(8(1 - p)/m) ~ exp { — §°/2n}.

When we combine (4.4) and (4.5) and appeal to relation (4.1)
with kK = N and the fact that

(k — N)2/2n = A2/2n+ O(A/n) = A?/2n + o(1),
we find that :
Fogp=0Q)(81 = u)/p)" Vexp{~ (k- N)?/2n}Fon

= O(1)(8(1 — p)/)*(4(1 = ) "exp { — A%/2n}.

This completes the proof of Lemma 2.

5. An Estimate for Sp

Let Y(t) =3 po o Ymt™ denote a function with non-negative
coefficients that is analytic when |¢t| < R, where 0 < R < oo.
We assume that Y;, > 0 for at least three values of m and
that ged{m:Ypy >0} =1. Let

(5.1) o(t) =1t % log Y(t) = t¥'(8)/Y (¢)
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and
(5:2)  Gt):=tg(t) = *Y"(t)/Y () + 9(t) — g°(2)

for 0 <t < R. It is not difficult to see that G(¢) > 0 for
0 <t <R, so g(t) is strictly increasing in this interval. To
obtain an estimate for S, we shall make use of a result
given in [11] on the behaviour of coefficients in powers of such
functions Y (¢). The resultis, in effect, a version of the classical
local limit theorem for sums of suitably defined independent,
identically distributed random variables; for related results,
see, for example, [8], [9], or some of the other references in

[11].

Lemma 3. Let o be a constant such that 0 < a < g(R™);
let m denote the unique number such that 0 <7 < R and

(5.3) 9(n) = o

Suppose the integers K and N tend to infinity in such a way

that :
D := K —aN = O(N?/3)

as K,N — oo. Then

(5.4) |
1YV (t) = (20G()N) "2 Y (m)n~Kexp{ — D?/2G(n)N }
x {1+ 0(1/N) + O(D/N) + O(D?/N?%)}
holds uniformly as K,N — oo.

We now establish certain algebraic relations that we shall
use later when we apply Lemma 3 to the problem of estimating
Sn,k. ’
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Lemma 4. Let

y(t) = 1{1- (1 -4t)'/?}

and for given p,q >0, where p+q=1, let

G5)  w=3{1-0-39")
and

(5.6) 7= 1(1—1_—#5 .
Then

6 =5 (225"
59) vom = (2=2)",
and

(5.9) v'om =2(3=2)""

Proof. We noted earlier that p <1/3. Now
1-3pg=1—3p+3p% > (1 - 3p)°
for p> 0. So, in particular, if 0 {p <1/3, then
peifi-(-3n)}=»
and a similar result holds with respect to ¢ . Consequently,
(5.10) p<pand p<g
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for all p,g>0.
It follows from definition (5.5) that 3u? —4p +4pg = 0.
Hence,

wE=4(u® — p+pg) = 4(p ~ p)(g ~ p),

or

(5.11) p=2(p—p"?(qg—

This readily implies that

(5.12) (L= =@-w"?+(q— "2
Now, since 7 = (4(1 — ) ~!. it follows that

1-dpn=1-p/(1 —p) = (- w)/(L - p)
and, hence,
(5.13) (142 = ((g- (- w)".

Consequently,

y(pn) = £ {1 - (1 — 4pn)'/?}
(5.14) = 11— ((g— w)/ - w)"*}
= (p—w/Q-w)"?,
by (5.13) and (5.12). This proves (5.7); and (5.8) and (5.9)

follow upon substituting relation (5.13) into the expressions

for 4/(pn) and y”(pn) .
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Lemma 5. Let

(5.15) p=2{1-(1-3pg)"?}
and let
(5.16) A=1u73(1 - p)(4 - 14p+ 9).

Suppose the integers k and n tend to infinity in such a way

that
A =k — pun = O(n*/?)

as k,n — oo . Then

(5.17) k
Sk = (2mpAn) /2 (gzl—”:;;) (4(1 - )" exp {~A2/2u° An}

x {14+ 0(1/n)+ O(A/n) + O(A3 /n?)}
holds uniformly as k,n — o0 .

Proof. We apply Lemma 3 to the function Y (t) = y(pt)y(qt),
where y(t) is as defined earlier, with N =%k, K=n, a=
p~t, and D = —p~'A. It is easy to see that Y, o, and
D and the choice of N and K satisfy the conditions of
Lemma 3.

We now show that if n = (4(1 — u))—l, then g(n) = p~1,
so that condition (5.3) holds also. It follows readily from the
definitions of Y (t) and g(t) that in the present case

9(n) = gp(n) + go(n)

where

9p(n) = pn y' (o) /y(pn)
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and similarly for g4(n). When we substitute relations (5.7)
and (5.8) into the expression for g,(n) and then appeal to
(5.11), we find that

l—p _p
9(m) = 1 1) \/ o
Consequently,
(5.18) 9(n) = gp(n) + 94(n) = (p+ @)/ =72,
as required.
We next observe that
(5.19) Y (n) = y(pn)y(qn)
_ 1 /p=—p1 \/q —
2V1i-pu 2V1- 7
Ll e
T 81-p’

in view of relations (5.7) and (5.11).
To evaluate G(n) we note that

G(n) = Gp(n) + gp(n) — g2(n) + Gq(n) + gq(m) — 92(n)

where
Gp(n) = (on)*y" (om) /v (pn)

and similarly for Gg(n) . When we substitute relations (5.9)

and (5.7) into the expression for Gp(n) and then appeal to
(5.11), we find that

(5.20) » 21— pN\3/2_s1— pu\1/2
Ap(n) = (:{(—1‘:7)) 2(21——_“) 2(19——5)
=2p’(p—u~%,
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SO
Go(m) + gp(m) — g2(n) = 202 (p — > + o™ = pPp
= (2p° - 3pPu +pp®)p .

A similar relation holds when p is replaced by g. Hence,

(5.21) |
Gn) = p3{2(0° + ¢°) = 3(0* + P)p+ (P + Ou®}

= u~3{2(1 - 3pq) — 3(1 — 2pg)u + p*}
= 3 {(1® - 3u+2) — 6pg(1 — )}

= p~3(1 - p){2(1 - 3pq) — 1}

= 1,731 — pw){(2 - 3p)* — 2u}
131 - p)(4— 14p+9p%) = 4,

as defined in (5.16), and where we have used definition (5.15)
to obtain the next to the last line. It follows, therefore, that

(5.22) NG(n) = kA= (un+ A)A
= pAn(1+0(A/n))

and

(5.23)

D?/2G(n)N = A%/2u*G(n)N
= A?/2u3 An(1 + O(A(n)),

by the definitions of N, A, and D and (5.21). Conclusion
(5.17) now follows from Lemma 3, the definition of 7, and
relations (5.19), (5.22), and (5.23).
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6. Main Results

We are now ready to determine the asymptotic behaviour
of P(n,k).

Theorem 1. Let

(6.1) p=3{1~(1-3pg)"*}

and let

(6.2) 0% =p(l-p)(4—14p+9u2)(2 - 3u)~2.

Suppose the integers k and n tend to infinity in such a way

that
A=k — pn = O(n?/?)

as k,n — oco. Then
(6.3)

P(n,k) = exp {—A2/202n}‘

1
ov2mn
x {1+ 0(1/n) +O(A/n) + O(A3/n?)}
holds uniformly as k, n — co. Furthermore,

(6.4) P(n,k) = O(1) exp {-A?/2n}
forall k and n, 1<k<n/2.

Proof. When we substitute the estimates for For and Sy
given by Lemmas 3 and 5, into expression (3.4) and simplify,
~ bearing in mind the definitions of A and o2, we find that

P(n,k) = exp {~CA%/2n}

B
V2rn
x {14+ 0(1/n) + O(A/n) + O(A3/n2)}
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- where

B_ 2—-3u _ 2-3p
T V2urA M2 o
p (u(1 — p)(4 — 145 + 9p?))
- and
1 1
C= +

p(l—p)  pPA

1 2

S Wi-p) AP - o)

_ (2 —3p)’
T op(l - p)(4 - HMpu+ 9p?)

1
o2’

This implies conclusion (6.3).

To prove (6.4) when k>0, we note that

(6.5) Snk = [tMYE(2)

<Y*(nm™

~ (o) -

8(1—p)

appealing to the definition of 7 and relation (5.19) at the last
step. When we combine this with relations (3.4) and (4.2) we

‘obtain conclusion (6.4).

Relation (3.4) does not apply when k = 0 so we must
consider this case separately. It is easy to see that P(n,0) =
p"+q" Now p<p<1, by (510), and 1—z < e * for

z > 0. Hence,
2
g=1-p<eP<et<e™.
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Similarly,
2
p<e®,

and so ,
P(n,0) < 2e~#'",

which clearly implies (6.4) when k = 0. This suffices to com-
plete the proof of the theorem.
We remark that it follows from (6.4) that if

H := H(n) =n!?log n,
thén :
(6.7) Pr{lw—un| > H} = O(n exp {—-H?/2n})
= 0(n™)
for any pdsitive constant " h.

Theorem 2. Let E(n) and V(n) denote the expected value
and the variance of w = w(Ty,x,) over all the (2n — 5)!!
trivalent trees T,. Let

p=3{1-(1-3pg)"?}

and
o? = (1 — p)(4 — 14p + 9u®)(2 — 3u) 2.

Then
(6.8) E(n)=pn+0(1) and V(n)=o°n+0(n'/?)
as n — oo. Furthermore, if A is any constant, then

(6.9)
Pr{w(Th,x,) < pn + /\anl/z}

A
= *12 / e~t'/2dt + O(n=1/2)
VAT J -0

19



as n — oQ.

Conclusions (6.8) and (6.9) follow readily from Theorem 1.
The contributions from the central part of the distribution may
be evaluated by appealing to (6.3) and then using standard
error estimates for the difference between a Riemann sum of a
function of bounded variation and the corresponding integral.
(See, e.g., [13; p. 37, ex. 9] for a closely related result.) The
contributions from the tails of the distribution may be disposed
of by appealing to (6.7). We omit the details as they are fairly
straightforward.

We remark that it follows from the definitions of s® and

o? that
o?/s? = (4 —14p +9p*)/u

=1+ (1-3p)(4 - 3u)/p.

Hence, o2 > s® with equality holding if and only if p=1/3,
that is, if and only if p = ¢ = 1/2. Furthermore, it can be
shown that o2 < .1296... with equality holding if and only
if p or ¢ equals .2505....
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