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PHYLOGENETIC DIVERSITY: FROM COMBINATORICS
TO ECOLOGY

Klaas Hartmann and Mike Steel

Abstract

The phylogenetic diversity (PD) of a set of taxa contained within a phylo-
genetic tree is a measure of the biodiversity of that set. PD has been widely
used for prioritizing taxa for conservation and is the basis of the ‘Noah’s
Ark Problem’ in biodiversity management. In this chapter we describe some
new and recent algorithmic, mathematical, and stochastic results concern-
ing PD. Our results highlight the importance of considering time scales
and survival probabilities when making conservation decisions. The loss
of PD under a simple extinction process is also described for any given
tree—this provides contrasting results depending on whether extinction is
measured as function of time or of the number of lost species. Lastly we
explore a very different application of PD, its use for reconstructing trees
and the associated mathematical properties. The wide range of applications
in this chapter shows the usefulness of PD for exploring phylogenetic tree
structure with further applications sure to follow.

6.1 Introduction and terminology

Phylogenetic diversity (PD) is a measure of the evolutionary history spanned by
a set of taxa within a larger phylogenetic tree. Briefly, the PD score of a subset
of taxa, S, is the sum of the lengths of those edges of the tree that span S (a
more precise definition follows later). It has been used as a comparative measure
in biodiversity conservation, following its introduction by Dan Faith in 1992 [14].
Subsequent authors (see, for example [2, 10, 29, 36, 52] and the references therein)
have further explored its application to biodiversity assessment and conservation.
Properties of phylogenetic diversity have also been applied recently by Pardi and
Goldman [34] to shed light on the relative merits of cooperative versus greedy
strategies for taxa sampling for genomic sequencing.

In this chapter we explore some mathematical and stochastic properties
of phylogenetic diversity in three different settings: biodiversity conservation,
patterns in biodiversity loss, and its relevance for tree reconstruction.

First we explain how PD satisfies two combinatorial properties, including a
certain greedoid-type inequality (from [46]) which is algorithmically useful for
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selecting sets of taxa to optimize PD. We also consider some taxon-specific
indices based on PD that give an indication of the relative distinctiveness of
each taxon in a tree. We show that these indices have some shortcomings when
used to guide biodiversity conservation and consider a framework that overcomes
some of these limitations. This framework is the ‘Noah’s Ark Problem’ (NAP)
introduced by Weitzman [52]. In the NAP each taxon has survival probabilities
and conservation costs. The NAP seeks the optimal allocation of limited funds
to conserving taxa such that the expected remaining future PD is maximized.
Under certain restrictions a fast, ‘greedy’ algorithm provides a solution to this
problem. We extend one such result from [46] and use this extension to investigate
the management time scale that is implicit in the NAP.

We then investigate the loss of PD as taxa randomly become extinct. Nee
and May [30] investigated this process for randomly generated trees. They found
a characteristic concave shape in the relationship between expected PD and
the proportion of taxa deleted. We describe a result that shows how this is
the expected behaviour for any given tree (with any given branch lengths). This
indicates that most of the loss of PD comes near the end of an extinction process.
However, if one examines the behaviour of expected PD as a function of time,
then a contrasting (partially convex, rather than concave) relationship emerges.

Finally we examine the role of PD in the reconstruction of phylogenetic
trees. PD estimates for triples (or larger numbers) of taxa have recently been
investigated as a way to refine the popular Neighbor-Joining algorithm; it is also
possible to consider PD over any abelian group. We describe the mathematical
properties of PD in these two settings.

6.2 Definitions and combinatorial properties

Mostly we follow the notation used by Semple and Steel [42]. We let 7 denote
a phylogenetic X —tree, that is, a tree whose leaves comprise the set X of taxa
(generally species or populations) under study, and whose remaining vertices
(nodes) are of degree at least 3 (the degree of a vertex is the number of edges
that are incident with it). The vertices at the tips are called leaves. If all the
non-leaf vertices in a tree have three incident edges the tree is said to be fully
resolved (sometimes called ‘binary’—these are the trees without polytomies, and
so are maximally informative). We also deal with rooted trees which have some
vertex (often the mid-point of an edge) distinguished as a root vertex. If we
direct all the edges of the tree away from the root (i.e. so they are consistent
with a time direction if the root is the ancestral taxon) then we can talk about
the clusters of the tree—the subsets of X that lie below the different vertices of
the tree. It is a classical result that any rooted phylogenetic tree can be uniquely
reconstructed from its set of clusters. Often the edges of the trees (rooted or
unrooted) will have a (branch) length—corresponding perhaps to the expected
amount of evolutionary change on that edge.

Given a (rooted or unrooted) phylogenetic X—tree, 7, with branch lengths,
and given a subset Y of X, the phylogenetic diversity (PD) of Y, denoted PD(Y')
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F1Gc. 6.1. The PD of the trees on the left is calculated by summing the edge
lengths. All edges are length 1 except for the long edge on the rooted tree
which has length 2. The trees on the right show which edges are considered
to remain (solid lines) after taxa a, d, and e become extinct. The PD of these
trees is the sum of the remaining edges.

is the sum of the lengths of all the branches that connect the leaves in Y (and
also the root of 7 if 7 is a rooted tree). That is, if we denote the length of an
edge e of 7 by A\, we have:

PD(Y) =3 A,

where the summation is over all edges e in 7 that lie on the minimal subtree of
T connecting the taxa in Y (and if 7 is rooted, also connecting the root). There
has been some debate about whether the root should be included, however the
original definition in [14] and prevailing usage include the root (see [10], [15] and
[9] for further discussion). Figure 6.1 illustrates the various PD measures we
have discussed here.

Depending on the data from which a tree is derived, the branch lengths may
have different interpretations. Branch lengths may correspond to an evolutionary
time-scale (i.e. the number of millions of years between speciation events), or to
genetic distance, or to the extent of morphological differences, or perhaps some
combination of these (or other) measures of evolutionary distance. Throughout
this chapter, no particular interpretation is assumed, so as to allow the greatest
degree of generality for applications; in particular, unless we state so explicitly,
we do not assume that the tree is ultrametric (an ultrametric tree is one for which
the distance from the root to any leaf is the same, as would occur for (a) genetic
distance under a ‘molecular clock’, or (b) an evolutionary time-scale).
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The PD measure has two basic combinatorial properties which we now
describe.

6.2.1  The strong exchange property

For any function f defined from the collection of subsets of X of size at least r
into the real numbers, we say that f satisfies the strong exchange property if for
any two subsets Y and Z with » < |Y| < |Z| there exists some taxon z € Z —Y
such that:

f(Z—{z}) - §(2) + f(Y u{z}) - f(Y) 2 0. (6.1)

This condition is a sufficient condition for the greedy algorithm to construct
subsets of any given size (> r) that maximize f starting from any given set of
size r that maximizes f. This follows by standard arguments from ‘greedoid’
theory (see [23]). To construct such a subset the greedy algorithm iteratively
adds the element (taxon) that gives a maximal increase in f until the subset
contains r elements.

The strong exchange property was established for f = PD (and r = 2 in
the case of unrooted phylogenetic trees) in [46]; its interpretation in this setting
is that for any two of the subsets, the larger one contains some taxon (z) that
would contribute at least as much to the PD value of the smaller subset than it
adds to that of the larger one.

Consider both trees in Fig. 6.1 and the situation where the two subsets Y
and Z are {a,c} and {b,d,e} respectively; clearly |Y| < |Z|. Deleting taxon b
from subset Z and adding it to Y results in a loss of the combined PD of Y and
Z in both trees, hence b does not satisfy the strong exchange property. However
the combined PD of Y and Z is increased if taxon d is removed from Z and
added to Y, thus satisfying the strong exchange property.

Note that the strong exchange property for PD fails for = 1 and r = 0 for
unrooted trees, but holds for rooted trees. Moreover, as demonstrated in [34], for
any given set of taxa W of size at least 2 (or 1 in case of rooted trees) the strong
exchange property also ensures that amongst the collection of all subsets of size
k containing W, the one(s) of maximal PD value can be constructed from W by
the greedy algorithm (even though W itself may not have optimal PD score for
its cardinality).

6.2.2 Generalized Pauplin formula

The second combinatorial property of PD is that it can be written canonically
as a linear combination of pairwise distances within the tree. That is, if d(z,y)
denotes the distance between z and y in 7, the PD of a set W can be written as

PD(W) = Z #T,W(z’y)d(z)y) (62)
z,yCW

where p7 w is a function that depends on 7 and W but not the branch lengths.
Actually there are many possible choices of p7 w but there is one that is partic-
ularly natural and which is defined as follows. Let 7y denote the subtree of 7
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connecting W and let p(7w, z,y) be the set of non-leaf vertices of 7y, that lie
on the path connecting z and y. Then set

prw(ey) =[] (@d@)-17!

vep(Tw,z,y)

where d(v) is the degree of vertex v in 7Ty . The validity of equation (6.2) for
this choice of p7 w was described (for W = X) for binary phylogenetic X—trees
by Pauplin [35], and generalized to arbitrary phylogenetic X-trees in Semple
and Steel [43]. The Pauplin formula also provides an interesting starting point
for forming species specific indices of biodiversity such as the Equal-Splits index
(Section 6.3.1).

6.2.3  Ezclusive molecular phylodiversity
We end this section by noting that Lewis and Lewis [26] recently investigated a

related measure they called the ‘exclusive molecular phylodiversity’ of a set Y,
defined by:

E(Y)=PD(X) - PD(X - Y).

This measure has also been used by [41] to assess the evolutionary history of
endemic species in biodiversity hotspots. The benefit of exclusive molecular phy-
lodiversity in that context is that it avoids the need for any information about
non-endemic species, effectively assuming that these are well represented else-
where. It is easy to show that this measure does not satisfy the strong exchange
property (equation (6.1)) and that greedy algorithms cannot be guaranteed to
produce an optimal subset, Y.

6.3 Biodiversity conservation

Ross Crozier summarizes the rationales for conserving biodiversity into three
categories: ‘moral (other species have a right to exist), esthetic (species are like
works of art, and it would be foolish to destroy them), and utilitarian (humans
derive material benefit from the existence of other species)’ [8]; these motivations
are further explored in [31]. Given unlimited resources for conservation all three
motivations dictate the same action——conserving all taxa. In a realistic setting
where there are limited resources for conservation the taxa must be prioritized
in some manner. In this case the three categories of motivation may dictate
different prioritizations.

If conservation is motivated by moral considerations, as many taxa as pos-
sible should be conserved. A conservation scheme should therefore allocate its
resources so that the net survival increase of all taxa is as high as possible.

If the motivation for conservation is utilitarian, the distinctiveness of the
remaining taxa is of great importance. For example, protecting the sole remaining
taxon from a clade has greater utilitarian benefits than protecting a taxon from
a well represented clade as the former has greater unique genetic potential for
further evolution and bio-prospecting [8].
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Lastly, if conservation is motivated by aesthetic reasons the role that dis-
tinctiveness should play is dependent on the uncertain definition of aesthetic
value. However, given the choice of saving either a taxon from a well represented
clade or a taxon that is the ‘last of its kind’ it seems difficult to find a general
justification for not choosing the latter.

Most biodiversity conservation approaches aim to conserve as many taxa as
possible [18], but the reasons used to motivate conservation are often utilitarian
in nature (e.g. Chapter 1, [37]) and should therefore take taxon distinctiveness
into account.

In this subsection we discuss several methods for prioritizing taxa to con-
serve that allow distinctiveness to be taken into consideration. Throughout this
chapter we apply various methods and indices to the tree depicted in Fig. 6.2.
This tree shows the phylogenetic relationship of Crested penguins (Fudyptes)
as produced by Sara Bertelli and Norberto Giannini [3],[19]. Note that no edge
lengths were given in the original tree, and so here we have assumed that the tree
is ultrametric, as shown in Fig. 6.2. We are using this example for illustrative
purposes only, but it is of interest to note that according to the 2004 IUCN Red
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F1G. 6.2. The phylogenetic tree for Crested penguins. This tree was derived
from the tree in [3] and [19] which had no branch lengths. For illustrative
purposes each level in the original tree was assumed to be separated by the
same distance such that all edges in this tree are of length 1 except for the
two marked edges.
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List [22] all of the species are vulnerable except the Erect-crested penguin, which
is endangered.

6.3.1 Simple indices

Many indices for measuring or ranking the distinctives of a single taxon have
been proposed. These indices have the advantage of being easy to compute
and, as each taxon is assigned some value, they can be readily combined with
other information for decision making (such as the conservation cost or economic
importance of that taxon). The disadvantage of these indices is that they do not
take into account the complexities of conserving multiple taxa. For example, if
one taxon is conserved the relative importance of conserving closely related taxa
may decrease as we wish to conserve as distinctive a set of taxa as possible.

Here we consider some simple indices with a particular focus on those that
are based on the concept of phylogenetic diversity. For the interested reader
some notable work not considered here (some of which is not based on PD) is
contained in [2], [6], [7], [20], and [51].

One of the conceptually simplest indices is the ‘Pendant Edge’ (PE) mea-
sure introduced by Stephen Altschul and David Lipman [1] where each taxon
is assigned a value equal to the length of its pendant edge. Strictly speaking
the PE measure is not based on PD but has been included here for illustrative
purposes.

The PFE value of each species in Fig. 6.2, is easily determined: in this case the
Fiordland penguin has the highest PF with the other taxa having an equal sec-
ond highest value. PE suggests that the Fiordland penguin is the most important
to conserve but does not differentiate between the other taxa. It seems logical,
though, that if some of the other taxa were to be conserved, we should not choose
the most closely related of these.

A conceptually appealing family of indices divides the total phylogenetic
diversity of a tree amongst the taxa corresponding to the leaves of that tree.
An example of these indices is the Equal-Splits (ES) index [38] which is closely
related to the previous discussed Pauplin formula. This index splits the PD
value of an edge equally between it’s daughter trees. Denoting the edge length
between a node, j, and its direct ancestor by A;, the equal splits index for a
taxon, i, can be calculated by summation over all the nodes between i and the
root (including 7):

. A
ES@) =Y e

J

where d'(z,7) is the number of edges between the taxon (node i) and node j.
Applying the ES index to the tree in Fig. 6.2 again suggests that the Fiordland
penguins are the most important species to conserve with an index value of 4.
The Snares and Erect-crested penguins have an index equal value of % whilst
the remaining species have a value of %; if, for example, three species could be
conserved, this suggests that the Fiordland, Snares, and Erect-crested penguins
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should be chosen. Intuitively, however, it seems more beneficial to conserve one of
the other species instead of the Snares or Erect-crested penguins and thus protect
more of the internal edges. The problem with ES (and other simple indices) is
that the decision to conserve one taxon does not affect the importance assigned
to conserving the remaining taxa.

One can also consider the expected contribution to PD that a taxon will
make at some time in the future if the survival of all other taxa is uncertain. To
make this idea precise, for each subset S of X, and each taxon i € X — S let

App(S,i) = PD(S U {i}) — PD(S);

App(S,1) is the increase in PD that taxon ¢ provides when added to S. Now,
suppose that each taxon j € X — {i} has a probability a; that it is not extinct at
some time t in the future. If we assume that extinction events are independent
between taxa, and let E be the (random) set of taxa that are extant at time t
then we can ask how much we expect taxon i to contribute to the PD at time
t—this value, 1; is simply the expected value of App(E, 1), given formally by

Yi= Y PIE=S]App(S,i).
SCX—{i}

Note that P[E = S] is the probability that the set of extant taxa at time ¢ will
be S; this depends on the survival probabilities (a;’s).

Although this last equation involves a summation over an exponential
number of terms, it has an equivalent description that allows for its rapid
(polynomial-time) calculation (Steel, M., A. Mimoto and A. O. Mooers, sub-
mitted). A related but different index to ; is the Shapley value which has been
considered in detail elsewhere [20].

6.3.2 Noah’s Ark Problem

Martin Weitzman introduced the ‘Noah’s Ark Problem’ (NAP) [52], a compre-
hensive framework for allocating limited funding for biodiversity conservation
that overcomes some of the problems associated with the simple indices dis-
cussed previously. In the NAP framework each taxon, j, has some probability,
a;, of remaining extant. If some conservation intervention of cost c; is applied
to this taxon, then this survival probability can be increased from a; to b;.
The aim is to identify the subset of taxa to conserve: S, that maximizes the
future expected phylogenetic diversity E(PD|S) subject to the budgetary con-
straint, B. The notation ‘|S’ indicates that the expected value is conditional on
the set S of taxa being conserved. The formulation of the NAP as used in this
chapter is:

Given an edge-weighted phylogenetic tree, and values (a;,bj;,c;) for each tazon
j, mazimize E(PD|S) over all subsets S of taza, subject to the constraint:

2jes¢ < B.
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The original formulation used by Weitzman [52] allowed the inclusion of an
intrinsic value for the taxa (for example the tourism value of a species of whale),
however this value can readily be included here by increasing the length of each
taxon’s pendant edge appropriately. There is of course an inherent difficulty in
combining phylogenetic diversity and other socio-economic values; this is also
the case in the original formulation of the NAP.

E(PD|S) is calculated by summing all the edge lengths, )., in the tree,
weighting each edge by the probability that it will be spanned by the surviving
taxa.:

E(PD|S) =Y Acp(elS).

For rooted trees the probability that an edge is spanned, p(e|S), is simply the
probability that at least one of the taxa in the tree subtended by edge e will
remain extant.

Variations of the NAP have been used in a variety of applications includ-
ing biodiversity conservation (e.g. [10], [29], and [45]) and prioritizing taxa for
genomic sequencing [34]. Additional intrinsic values for the taxa can be incorpo-
rated in this version of the NAP by adding the intrinsic value of each taxon to
its pendant edge.

A problem with the NAP is that no efficient algorithm has been found for
producing solutions to it. To find an optimal solution it may be necessary to
consider many of the possible subsets of taxa. The number of subsets increases
at rate 2/X!) therefore considering a large proportion of these is infeasible for
more than a few dozen taxa. For example, if one has a tree with (say) 1,000
taxa, and one wishes to find a subset of (say) 100 taxa that maximizes E(PD|S)
then it is impossible for any computer to search all subsets of size 100 from the
1,000. Having efficient algorithms for solving the NAP is therefore essential for
applying the NAP to large trees.

Several variations of the NAP where additional constraints arc imposed have
been shown to be solvable using simple ‘greedy’ algorithms [21], [46]. These
algorithms allow the optimal solutions for a particular problem to be found
quickly. Here we provide a further extension to the scenario considered in [46].

First consider the class of NAPs where taxa become extinct unless they are
conserved, all taxa cost the same to conserve and conserved taxa survive with
certainty; this corresponds to a; = 0,b; = 1, and ¢; = ¢ (where ¢ > 0 is some
constant) for each taxon j. We will call this type of NAP Scenario 1.

In this scenario, the expected remaining phylogenetic diversity (E(PD|S)) is
simply the phylogenetic diversity of the conserved taxa (PD(S)), since all other
taxa become extinct with certainty. Solving the NAP is therefore equivalent to
finding the subset S of X of size at most % with maximal PD. This problem
was shown to be solvable using a simple greedy algorithm in [46], from which we
have the following result:

Theorem 6.1 For a NAP under Scenario 1, the following greedy algorithm
produces the optimal solution(s). For rooted trees the algorithm begins with an
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empty set S, and for unrooted trees it begins with a set S containing the two taza
that are furthest apart. The algorithm sequentially adds the taxon that provides
the greatest increase in E(PD|S) until S contains as many taza as the budget
permits to be conserved. Where more than one tazon provides an equal increase
in E(PD|S) one is chosen at random. Upon completion S contains an optimal
solution, other optimal solutions (if they exist) are obtained by making different
choices where a taron was chosen at random.

We will now extend Scenario 1 to allow non-zero survival probabilities in
the absence of conservation (a; # 0), as follows. We will refer to this extension
as Scenario 2 which has the remaining constraints that b; = 1, ¢; is constant
and the tree is rooted. The following result was independently derived here and
in [33].

Theorem 6.2 For a NAP under Scenario 2, the greedy algorithm described in
Theorem 6.1 produces the optimal solution(s) when applied to a rooted tree with
suitably adjusted edge lengths, X,. Denoting the set of children of edge e (the
leaves/taza separated from the root by e) by C. the adjusted edge lengths are:

=X []T(1-aj). (6.3)

jeCe

Proof Instead of maximizing E(PD|S) we can seek to maximize E(PD|S) —
E(PD|0), the increase in the expected PD that conservation of the taxa in S
will provide. For a Scenario 2 problem the increase in the probability that a
particular edge is spanned when the set, S, of taxa is conserved is:

_J1=(-Tljec.(I —aj), if|CenS|>0;

p(elS) — p(eld) = {0, if |C. N S| = 0;
C[Ta-ayx b IC.0 S| > 0;
jec ! 0, |CenS|=0.

The expected increase in the PD is simply the sum over all edges with each
edge weighted by the increased probability:

E(PD|S) — E(PD|0) = Z/\ (p(e|S) — p(e]))

ju—y

, if|Cen S| > 0;

=22 [T =a)x {0, i [ S| = 0

€ Jj€Ce

—Z)\lx 1, lf'CeﬂS|>0,
&0, if|C.nS|=0.
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This final expression for E(PD|S)—E(PD|0) is equal to the objective, E(PD|S),
for a Scenario 1 problem with branch lengths A, as required. O

6.3.3 Conservation time scale

The survival probabilities (a;) contain an implicit time scale as they represent
the probability that a taxon will survive to some future time, t; in the absence of
conservation the expected number of taxa surviving to ¢ is ), a;. If the time ¢ is
in the distant future (a long time scale) the survival probability of unprotected
taxa will be close to zero due to background extinction, for shorter time scales (¢
closer to the present) the survival probabilities will be closer to one. This choice of
time scale affects solutions to the NAP as management strategies corresponding
to longer time scales will place greater emphasis on internal edges. Note that
Scenario 1 corresponds to long term management where only those taxa that
were conserved remain, whereas in Scenario 2 the time scale can be freely chosen
by selecting values for a; that are of appropriate magnitude.

To illustrate the importance of selecting an appropriate time scale consider
the tree in Fig. 6.3, where each taxon is equally likely to remain extant at any
future time. Panel A corresponds to the situation where all taxa that are not
conserved become extinct (a long time scale). If two taxa can be conserved, the
optimal choice consists of one taxon from each branch of the tree. This optimal
choice is found either by application of the greedy algorithm (Theorem 6.1) or
by an exhaustive search.

Consider increasing the survival probability of unconserved taxa (a;) so that
all taxa have a % chance of surviving; this represents a move to a shorter manage-
ment time scale. To find the optimal solutions for this problem the transformation
outlined in Theorem 6.2 is applied to the original tree (Panel A in Fig. 6.3) yield-
ing the tree in Panel B. As expected from equation (6.3) the interior edges have
had a greater reduction in length than the pendant edges; application of the
greedy algorithm can now be used to obtain the optimal solutions. The pendant
edge lengths of taxa a and b are now equal to the distance between the root and
taxa ¢ or d. Consequently conserving both taxa a and b is now also an equally
good solution.

If the survival probabilities (a;) are further increased (to, say, ), the interior
edges of the transformed tree decrease in length to such an extent that the
optimal set of taxa to conserve becomes {a, b} (see Panel C).

We have illustrated that the optimal set of taxa to conserve is dependent on
the management time scale. As the management time scale shifts from long term
to short term, less emphasis is placed on interior edges as these are more likely
to remain extant anyway.

A discussion of the merits of conservation time scales is beyond the scope
of this work (see [4] and [25] for more details). However the optimal time scale
will be highly dependent on the application. Of particular importance will be
the time scale on which conservation focus can be shifted from one taxon to
another. If this can occur rapidly, planning for the short term would be optimal
and the conservation strategy should be reevaluated as taxa become extinct. For
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F1G. 6.3. Panel A depicts a tree where unconserved species become extinct
with certainty (a; = 0). Panels B and C depict the transformed tree as
this survival probability is increased to 0.25 and 0.375 respectively. Optimal
subsets of size 2 can be found by applying the greedy algorithm to these trees.
The optimality of each subset for each panel is indicated in the table.

many taxa, conservation programmes are long term investments. In these cases,
a longer time scale should be investigated when the taxa to be conserved are
initially selected.

6.3.4  Further algorithmic results

For problems where a greedy algorithm is known to produce optimal solutions,
a naive implementation of the algorithm may be unnecessarily slow. An efficient
implementation of the greedy algorithm for Scenario 1 is provided in [28], which
in their simulations took 1/100th of the time of a naive implementation. In [28]
an alternative pruning algorithm is also provided, this algorithm begins with all
the taxa and removes the least important taxon sequentially until a subset of
the desired size is obtained. As expected if a large proportion of the taxa are to
be included in the subset, the pruning algorithm is more efficient.
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Two further variations of the NAP for which greedy algorithms produce opti-
mal solutions were considered by the authors in [21]. The first variation permits
the survival probability for conserved and unconserved taxa (a; and b;) to be
varied, but these must be related by a particular relationship. The second varia-
tion permits variable conservation costs (c;) but requires that taxa only survive
if they are conserved (a; = 0, b; = 1). Additionally, for the greedy algorithm
to produce optimal solutions, the tree must be ultrametric (satisfy a molecular
clock).

A dynamic programming algorithm has also been produced for a less restric-
tive variation of the NAP with the sole restriction that conserved taxa survive
with certainty (b; = 1) [33].

6.3.5 Extensions to the NAP

The Noah’s Ark Problem provides a satisfying framework for biodiversity
resource allocation problems. It is, however, still a simplification of reality and
some extensions to it have been suggested.

The NAP as presented here does not consider the possibility of partially con-
serving taxa and therefore being able to spread resources more thinly across a
greater number of taxa. Weitzman [52] assumed that the survival probability of
a taxon increases linearly with the conservation funding allocated to that taxon.
Under this assumption optimal solutions to the NAP are extreme and allocate
the maximum possible amount to a few taxa instead of partially conserving a
greater number. An extension of the NAP to more realistic relationships between
survival probability and expenditure was considered in [44], with an application
to conservation of breed diversity in African cattle. A greedy algorithm was pre-
sented in that paper that the authors suggested would provide optimal solutions
to all problems of this type. However, it was shown in [21] that this cannot be
the case. This was extended further in [39] to allow for discontinuous relation-
ships produced by multiple possible conservation schemes, necessitating a two
step optimization procedure (which they state is not guaranteed to produce the
global optimum).

Another implicit assumption in the NAP is that the survival probabilities are
independent. That is, conserving one taxon does not raise or lower the survival
probabilities of any others, and this may be unrealistic. For example, conserving
the prey of one taxon may raise the survival probability of that taxon as well.
This effect was considered in [50] where it was shown that failure to consider
interdependent survival probabilities may result in an incorrect suggestion as to
which species should be protected. The authors in this study stress the impor-
tance of their findings as ‘more significant losses of biodiversity are exactly those
in which ecological impacts are severe, that is, where the loss of one species
affects the survival of others’.

In summary, whilst the NAP provides a good starting point, there are other
important factors that influence which taxa should be conserved. Inclusion of
some of these may prove more difficult than others and adding these factors
will further complicate the problem of finding optimal solutions. For example,
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consider the following problem which is relevant to biodiversity conservation.
We have a collection C of locations, where each location | € C' contains some
subset S(l) of taxa from a set X of taxa; also we have a phylogenetic X—tree 7
with branch lengths. We wish to select k locations so as to maximize the PD of
the set of taxa that occur in at least one selected location. If no taxon occurs
in more than one location this problem is easily solved, by transforming it to
the standard PD optimization problem and applying the greedy algorithm. In
general, however, the problem is NP-hard. The proof consists of showing that one
can transform the NP-complete problem ‘Minimum cover’ [16] to this problem,
by selecting branch lengths for 7 that are 1 on all the pendant edges, and 0 on all
the interior edges. For various approaches to solving this and related problems
see [40], [5] and [53].

6.4 Loss of phylogenetic diversity under extinction models

We turn now to the statistical properties of PD as taxa go extinct, beginning
with a recent result from [47]. Nee and May [30] investigated the loss of PD as
taxa are randomly deleted from random trees under a simple model: each taxon
is equally likely to be the next to become extinct (the ‘field of bullets’ model).
The trees were ultrametric trees as generated by a random-birth model. They
found a characteristic concave shape in the relationship between the expected
remaining PD and the proportion of taxa deleted. This relationship is illustrated
for the Crested penguins tree (Fig. 6.2) by the upper curve in Fig. 6.4.

16 T — T T T —T

—x— Function of # Extinctions
Function of Time g

Expected PD
oo

0 L L 1 1

0 1 2 3 4 5 6 7

# Extinctions/Time

FiG. 6.4. The expected remaining PD after extinctions have occurred among
the Crested penguins depicted in Fig. 6.2. This loss in PD is viewed as a
function of both the number of extinctions that have occurred and the time
that has elapsed since extinctions have been allowed to occur.
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This relationship was further investigated recently in [45], which studied ran-
dom deletion of taxa from certain biological trees. Once again the relationship
between taxa deleted and remaining PD was concave. Recall that a sequence
z = (21,Z2,...,Z,) of real numbers is concave if, when we let Az, = z, — 2,1
the following inequality holds for all r:

Az, — Az,41 >0

and the sequence is strictly concave if the inequality is strict for all r. Geometri-
cally this means that the slope of the line joining adjacent points in the graph of
x, versus r is decreasing. Note that z, is concave precisely if the complementary
(reverse) sequence y, = Z,_, is concave. The significance of (strict) concavity
for PD is that it says (informally) that most PD loss comes near the end of an
extinction process.

In this section we first describe a generic concave relationship observed
between the average PD and the number of taxa deleted. This makes intuitive
sense, because each interior branch survives until the point where there is no
taxon below it and this is likely to occur towards the end of a random extinction
process.

Consider a rooted phylogenetic tree having a leaf set X of size n. Let W
be a random subset of taxa of size r sampled uniformly from X (for example,
by selecting uniformly at random a set S of n —r > 0 elements of X and
deleting them, in which case W = X — S). For r € {1,...,n} let p, = E[PD|r],
the expected value of PD(W) over all such choices of W. Equivalently, we can
write g, = (1) Swexwi=r PD(W), where (7) is the binomial coefficient
(= W"lm), which is the number of ways of selecting r elements from a set of

size n. For brevity we adopt the usual convention that () = 0 if r is greater
than n or less than 0.

Clearly p, = PD(X). For r € {1,...,n}, let Ap, = p, — pr—1. Note that,
since po = 0, we have Ap; = py. For anedge e of 7, and r € {1,...,n — 1} let

ne(ne - ]-) . (nr_—r;e)
r(r+1) (Tf_l)

where n. denotes the number of leaves of 7 that lie ‘below’ e (i.e. separated from
the root by e).

The proof of the following result is given in [47]. It shows that for any fully
resolved tree, PD decays in a strictly concave fashion as taxa are randomly
deleted, and the only trees for which the decay of PD is linear are fully unresolved
‘star’ trees. In the following theorem a cherry is a pair of leaves that are adjacent
to the same vertex.

Ple,r) =

Theorem 6.3 Consider a phylogenetic tree T with an assignment A of positive
branch lengths. Then, for eachr € {1,...,n— 1},

Apr = Dpirgr = Aetp(e, )
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where the summation is over all edges of T. In particular, p is concave over this
domain, and p is strictly concave if and only if T has a cherry, while p is linear
if and only if T has no interior edges (i.e. is an unresolved ‘star’ tree).

Consider the tree for Crested penguins to which we have previously referred
(Fig. 6.2). Figure 6.4 shows the expected PD as a function of the number of
extinctions. As expected from the above theorem, the relationship depicted in
this figure is strictly concave.

6.4.1  Relationship between PD and time under an extinction process
We have investigated the expected PD as a function of the number of extinc-
tions that have occurred. So far each taxon has been considered as equally likely
to be the next to become extinct. However, no consideration has been given to
the timing of these extinctions. Here we consider the situation where each taxon
has the same probability of becoming extinct at any point in time (the time to
extinction for an individual taxon has an exponential distribution) and consider
the expected PD as a function of the time instead of the number of extinctions
that have occurred. We will show that the decline in expected PD does not in
general have a concave shape and in fact after a specific time (dependent on the
tree shape) the decline will become convex. Note that this is not a contradic-
tion with the previous result; it is simply due to the fact that the number of
extinctions decreases over time as there arc fewer species left that could become
extinct.

The probability that an edge, e, will be spanned by the taxa remaining at
some time ¢, depends only on the number of children (|Ce| = n.) of that edge.
Denoting this probability by pe(t) we have:

Pe(t) =1— (1—e )™

where 7 is the rate of extinction. The expected PD at time ¢, E;(PD) is easily
found using these probabilities:

Ei(PD) = Acpe(t)

Observe that E;(PD) depends only on the sums of the edges with the same
number of leaves attached, not on the individual edges themselves:

E,(PD) = ZaJ [1 —(1-ety ] ,

where o; = Ze ne=j Ae, and m is the highest number of leaves below any edge—
this corresponds to the edge(s) at the root with the most leaves descendant
from them. To investigate the shape of E;(PD) the second derivative is easily
obtained:

2 m .
TRAPD) _ prert (m +3 ayj (1 jet) (1— et ) . (6.4)
j=2
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For convexity, the second derivative must be positive. The term corresponding
to o is clearly positive, but the sign corresponding to the other a-values depends
on t. The term corresponding to a particular «; is positive if 1 —je~"* > 0 which
holds when

¢> 20
r
A sum of convex functions is convex, therefore once the above condition is sat-
isfied for all j, E;(PD) will be convex. The term that becomes convex the latest
is the term with the highest value of j (namely m). Convexity is therefore guar-
anteed after £ = In(m)/r. In the limit as > j<m @j/am — 0, PD(t) will become
convex exactly at ¢, however PD(t) will generally become convex earlier due to
the other terms.

The terms corresponding to edges with high values of j are the last to become
positive; as more weight is assigned to these the time to convexity lengthens.
Variation in diversification rates through time and/or among clades can therefore
affect the time to convexity.

The amount of PD loss that has occurred by the time that convexity is
guaranteed (f = In(m)/r) is difficult to characterize, but the number of taxa
remaining at this time can be readily found. The probability of an individual
taxon persisting to time ¢ is e~"*, so at t = ¢ each taxon is extant with probability
1/m. The total number of taxa is between m + 1 and 2m (depending on the
imbalance of the tree at the root) and the expected number of extant taxa at
t =t is therefore between 1 and 2. Accordingly, the convexity result may appear
to be of limited biological interest, however, given a real tree, the expected
number of taxa remaining by the time convexity is reached will usually be much
higher.

Another interesting behaviour that can readily be examined and may be of
more practical interest is the initial shape of the PD decline (that is at and just
after t = 0). Substituting ¢t = 0 in equation (6.4) we obtain:

d’Ey(PD mo o
%h:O =72 + Z (05 (1 —34)07 ?)
j=2
=72 (0 — 203). (6.5)

Initial convexity requires a; > 2a2 and concavity requires a; < 2aq. The
edges that contribute to o are the pendant edges and those contributing to as
are edges above cherries. Any tree can have at most half as many ‘above cherry’
edges as pendant edges, so if pendant edges have similar lengths as the ‘above
cherry’ edges then that tree will therefore exhibit initial convexity (as for the
Crested penguins tree Fig. 6.2 and 6.4). It should be noted that even if the PD
loss curve for a tree is convex at ¢t = 0 and after ¢ = £ there is no guarantee that it
will be convex between these two times due to the complexity of equation (6.4).
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6.5 Tree reconstruction using PD

The simplest form of PD (on unrooted trees) considers subsets of taxa of size
2, in which case the PD value is just the path distance in the tree connecting
the two taxa. Such pairwise distances suffice to reconstruct any tree (and indeed
also the branch lengths). This is a classic result dating back to the mid-1960s
[54], and it forms the basis of many fast and popular tree-building methods,
such as Neighbor-Joining and BioNJ. However, despite their usefulness, pairwise
distances have some drawbacks, and in this section we explore some of the ways
in which PD-values on subsets of m—taxa (for m > 2) may provide a promising
approach in future.

One (statistical) concern with using pairwise distance data is that converting
sequence data to pairwise distances is a highly reductive transformation. That is,
each distance matrix typically can be obtained from a huge number of different
sets of aligned sequences, even under the usual Hamming distance measure (and
even if we just count the frequencies of site patterns, not the order they occur
in, [48]). Whether this extensive ‘loss of information’ is important for phylogeny
reconstruction is a tantalizing question, though it is tempting to conjecture that
it is. Phylogenetic diversity is one way of generalizing the idea of a distance in
a tree—from pairs of leaves, to m-tuples of leaves—and this measure suggests
a natural way of refining distance-based approaches, so that less information is
lost in using sequences to build trees.

To illustrate this idea, consider a model-based approach to phylogeny recon-
struction. Given a model of sequence evolution, one can generally compute the
maximum-likelihood estimate of an ‘evolutionary distance’ d(z,y) between any
two sequences z, y. This ‘evolutionary distance’ is some quantity that is assumed
to be additive on the underlying evolutionary tree. For example, for a station-
ary reversible Markov process of site substitution, the ‘evolutionary distance’
between x and y is usually understood as the expected number of substitutions
occurring on the path separating z and y. Thus d(z,y) can be viewed as an
estimate of PD({z,y}) for a suitable edge weighting of 7.

Notice that the PD values on subsets of X of size 3 are determined by the
pairwise PD values, according to the following 3—point condition:

2PD({z,y,2}) = PD({z,y}) + PD({y, 2}) + PD({z,z}). (6.6)

Thus one could estimate PD({z,y, 2}) by using the pairwise distance estimates
d, but again this results in a loss of information in reducing triplewise data to
three pairwise marginals. Thus it may be more appropriate to estimate PD on m-
element subsets by direct analysis of sequence data. For example, the PD score
for three sequences might be estimated as the sum of the three branch lengths
that maximize the likelihood score of the three sequences under a Markov pro-
cess of site substitution (and perhaps also insertion and deletion). For certain
models, the PD value when m = 3 can also be calculated explicitly (i.e. with-
out optimizing branch lengths to maximize likelihood) by the ‘tangle’ triplewise
distance described in [49).
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When m = 3, estimation of PD values does not require estimating the tree
structure connecting the m taxa. However, for any value m > 3, consideration
of different trees connecting the m taxa is necessary.

Suppose that one was able to exactly calculate the true PD values for all m-
elements subsets of X. A natural question is whether this information uniquely
determines the underlying phylogenetic X-tree 7. It is clear that in general the
answer is ‘no’—for if we take m = |X| then we have just one PD value, and
this can be realized on any phylogenetic X-tree by taking appropriate branch
lengths. However, Pachter and Speyer [32] recently showed that if m does not
exceed (n+1)/2 then the tree 7 is uniquely determined by the PD scores of the
m-element subsets of X. More precisely, their result states:

Theorem 6.4 Let T be a phylogenetic X -tree (with n = |X|) and m > 2 an
integer. If n > 2m — 1 then T is determined by the map that associates each
m-element subset of X with its induced PD score.

Moreover, even when m exceeds (n+1)/2 some partial information concerning
7 can be recovered from this map [24]. This paper also describes a modification of
Neighbor-Joining to reconstruct trees from their induced PD values. The central
idea here is to identify a cherry of the tree. The following result (the ‘cherry-
picking theorem’ of [24]) generalizes the way that Neighbor-Joining identifies
cherries in the special case m = 2.

Theorem 6.5 Suppose that T is a phylogenetic X —tree with n leaves, and m is
any integer between 2 and n — 2. Then any distinct pair i,j € X that minimizes
the expression

(;__21) Y pPpy)- S PDY)- Yg{ PD(Y)

YCX: YCX: :
1,JEY,|Y |=m €Y, |Y|=m JEY,|Y|=m

is a cherry of T.

Phylogenetic diversity also forms the basis of other approaches to tree
reconstruction—most notably the ‘balanced minimum evolution’ (BME) method
of Pauplin [35]. This method takes a (pairwise) distance estimate d on X as input
and scores each resolved phylogenetic X-tree 7 by what d would estimate for
PD(X) using equation (6.2). Thus, if d is additive on 7 then this BME score is
equal to the PD value of X (on 7); while if d is additive on some other resolved
tree 7', then the BME score of 7 can be shown to exceed the PD value of set
X (on 7') [11]. The balanced minimum evolution method seeks the phyloge-
netic tree that minimizes the associated BME score. There is a close relationship
between this method and Neighbor-Joining, which can be viewed as a locally
optimal method for constructing a BME tree—for details see [12], [17].

6.5.1  Tree reconstruction from PD-values over an abelian group

So far we have regarded the lengths of the edges of a tree as being some positive
real number. However, the concept of phylogenetic diversity is well-defined when
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edge-weights are chosen from any abelian group G (briefly, an ‘abelian group’ is
any set on which an addition can be defined which is associative and commu-
tative, and there is a zero element and every element has an additive inverse;
for details see [27]). This is both mathematically useful and potentially useful
in applications. For the mathematical justification, one can ask what properties
of PD depend on properties of the real numbers (such as the fact that they
are ordered) and how much is just ‘algebraic’. Clearly the ‘Neighbor-Joining’
algorithm no longer applies since the concept of minimizing or maximizing does
not apply for a general abelian group. Moreover, although algebraic relations
like the 3-point condition (equation (6.6)) apply in general, other results such
as the representation (equation (6.2)) no longer do, as we may not be able to
divide by factors such as d(v) — 1. Regarding tree reconstruction from pairwise
PD values, the presence of elements of order 2 in a group (i.e. non-zero elements
z for which z +z = 0) means that the classic uniqueness result no longer applies
For example, consider the tree in Fig. 6.5, and the group Zs = {0,1} under
addition mod 2. Suppose the non-zero element (1) of this group is assigned
to each edge of the tree shown in Fig. 6.5. Then we have PD({z,y}) = 0
for any two elements z,y of the leaf set X of this tree. Moreover there exists
more than one phylogenetic tree having this shape (in fact 15 such trees) so
clearly PD values on pairs of elements of X are not sufficient to uniquely
specify the underlying tree, in contrast to the case where the edges have real
values.

It turns out, however, that if G has no elements of order 2 then the classic
uniqueness (and existence) results for tree representations for pairwise PD values

FIG. 6.5. Any leaf labelling of this tree gives PD({z,y}) = 0 for all z, y when
the element 1 € Z, is assigned to each edge.
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carry through to the abelian group setting. In the more general case where G may
have elements of order 2, the uniqueness of a tree representation can be recovered,
provided that one considers both pairwise and triplewise PD values [13].

More precisely the following result (from [13]) holds.

Theorem 6.6 Let 7 be a phylogenetic X -tree, G an abelian group, and X a
function that assigns a non-zero element of G to each edge of T. Then T 1is
determined up to isomorphism (and can be reconstructed by an algorithm that
runs in polynomial time in | X|) by the map that associates each pair and triple
of elements of X with its associated G-valued PD score.

The existence question (‘when can pairwise and triple-wise PD values be
represented by a tree with edge weights drawn from an abelian group?’) has
also been settled—it involves the three-point condition (equation (6.6)), two
four-point conditions, and a five-point condition. This last five-point condition
is not required when G is the group of real numbers under addition, or indeed
an abelian group without elements of order 2, but in general it is necessary (for
details see [13]).

We end this section by outlining a situation in molecular biology where
such group-based valuations arise naturally (the parity of gene orders provides
another, but we will not describe this in detail here).

Consider DNA sequences of length k£ that have been re-coded as binary
sequences (for example, by associating with each of the four bases its purine
or pyrimidine class). Any two such binary sequences (wi,...,wk), (21, 2k)
define a 0 — 1 sequence g = (g1, ...,gx) of length k by setting g; = 0 precisely
if w; = z;, otherwise g; = 1. We may regard g as an element of the abelian 2-
group ZX. Now consider an evolutionary tree, where at each vertex there is some
purine—pyrimidine sequence (carried by the ancestral taxon at that place in the
tree). Assign to each edge the group element associated to its endpoints by the
process just described. Then for any two leaves z, y the value PD({z,y}) can
be computed just from the sequences at z,y (without knowing the tree or the
states assigned to other vertices)—it is simply the group element associated to
the difference (or, equivalently, the sum) of the sequences at z and y. However,
the value of PD({z,y, z}) is not uniquely determined by just the sequences at z,
y, and z (were this the case, then reconstructing phylogenetic trees from binary
sequences would be essentially trivial). Determining PD({z,y, z}) is equivalent
to determining the sequence that was present at the median verter in the tree
connecting leaves z,y, z. This has a curious consequence—if one can reconstruct
the ancestral sequence (of the median vertex) for any three binary sequences,
then one can reconstruct the underlying tree. One might attempt to estimate this
ancestral sequence as the (component-wise) median of the sequences at x,y, z but
it turns out that in general the resulting PD values do not have a representation
on any tree—indeed the condition for the existence of such a representation is
that the splits induced by the sites of the binary sequences are compatible [13]. In
practice, biological data would rarely be expected to fulfil this compatibility con-
dition. Thus, more sophisticated approaches to estimate the ancestral sequence
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at a median vertex (based on models of sequence evolution, and guided by the
necessary three-, four- and five-point conditions) would need to be developed
before such an approach to tree reconstruction could be applied for analysing
DNA sequence data.

6.6 Concluding comments

In this chapter we have investigated several applications of phylogenetic diver-
sity: biodiversity conservation, expected patterns in biodiversity loss, and
phylogenetic tree construction. This wide range of applications poses some inter-
esting mathematical problems and provides useful approaches for managing and
exploring biodiversity and tree construction.

The Noah’s Ark Problem (NAP) discussed here has been applied to both
conservation and genomic sequencing problems. No efficient (polynomial time)
algorithm for solving the general NAP is known to the authors, and a simple
exhaustive search may need to consider a large proportion of the 2™ possible
subsets of taxa (this is not feasible for a problem consisting of more than a
few dozen taxa). As discussed, algorithms for efficiently computing solutions to
several restricted variations of the NAP exist, but some suggestions have been
made in the literature that the NAP is too simplistic and needs to incorporate
more realistic aspects of the problem. These extensions will further complicate
the problem of finding optimal solutions.

We have also illustrated the importance of the time scale of conservation
management. The magnitude assigned to the survival probabilities of the taxa
determines what management time scale is being considered. For non-trivial
trees, the optimal solution to the NAP is sensitive to the time scale that has been
selected; selecting an inappropriate time scale may result in an inappropriate
prioritization of taxa to conserve.

Investigating the expected losses in PD as taxa become extinct, is a useful
approach for quantifying future expected losses in biodiversity. Here we have
shown that as taxa randomly become extinct, each new extinction is expected
to cause a greater loss in biodiversity, though the rate of biodiversity loss with
time exhibits a different behaviour. Further work using more realistic models
of extinction could provide additional insight into the loss of biodiversity. It
may be particularly relevant to consider survival probabilities (the a; values)
from a skewed distribution or correlated with the distance between taxa in the
phylogenetic tree (Arne Mooers, pers. comm.).

Furthermore we have considered how PD may provide a useful tool for
refining tree reconstruction by using m-way comparisons of taxa. For m = 2
this has been well studied, and is generally referred to as ‘distance-based’
approaches to tree reconstruction, however many results and methods (such as
Neighbor-Joining) extend naturally to larger values of m.

A final generalization is to allow the branch lengths to take values in any
abelian group. The message seems to be that for groups without elements of
order 2, tree reconstruction behaves just like the familiar group of real numbers
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(though some care is needed as concepts involving order and minimization no
longer apply, so methods like Neighbor-Joining are problematic). For groups with
elements of order 2, the mathematical analysis is slightly more complicated, but
still tractable.
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