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Abstract
The current rapid extinction of species leads not only to their loss but also the disap-
pearance of the unique features they harbour, which have evolved along the branches
of the underlying evolutionary tree. One proxy for estimating the feature diversity
(FD) of a set S of species at the tips of a tree is ‘phylogenetic diversity’ (PD): the
sum of the branch lengths of the subtree connecting the species in S. For a phyloge-
netic tree that evolves under a standard birth–death process, and which is then subject
to a sudden extinction event at the present (the simple ‘field of bullets’ model with a
survival probability of s per species) the proportion of the original PD that is retained
after extinction at the present is known to converge quickly to a particular concave
function ϕPD(s) as t grows. To investigate how the loss of FD mirrors the loss of PD
for a birth–death tree, we model FD by assuming that distinct discrete features arise
randomly and independently along the branches of the tree at rate r and are lost at a
constant rate ν. We derive an exact mathematical expression for the ratio ϕFD(s) of
the two expected feature diversities (prior to and following an extinction event at the
present) as t becomes large.We find that although ϕFD has a similar behaviour to ϕPD

(and coincides with it for ν = 0), when ν > 0, ϕFD(s) is described by a function that
is different from ϕPD(s). We also derive an exact expression for the expected number
of features that are present in precisely one extant species. Our paper begins by estab-
lishing some generic properties of FD in a more general (non-phylogenetic) setting
and applies this to fixed trees, before considering the setting of random (birth–death)
trees.
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1 Introduction

Phylogenetic trees provide a way to quantify biodiversity and the extent to which it
might be lost in the face of the current mass extinction event. One such biodiversity
measure is phylogenetic diversity (PD), which associates to each subset S of extant
species, the sum of the branch lengths of the underlying evolutionary tree that connects
(just) these species to the root of the tree. This measure, pioneered by Faith (1992),
provides a more complete measure of biodiversity than merely counting the number
of species in S (see e.g. Miller et al. 2018). Moreover, if new features evolve along
the branches of a tree and are never lost, then the resulting features present amongst
the species in the subset S (the feature diversity (FD) of S) are directly correlated
with the phylogenetic diversity of S (Wicke et al. 2021). However, when features are
lost, it has recently been shown mathematically that under simple (deterministic or
stochastic)models of feature gain and loss, FD necessarily deviates fromPD except for
very trivial types of phylogenetic trees (Theorems 2 and 3 of Rosindell et al. (2022)).
More generally, the question of the extent to which PD captures feature or functional
diversity has been the subject of considerable debate in the biological literature (see
Devictor et al. 2010; Mazel et al. 2017, 2018, 2019; Owen et al. 2019; Tucker et al.
2018, 2019).

In this paper, we investigate a related question: under a standard phylogenetic
diversification model and a simple stochastic process of feature gain and loss, what
proportion of feature diversity is expected to be lost in a mass extinction event at the
present? And how does this ratio compare with the expected phylogenetic diversity
that will be lost? Although the latter ratio (for PD) has been determined in earlier
work, here we provide a corresponding result for FD, and show how it differs from
PD when the rate of feature loss is non-zero. Our results suggest that the relative loss
of FD under a mass extinction event at the present is greater than the relative loss of
PD. We also investigate the number of features that are expected to be found in just
one species at the present.

We begin by considering the properties of FD in a more general setting based
purely on the species themselves (i.e. not involving any underlying phylogenetic tree
or network) and then consider FD on fixed phylogenetic trees before presenting the
results for (random) birth–death trees. Some of the results of these earlier sections are
applied in the later sections.

2 General properties of feature diversity without reference to
phylogenies

This section considers the generic properties of expected FD for sets of species, and
thus, no underlying phylogenetic tree or stochastic process that generates a tree, or
model of feature evolution is assumed. We mostly follow the notation from Wicke
et al. (2021).
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Definitions
Let X be a labelled set of species, and for each x ∈ X , let Fx be a non-empty set of

discrete features (e.g. genes, genomic inserts, traits) that are associated with species
x .

• The collection of ordered pairs F = {(x, Fx ) : x ∈ X} is called a feature
assignment on X .

• For any subset A of X , let F(A) = ⋃
x∈A Fx and let μ : F(X) → R

>0 be a
function assigning some richness or novelty to a feature f ∈ F(X).

• The feature diversity of some subset A of a set of species X is defined as,

FD(A) =
∑

f ∈F(A)

μ( f ). (2.1)

A default option for μ is to set μ( f ) = 1, which simply counts the number of fea-
tures present. Notice that for any subset A of X we have FD(A) ≤ ∑

x∈A FD({x}) =∑
x∈A

∑
f ∈Fx μ( f ), with equality if and only if no features are shared by any two

species.

2.1 Feature diversity loss under a ‘Field of Bullets’model of extinction at the
present

Definition 2.1 Consider a sudden extinction event taking place across a set of species
(Raup 1993). In the generalised field of bullets (g-FOB) model, each species x ∈ X
either survives the extinction event (with probability sx ) or disappears (with probability
1−sx ), and these survival events are assumed to be independent among the species.We
write s(X) (or, more briefly, s) to denote the vector (sx : x ∈ X) and we let X denote
the (random) subset of X corresponding to the species that survive the extinction event.
If sx = s for all x ∈ X , then we have the simpler field of bullets (FOB) model.

We define the following quantity:

ϕ(F,s) = FD(X )

FD(X)
,

which is the proportion of feature diversity that survives the extinction event. In the
case of the FOB model, we denote this ratio by ϕ(F,s).

Proposition 2.1 For the g-FOB model,

E[ϕ(F,s)] =
∑

f ∈F(X)

μ̃( f )

⎛

⎝1 −
∏

x : f ∈Fx
(1 − sx )

⎞

⎠ ,

where μ̃( f ) = μ( f )∑
f ∈F(X) μ( f ) are the normalised μ values (which sum to 1).
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For the FOB model, the equation in Proposition 2.1 simplifies to

E[ϕ(F,s)] =
∑

f ∈F(X)

μ̃( f )
(
1 − (1 − s)n f

)
, (2.2)

where n f = |{ f : ∃x : f ∈ Fx }|, the number of species in X that possess feature f .

Proof We have ϕ(F,s) = ∑
f ∈F(X) μ̃( f ) · I f where I f is the Bernoulli variable that

takes the value 1 if at least one species in X with feature f survives the g-FOB
extinction event, and 0 otherwise. Applying linearity of expectation and noting that
P(I f = 1) = 1 − ∏

x : f ∈Fx (1 − sx ) gives the result. ��
Notice that E[ϕ(F,s)] = s at s = 0, 1. The behaviour between these two extreme

values of s is described next.

Proposition 2.2 Under the FOB model, the following hold:

(i) E[ϕ(F,s)] ≥ s for all s ∈ [0, 1].
(ii) E[ϕ(F,s)] = s for a value of s ∈ (0, 1) if and only if the sets Fx in F are pairwise

disjoint, in which case E[ϕ(F,s)] = s for all s ∈ [0, 1].
(iii) If the sets Fx are not pairwise disjoint, then E[ϕ(F,s)] is a strictly concave

increasing function of s.

Proof Part (i): Since n f ≥ 1 in Eq. (2.2) and 1 − (1 − s)n f ≥ s for all n f ≥ 1, the
claimed inequality is immediate. Part (ii): If n f = 1 then 1 − (1 − s)n f = s for all
s ∈ [0, 1], and if n f > 1 then 1 − (1 − s)n f > s for every s ∈ (0, 1). Part (iii): By
Eq. (2.2),

d

ds
E[ϕ(F,s)] =

∑

f ∈F(X)

μ̃( f )n f (1 − s)n f −1 > 0,

and

d2

ds2
E[ϕ(F,s)] = −

∑

f ∈F(X):n f ≥2

μ̃( f )n f (n f − 1)(1 − s)n f −2 < 0,

for all s ∈ (0, 1), from which the claimed results follow. ��

2.2 Approximating'(F,s) by its expected value

For each n ≥ 1, let Xn be a labelled set of n species with feature assignment Fn .
Let Xn denote the (random) set of species after a g-FOB extinction event with sur-
vival probability vector s(Xn), which assigns each x ∈ Xn a corresponding survival
probability sn(x). Note that we make no assumption regarding how the species in Xn

and Xm are related (e.g. they may be disjoint, overlapping or nested), or any apriori
relationship between s(Xn) and s(Xm).
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In the following result, we provide a sufficient condition under which ϕ(Fn ,sn) is
likely to be close to its expected value E[ϕ(Fn ,sn)] (readily computed via Eq. (2.1))
when the number of species n is large. This condition allows some species to contribute
proportionately more FD than other species do on average, and this proportion can
grow with n, provided that it does not grow too quickly.

Proposition 2.3 (a) For ε > 0,

P
(∣
∣ϕ(Fn ,sn) − E[ϕ(Fn ,sn)]

∣
∣ > ε

) ≤ 2 exp

(

−2ε2

Rn

)

,

where Rn = ∑
x∈Xn

[
FD({x})
FD(Xn)

]2
.

(b) If Rn → 0 as n → ∞ then ϕ(Fn ,sn) − E[ϕ(Fn ,sn)] P−→ 0.
(c) Let avFD(Xn) = FD(Xn)/n (the average contribution of each species to the total

FD), and suppose that for each x ∈ Xn, FD({x})/avFD(Xn) ≤ Bn, where and
B2
n = o(n) (e.g. Bn = 3

√
n). We then have the following convergence in probability

as n → ∞:

ϕ(Fn ,sn) − E[ϕ(Fn ,sn)] P−→ 0.

Proof Let Yn = {Yi : i ∈ [n]} be a sequence of Bernoulli random variables where
each Yi takes the value of 1 if species xi survives and 0 otherwise. For the g-FOB
model, the random variables Yi are independent.We can write ϕ(Fn ,sn) = h(Yn)where
h(y1, . . . , yn) is the ratio FD({xi∈Xn :yi=1})

FD(Xn)
. Observe that for any particular value of

i ∈ {1, . . . , n}, if we change yi (from 0 to 1 or visa versa) to give y′
i then:

|h(y1, ..., yi , ..., yn) − h(y1, ..., y
′
i , ..., yn)| ≤ FD({xi })

FD(Xn)
.

We now apply McDiarmid’s inequality McDiarmid (1989) to obtain (for each
ε > 0):

P(
∣
∣ϕ(Fn ,sn) − E[ϕ(Fn ,sn)]

∣
∣ ≥ ε) ≤ 2 exp

(−2ε2

Rn

)

, (2.3)

This establishes Part (a). Part (b) now follows immediately, and Part (c) follows from
Part (b), since the condition in Part (c) implies that

Rn =
∑

x

[
FD({x})

n · avFD(Xn)

]2
≤

∑

x

(
Bn

n

)2

=
∑

x

B2
n

n2
= B2

n/n → 0,

as n → ∞. ��
Remark Note that Proposition 2.3(c) can fail when the condition stated in Part (c)
does not hold, even for the simpler FOB model. We provide a simple example to
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demonstrate this. Let Xn = {1, . . . , n} and let Fi = { f } for i = 1, . . . , n − 1 and
Fn = {g} where f and g are distinct features with μ( f ) = μ(g) = 1. In this case:

ϕ(Fn ,s) =

⎧
⎪⎨

⎪⎩

0, w.p. (1 − s)n;
1
2 , w.p. (1 − s)n−1s + (1 − (1 − s)n−1)(1 − s);
1, w.p. (1 − (1 − s)n−1)s.

Therefore, ϕ(Fn ,s)−E[ϕ(Fn ,s)] does not converge in probability to 0 (or to any constant)
as n → ∞.

2.3 Consequences for phylogenetic diversity

Proposition 2.2 and Proposition 2.3 provide a simple way to derive certain results
concerning phylogenetic diversity - both on rooted trees and also for rooted phyloge-
netic networks (specifically for the subNet diversity measure described in Wicke and
Fischer (2018)). To each edge e of a rooted phylogenetic tree (or network), associate
some unique feature fe and give it the value μ( fe) = �(e), where �(e) is the length
of edge e in the tree (or network). For any subset Y of X (the leaf set of T ) we then
have:

PD(Y ) = FD(Y ).

It follows that for the simple field of bullets models, PD satisfies the concavity prop-
erties described in Proposition 2.2, where the condition that the sets Fx are pairwise
disjoint corresponds to the tree being a star tree. These results were established for
rooted trees by specific tree-based arguments (see e.g. Sect. 5 of Lambert and Steel
(2013)), but they directly follow from the more general framework above, and extend
beyond trees.

Using this same link between PD and FD, Proposition 2.3 provides a further appli-
cation to any sequence of rooted phylogenetic trees Tn with n leaves and ultrametric
edge lengths. For example, the ratio of surviving PD to original PD under the FOB
model converges in probability to the expected value of this ratio for a sequence of
trees Tn if the total PD of Tn grows at least as fast as nL/nβ , where L is the height of
the tree and 0 < β < 1/2. This condition holds, for example, for Yule trees (Stadler
and Steel 2012).

3 The feature diversity ratio' for a model of feature evolution on a
phylogenetic tree

Consider a rooted binary phylogenetic tree Tn , in which each edge has a positive
length that corresponds to a temporal duration, with the root ρ of Tn being placed at
the top of a stem edge at time 0, and with each leaf in the leaf set Xn = {x1, . . . , xn}
of Tn being placed at time t (as in Fig. 1). For convenience, we will assume in this
section that μ( f ) = 1 for all features; however, this assumption can be relaxed (e.g.
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Fig. 1 An example of feature gain and loss on a tree and the impact of extinction at the present. Left: New
features arise (indicated by +) and disappear (indicated by −) along the branches of the tree. To simplify
this example, no features are present at time 0; however, our results do not require this restriction. In total,
there are five features present amongst the leaves of the tree at time t , namely {α, β, γ, δ, ε}. Right: An
extinction event at the present (denoted by †) results in the loss of three of the extant species, leaving just
three features being present among the leaves of the resulting pruned tree, namely {α, β, γ }. Thus, the ratio
of surviving features to total features is 3/5 = 0.6

by allowing μ( f ) to take values in a fixed interval [a, b] where a > 0 according
to some fixed distribution, and independently between features) without altering the
results significantly.

We let Fρ denote the (possibly empty) set of features present at time 0 (i.e. at the
top of the stem edge), and we assume throughout this section that |Fρ | is bounded by
some fixed constant B, independent of n.

On Tn , we apply a stochastic process inwhich (discrete) features arise independently
along the branches of this tree at rate r , and each feature that arises is novel (i.e. it
has not appeared earlier elsewhere in the tree). Once a feature arises, it is then carried
forward in time along the branches of Tn (and is passed on to the two lineages arising
at any speciation event). In addition, any feature can be lost from a lineage at any point
according to a continuous-time pure-death process that operates at rate ν. This model
was investigated in a different setting in Huson and Steel (2004) and studied more
recently in Rosindell et al. (2022). Under this process, each leaf x of Tn will have a
(possibly empty) set of features (Fx ). Fig. 1 illustrates the processes described. Note
that |Fx | (for any x ∈ Xn) and FD(Xn) are now random variables.

Let N� denote the number of features at the end of any path P in Tn that starts at
time t = 0 and ends at time �. Then N� is described by a continuous-time Markov
process that has a constant birth rate and a linear death rate. It is then a classical result
Feller (1950) that N� has expected value r

ν
(1 − e−ν�) + F0e−ν�, where F0 = |Fρ |

(the number of features present at time 0), and N� converges to a Poisson distribution
with mean r

ν
as � grows. Moreover, if N0 = 0 then N� has a Poisson distribution for

any value of � > 0 (Feller (1950) p. 461), and so, regardless of the value of Fρ , the
random variable |Fx \ Fρ | has a Poisson distribution with mean r

ν
(1− e−ν�(x)) where

�(x) is the length of the path from the root to leaf x . The (random) number of features
at any leaf x of Tn (i.e. |Fx |) has the same distribution as N�(x). Note that for distinct
leaves x and y of Tn , the random variables |Fx | and |Fy | are not independent.
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Notational convention: Henceforth we will write FD(Tn) in place of FD(Xn) and
we will also write FD(T s

n ) in place of FD(Xn) when Xn is the subset of the set of
leaves Xn of Tn that survive under a FOB model with a survival probability s. We will
let Fρ denote the set of features present at the root vertex ρ at the top of the stem edge.

Lemma 3.1 Set F0 = ∅. Then for any value of n ≥ 1 the following hold:

(i) The random variable FD(Tn) has a Poisson distribution.
(ii) The expected value of FD(Tn) satisfies the following bound:

E[FD(Tn)] ≤ r

ν
n.

Proof Part (i): We use induction on n. Since Fρ = ∅, the result for base case (n = 1)
holds by the results mentioned in the previous paragraph. Thus, suppose that n ≥ 2,
and let Tn be a binary tree with n leaves and with Fρ = ∅. Then:

FD(Tn) = FD(T 1) + FD(T 2) + G.

where the trees T i (with i = 1, 2) are subtrees of Tn obtained by deleting the stem
edge and its endpoints (and setting the set of features at the top of the stem edge of
T 1 and T 2 equal to the empty set), and G is the number of features that arise on the
stem edge of Tn and are present in at least one leaf of Tn .

Notice that FD(T 1), FD(T 2) and G are independent random variables, and, by
induction, FD(T 1) and FD(T 2) each have a Poisson distribution. Conditional on the
number X of features that are present at the end of the stem edge, G has a binomial
distribution with parameters X and p where p is the probability that a single feature
present at the end of the stem edge is present in at least one leaf of Tn . Since X has a
Poisson distribution, and a Poisson number of Bernoulli random variables is Poisson,
it follows that FD(Tn), being the sum of three independent Poisson variables, also
has a Poisson distribution. This establishes the induction step and thus Part (i).

Part (ii):We have:

FD(Tn) =
∣
∣
∣
∣
∣
∣

⋃

x∈Xn

Fx

∣
∣
∣
∣
∣
∣
≤

∑

x∈Xn

|Fx |.

Now, for each x ∈ X , we have E[|Fx |] = r
ν
(1 − e−νLx ) where Lx denotes the length

of the path from the top of the stem edge of Tn to the leaf x . Thus E[FD(Tn)] ≤ r
ν

·n.

��
Example (n = 2) Consider the process described on T2 with F0 = ∅. Let �0 denote

the length of the stem edge, and � the length of each of the two pendant edges. Then
FD(T2) has a Poisson distribution with expected value

r

ν
(1 − e−ν�0)(1 − (1 − e−ν�)2) + 2

r

ν
(1 − e−ν�)
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and FD(T s
2 ) has expected value

s2FD(T2) + 2s(1 − s)
[ r

ν
(1 − e−ν�0)e−ν� + r

ν
(1 − e−ν�)

]
.

In particular,

E[FD(T s
2 )]

E[FD(T2)] = s ·
[

s + 2(1 − s)
1 − e−ν(�0+�)

(1 − e−ν�0)(1 − (1 − e−ν�)2) + 2(1 − e−ν�)

]

When �0 = 0, the right-hand side of this equation equals s, but for all other values

it is strictly greater than s. Moreover, by differentiating
E[FD(T s

2 )]
E[FD(T2)] it can be verified

that this ratio is monotone decreasing as ν increases for all positive values of � and
�0; in particular, for s ∈ (0, 1), and ν > 0, this ratio is always less than the expected
proportion of PD that survives in T2.

3.1 A limit result for sequences of trees

The main result of this section is Theorem 3.1, and its proof relies on establishing a
sequence of preliminary lemmas.

Lemma 3.2 Let β > 0 be a fixed constant. Given a sequence Tn of trees with leaf set
Xn, let En be the event that |Fx | ≤ nβ for every x ∈ Xn. Then limn→∞ P(En) = 1.

Proof We combine the Bonferroni inequality with a standard right-tail probability
bound for a Poisson variable. Firstly, observe that:

P(En) ≥ 1 −
∑

x∈Xn

P(|Fx | > nβ) = 1 − nP(|Fx1 | > nβ). (3.1)

Now, |Fx1 | can be written as the sum of two independent random variablesUx1 + Vx1
where Ux1 has a Poisson distribution with mean m ≤ r/ν, and Vx1 ≤ |Fρ | ≤ B with
probability 1 (Ux1 counts the features at x1 if Fρ = ∅, Vx1 counts the features in Fρ

that are remain present at x1, and B is the global bound on Fρ described near the
start of Sect. 3). Thus, the Chernoff bound on the right hand tail of a Poisson variable

(Mitzenmacher and Upfal 2005, p. 97) gives P(|Ux1 | > nβ) ≤
(
em
nβ

)nβ

e−m, and so

nP(|Fx1 | > nβ) → 0 as n grows. Applying this to the inequality in (3.1) establishes
the result. ��
Lemma 3.3 Let (Tn, n ≥ 1) be a sequence of rooted binary trees, with Tn having leaf
set Xn, and suppose that E[FD(Tn)] ≥ cn for some constant c > 0. Then FD(Tn)

E[FD(Tn)]
converges in probability to 1 as n → ∞.

Proof First observe that we can write FD(Tn) as the sum of two independent random
variables, namely FD0(Tn) + K , where FD0(Tn) is the FD value when Fρ = ∅,
and K is the number of features at the time at the root that are also present in at least
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one leaf. In particular, K ≤ |Fρ | which is assumed to be bounded by a constant B
(independent of n). Thus

Var[FD(Tn)] = Var[FD0(Tn)] + Var[K ] ≤ Var[FD0(Tn)] + B.

By Lemma 3.1, Var[FD0(Tn)] = E[FD0(Tn)] ≤ r
ν

· n, so Var[FD(Tn)] ≤ r
ν

· n+ B,
and thus:

Var

[
FD(Tn)

n

]

= Var[FD(Tn)]/n2 → 0, (3.2)

as n → ∞. We now apply Chebyshev’s inequality to obtain:

P

(∣
∣
∣
∣

FD(Tn)

E[FD(Tn)] − 1

∣
∣
∣
∣ ≥ ε

)

≤ Var

(
FD(Tn)

E[FD(Tn)]
)
/
ε2, (3.3)

and since

FD(Tn)

E[FD(Tn)] = FD(Tn)

n
· n

E[FD(Tn)]
we have:

Var

[
FD(Tn)

E[FD(Tn)]
]

= Var

[
FD(Tn)

n

]

·
(

n

E[FD(Tn)]
)2

and so the term on the right of Eq. (3.3) is bounded above by Var
[
FD(Tn)

n

]
· 1

ε2c2
,

which converges to 0 as n → ∞ by Eq. (3.2). ��
Lemma 3.4 Let (Tn, n ≥ 1) be a sequence of rooted binary trees, with Tn having leaf
set Xn, and suppose that E[FD(Tn)] ≥ cn for some constant c > 0. Suppose that for

each x ∈ Xn, FD({x}) ≤ Bn, where B2
n = o(n). Then FD(T s

n )

E[FD(T s
n )]

P−→ 1 as n → ∞.

Proof Let Wn = H(Yn), where Yn = {Yi : i ∈ [n]} is the sequence of Bernoulli
random variables with Yi = 1 if species xi survives the FOB extinction event and
Yi = 0otherwise, and H(y1, . . . , yn) is the ratio

FD({xi∈Xn :yi=1})
E[FD(T s

n )] ,where the numerator
is as defined in Eq. (2.1) withμ( f ) = 1 for all f . Observe that for any particular value
of i ∈ {1, . . . , n}, if we change yi (from 0 to 1 or visa versa) to give y′

i then:

|H(y1, ..., yi , ..., yn) − H(y1, ..., y
′
i , ..., yn)| ≤ FD({xi })/E[FD(T s

n )]
≤ Bn/E[FD(T s

n )].

We now apply McDiarmid’s inequality to obtain (for each ε > 0):

P(|Wn − 1| ≥ ε) ≤ 2 exp

(−2ε2E[FD(T s
n )]2

nB2
n

)

. (3.4)
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Fig. 2 For the tree Tn shown
(with � > 1 fixed and s ∈ (0, 1))
the sequence of trees (Tn , n ≥ 2)

has the property that
FD(T s

n )

FD(Tn )
does not converge in probability
to any constant value as n grows

Now, E[FD(T s
n )] ≥ s ·E[FD(Tn)] by Proposition 2.2(i) (taking μ( f ) = 1 for all f )

and, by assumption, E[FD(Tn)] ≥ cn. Thus we obtain:

P(|Wn − 1| ≥ ε) ≤ 2 exp

(−2ε2c2s2n

B2
n

)

.

Therefore, P(|Wn −1| ≥ ε) → 0 as n → ∞. Since this holds for all ε > 0, we obtain
the claimed result. ��

We can now state the main result of this section. Recall that FD(T s
n ) is the number

of features present among leaves of Tn that survive the FOB extinction event.

Theorem 3.1 Let (Tn, n ≥ 1) be a sequence of binary trees and let features evolve on
Tn according to the stochastic feature evolution process described. IfE[FD(Tn)] ≥ cn

for some constant c > 0, and if E[FD(T s
n )]

E[FD(Tn)] converges to a constant cs as n grows we
have:

FD(T s
n )

FD(Tn)
P−→ cs

as n → ∞.

Before we proceed to the proof, we provide the following comments.

Remarks • Theorem 3.1 can fail without the condition E[FD(Tn)] ≥ cn. Fig. 2

provides a simple example of a sequence of trees Tn for which FD(T s
n )

FD(Tn)
does not

converge in probability to any constant value as n grows. In this example, Fρ = ∅
and the tree has height 2� with one leaf having an incident edge of length � and
the remaining n − 1 leaves having incident edges of length 1/n.

• A sufficient condition for the inequality E[FD(Tn)] ≥ cn in Theorem 3.1 to hold
is that for some ε > 0 and δ > 0 the proportion of pendant edges of Tn of length
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≥ ε is at least δ for all n ≥ 1. Briefly, the reason for this is that the expected
number of features arising on each of these pendant edges and surviving to the
end of this edge is bounded away from 0 and the features associated with distinct
pendant edges are always different from each other, and different from any other
features arising in the tree.

Proof of Theorem 3.1 Let Aε(n) be the event that
∣
∣
∣

FD(T s
n )

E[FD(T s
n )] − 1

∣
∣
∣ < ε, and let En be

the event described in Lemma 3.2 with β = 1
3 . Then, limn→∞ P(Aε(n)|En) = 1, by

Lemma 3.4. Now,

P(Aε(n)) = P(Aε(n)|En)P(En) + P(Aε(n)|En)P(En),

and since P(En) → 1 as n → ∞ (by Lemma 3.2) we have limn→∞ P(Aε(n)) = 1.

Since this holds for all ε > 0, it follows that FD(T s
n )

E[FD(T s
n )]

P−→ 1 as n grows.

Moreover, from Lemma 3.3, we have FD(Tn)
E[FD(Tn)]

P−→ 1. Now we can write FD(T s
n )

FD(Tn)
as follows:

FD(T s
n )

FD(Tn)
= FD(T s

n )

E[FD(T s
n )] · E[FD(Tn)]

FD(Tn)
· E[FD(T s

n )]
E[FD(Tn)]

The first two terms on the right of this equation each converge in probability to 1 as
n → ∞, whereas the third (deterministic) term converges to cs . This completes the
proof. ��

We will apply Theorem 3.1 in the next section to establish a result for FD loss on
birth–death trees.

4 Feature diversity ratios in birth–death trees

In this section, we continue to investigate the stochastic model of feature gain and
loss, but rather than considering fixed trees, we will now allow the trees themselves
to be stochastically generated, following the simple birth–death processes that are
common in phylogenetics. Thus, there will now be three stochastic processes in play:
the linear-birth/linear-death process that generates the tree, the constant-birth/linear-
death process of feature gain and loss operating along the branches of the tree, and the
simple FOB extinction event at the present.

4.1 Definitions

Let Tt denote a birth–death tree grown from a single lineage for time t with birth and
death parameters λ and μ, respectively. We will assume throughout that λ > μ (since
otherwise the tree is guaranteed to die out as t becomes large).

On Tt , we impose the model of feature gain and loss from the previous section with
parameters r and ν. We now apply the FOB model in which each extant species (i.e.
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leaves of Tt that are present at time t) has a probability s > 0 of surviving and 1 − s
of becoming extinct (independently across the extant species), and we let T s

t denote
the tree obtained from Tt by removing the species at the present that did not survive
this process. We refer to T s

t as the pruned tree, and the leaves of Tt and T s
t that are

present at time t as the extant species (or leaves) of these trees (to contrast them from
leaves of Tt that lie at the endpoints of any extinct lineages). If s < 1, there may now
be fewer features present among the (probably reduced number of) extant species in
T s
t than there were in Tt .
Let FD(Tt ) be the discrete random variable that counts the number of features

present in at least one of the extant leaves of Tt , and let FD(T s
t ) denote the number

of these features that are also present in at least one extant leaf in the pruned tree T s
t .

4.2 Expected feature diversity

Next, we consider the expected values of FD(Tt ) and FD(T s
t ), where this expectation

is across all three processes (the birth–death process that generates Tt , feature gain
and loss on this tree, and the species that survive the extinction event at the present
under the FOB model). Of particular interest is the ratio of these expectations, and
their limit as t becomes large. Specifically, let:

ϕFD(t, s) = E[FD(T s
t )]

E[FD(Tt )] and ϕFD(s) = lim
t→∞ ϕFD(t, s).

Note that ϕFD(s) is a function of five parameters (s, r , λ, μ, ν); however, we will
show that it is just a function of s and two other parameters. Notice also that once
these parameters are fixed, ϕFD(t, s) and ϕFD(s) are monotone increasing functions
of s taking the value 0 at s = 0 and 1 at s = 1. Moreover, ϕFD(t, s) and ϕFD(s)
are both independent of r (the rate at which features arise along any lineage) as we
formally show shortly.

4.3 Relationship to phylogenetic diversity (PD)

Recall that for a rooted phylogenetic tree T with branch lengths, the PD value of a
subset S of leaves (PD(S, T )) is the sum of the lengths of the edges of the subtree of
T that connect S and the root of the tree.

In the special casewhere ν = 0, andwhere no features are present at time0, FD(T s
t )

(conditioned on Tt ), has a Poisson distribution with a mean of r times PD(St , Tt ),
where St is the (random) set of leaves at time t that survive the extinction event at
the present. Consequently, E[FD(T s

t )|Tt ] = E[r PD(St , Tt )] = rE[PD(St , Tt )].
Similarly, E[FD(Tt )|Tt ] = rE[PD(Lt , Tt )], where Lt is the set of extant leaves of
Tt . Thus, in this special case we have ϕFD(s) = ϕPD(s), where:

ϕPD(s) = lim
t→∞

E[PD(St , Tt )]
E[PD(Lt , Tt )] .
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The function ϕPD(s) was explicitly determined in Lambert and Steel (2013),
Mooers et al. (2012) as follows:

ϕPD(s) :=

⎧
⎪⎨

⎪⎩

ρs
ρ+s−1 · ln(s/(1−ρ))

ln(1/(1−ρ))
, if ρ = μ/λ 
= 0, 1 − s;

−s ln(s)/(1 − s), if ρ = 0 (i.e. a Yule tree);
(1 − s)/ ln(1/s), if ρ = 1 − s.

(4.1)

5 Calculating'FD(s)

We first recall a standard result from birth–death theory. Consider a linear birth–death
process (starting with a single individual at time 0), with a birth rate λ, a death rate
θ . For the individuals present at time t , sample each individual independently with
sampling probability s > 0. Let Xt (t ≥ 0) denote the number of these sampled
individuals and let Rs

t (λ, θ) be the probability that Xt > 0. Then

Rs
t (λ, θ) =

{
s(λ−θ)

sλ+(λ(1−s)−θ)e(θ−λ)t , if λ 
= θ;
s

1+λst , if λ = θ.
(5.1)

In particular, Rs
t (λ, θ) converges to 0 if λ ≤ θ and converges to a strictly positive

value 1 − θ/λ if λ > θ (Kendall 1948), (Yang and Rannala 1997).
The number of species at time t in T s

t that have a copy of particular feature f
that arose at some fixed time t0 ∈ (0, t) in Tt is described exactly by the birth–death
process Xt−t0 with parameters λ and θ = μ + ν and survival probability s at the
present; it follows that as t becomes large, it becomes increasingly certain that none
of the species at time t in the pruned tree will contain feature f if λ ≤ μ+ ν, whereas
if λ > μ+ν, there is a positive limiting probability that f will be present in the extant
leaves of the pruned tree.

Since ϕFD(s) = ϕPD(s) (as given by Eqn. (4.1)) for all values of s when ν = 0,
in this section we will assume that ν > 0 (in addition to our universal assumption
that λ > μ). Our main result provides an explicit formula for ϕFD(s) in Part (a), and
describes some of its key properties in Parts (b) and (c).

Theorem 5.1 Given λ > μ and ν > 0, let ρ = μ+ν
λ

, β = 1 − λ−μ
ν

. Then:

(a)

ϕFD(s) = s · I (s)

I (1)
,

where

I (s) =
∫ 1

0

dx

1 − s
(
1−xβ

1−ρ

) , when ρ 
= 1
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and

I (s) =
∫ 1

0

dx

ν/λ − s ln x
, when ρ = 1.

(b) Conditional on the non-extinction ofTt , FD(T s
t )

FD(Tt ) converges in probability toϕFD(s)
as t → ∞.

(c) ϕFD(s) is an increasing concave function that satisfies 1 ≥ ϕFD(s) ≥ s for all s.

Remarks (i) Notice that although ϕFD(s) depends on five parameters (r , s, λ, μ, ν),
Theorem 5.1(a) reveals that just three derived parameters suffice to determine
ϕFD(s), namely s and the ratios ρ1 = μ/λ ∈ (0, 1) and ρ2 = ν/λ (these determine
ρ and β, since ρ = ρ1 + ρ2 and β = 1 − 1/ρ2 + ρ1/ρ2). Notice also that
ρ = 1 ⇔ β = 0 and ρ > 1 ⇔ β > 0.

(ii) Our proof relies on establishing the following exact expression for E[FD(T s
t )]:

E[FD(T s
t )] = re(λ−μ)t

∫ t

0
e−(λ−μ)τ Rs

τ (λ, μ + ν)dτ + F0R
s
t (λ, μ + ν).

(5.2)

where F0 is the number of features present at time t = 0.
In particular, this also provides an exact expression for ϕFD(t, s). Notice that the
ratio of the expected number of features present in the pruned tree, divided by the

expected number of species in the pruned tree is FD(T s
t )

se(λ−μ)t , and this ratio converges

to r(1−ρ)
ν

∫ 1
0

dx
1−s−ρ+sxβ as t → ∞ when ρ 
= 1 (via a further analysis of Eq. (5.2)

in the Appendix).
(ii) We saw in Sect. 4.3 that when ν = 0, ϕFD(s) = ϕPD(s). At the other extreme, if λ

and μ are fixed, and we let ν → ∞, then ϕFD(s) converges to s (since ρ → −∞
and β → 1 in Theorem 5.1(a)). Informally, when ν is large compared to λ, most
of the features present among the extant leaves of Tt will have arisen near the
end of the pendant edges incident with these extant leaves (a formalisation of this
claim appears in Rosindell et al. (2022)); if we now apply the FOB model then
the expected proportion of these features that survive will be close to the expected
proportion of leaves that survive, namely s.

5.1 Illustrative examples

First, consider a Yule tree (i.e. μ = 0) grown for time t . Figure 3 (left) plots ϕFD(s)
for values of ν/λ ∈ {0, 0.5, 1, 2, 10}. When ν = 0, ϕFD(s) describes the proportional
loss of expected PD in the pruned tree, and as ν increases, ϕFD(s) converges towards
s (the expected proportion of leaves that survive extinction at the present). Figure 3
(right) plots ϕFD(s) for birth–death trees with μ/λ = 0.8, showing a similar trend,
however with ϕFD(s) ranging higher above the curve y = s.
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Fig. 3 Left: The function ϕFD(s) as a function of s for pure-birth Yule trees (μ = 0). Right: The function
ϕFD(s) for birth–death trees with μ/λ = 0.8. The curves within each graph show the effect of increasing
ν, for values of ν/λ between 0 (top) and 10 (bottom). The top curve also corresponds to the phylogenetic
diversity ratio ϕPD(s)

5.2 Simulations

We ran simulations to test the expected relationship between ϕFD(s) and s and to
get estimates of standard deviation. All simulations were run in R version 4.2.1 Team
(2021). We first simulated 500 Yule trees (age = 100, λ = 0.055, μ = 0, repeated and
filtered to keep 500 250-tip trees) and 500 birth–death trees (age = 100, λ = 0.11, μ =
0.088, repeated and filtered to keep 500 trees with 250-300 tips) using the sim.bd.age
function in the package TreeSim (Stadler 2011). Features were then evolved on each
tree, followed by separate extinction events.

Keeping the rate of feature gain fixed (r = 0.3), we modelled five different rates
of feature loss (ν ∈ {0, 0.5λ, λ, 2λ, 10λ}). We estimated feature gain and loss on
each edge using the Gillespie algorithm (Gillespie 1976), where time until the next
event (either feature gain or loss) was drawn from an exponential distribution with rate
(r + kν), where k is the number of currently existing features at the start of the edge.
The type of event was then determined with a Bernoulli draw with probability of a
gain equal to r/(r + kν). At each split on the tree, all existing features were copied to
descendent edges. Each gain event created a new unique feature, and each loss event
randomly selected an existing feature to eliminate from the current edge. At the end
of the simulation the presence of features on each tip of the tree was recorded.

Extinction events were simulated by randomly selecting a proportion s of tips to
delete, with s ranging from 0.05 to 0.95 by intervals of 0.05. The proportion of unique
features remaining after extinction events was recorded, and the results are shown in
Fig. 4.

Resulting ratios of remaining features generally tracked expectations (the bias for
birth–death trees when ν/λ = 0 is likely due to our theoretical results conditioning
on t rather than n). The standard deviation (SD), calculated for each ν on both Yule
and birth–death trees, were fairly consistent for all ν except ν = 10λ, where it was
noticeably higher, as shown in Table 1. Because the number of total events along an
edge (gains and losses) is described by a Poisson distribution, its variance increases
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Fig. 4 Simulation results for remaining feature diversity as a function of s for pure-birth Yule trees (μ = 0,
left) and birth–death trees (μ/λ = 0.8, right). Results shown for two of the five feature evolution parameter
scenarios. Each point represents one simulation on one simulated tree (n = 500 trees). The solid curves are
the theoretical relationships between the expected proportion of remaining feature diversity and s for both
of the shown feature evolution parameter scenarios

Table 1 Mean standard deviations of proportions of remaining feature diversity (each value is averaged
over the 19 values of s between 0.05 and 0.95)

ν/λ 0 0.5 1 2 10

Yule 2.06 × 10−2 1.83 × 10−2 1.84 × 10−2 1.99 × 10−2 3.67 × 10−2

Birth–death 2.33 × 10−2 2.02 × 10−2 2.16 × 10−2 2.52 × 10−2 5.01 × 10−2

with the mean, and this may explain the higher standard deviation at the highest loss
rate.

5.3 Features that appear in only one extant species

Let Ut denote the number of features that are present in precisely one species in Tt ,
and let Ut = E[Ut ]. The following result describes a simple relationship between Ut

and Ft = E[FD(Tt )].
Proposition 5.1

dFt
dt

= re(λ−μ)t − (μ + ν)Ut . (5.3)

Proof Let Ft denote the number of features present at time t among the leaves of Tt .
Consider evolvingTt for an additional (short) period δ into the future. Then, conditional
on Nt (the number of leaves of Tt present at time t) and Ut :

Ft+δ − Ft =

⎧
⎪⎨

⎪⎩

1, with probability rNtδ + o(δ);
−1, with probability (μ + ν)δ · Ut + o(δ);
0, with probability 1 − ((μ + ν)Ut + rNt )δ + o(δ).
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Applying the expectation operator (and using E[Ft+δ] = E[E[Ft+δ|Nt ,Ut ]]) and
letting δ → 0 leads to the equation stated. ��

6 Concluding comments

In this paper, we have considered, in order, three types of data to quantify the expected
loss of feature diversity: sets of features across species (without any model of feature
evolution or phylogeny), sets of features at the tips of a given phylogenetic tree, and
sets of features at the tips of a random (birth–death) tree. The results of the earlier
sections also proved helpful in establishing certain results in later sections.

In terms of wider significance to biodiversity conservation, our results and graphs in
Sect. 5 suggest that the extent of relative feature diversity loss following extinction at
the present is likely to be greater than that predicted by relative phylogenetic diversity
loss for any given extinction rate s ∈ (0, 1).

Of course, our results are based on simple models (of feature gain and loss, and
extinction at the present) and so exploring how these results might extend to more
complex and realistic biological models would be a worthwhile topic for future work.
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7 Appendix: Proof of Theorem 5.1

Part (a): Consider a birth–death tree Tt with parameters λ,μ, a feature evolution
model with parameters r , ν, and a survival probability s for leaves at the present. Let
F s
t = FD(T s

t ), and let Gs
t be the random variable that has the same distribution as

F s
t with the initial condition Gs

0 = 0 (i.e. no features at the root of the tree). Let �s
t

be the number of features that are present at the root of Tt and also in the pruned tree
T s
t . Then

F s
t = Gs

t + �s
t .

Let Fs
t = E[F s

t ] and Gs
t = E[Gs

t ]. The two random variables Gs
t and �s

t are not
independent (they are linked by both the underlying tree Tt and the pruning event at
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the present) however, applying the expectation operator gives:

Fs
t = E[Gs

t ] + E[�s
t ] = Gs

t + F0R
s
t (λ, μ + ν), (7.1)

where F0 is the number of features present at the root of T s
t .

Now, consider Gs
t+δ , and the events that can occur in the interval [0, δ).

(a) A new feature arises (with probability rδ + o(δ));
(b) A speciation event occurs (with probability λδ + o(δ));
(c) The lineage (and hence the tree) dies (with probability μδ + o(δ)).
(d) None of the above occur (with probability 1 − (r + λ + μ)δ + o(δ))

Let X be the randomvariable taking values in {a, b, c, d}which denotes which of these
four events occurs. In Case (a), the new feature is also present in T s

t with probability
Rs
t (λ, μ + ν) and so

E[Gs
t+δ|X = a] = E[Gs

t ] + Rs
t (λ, μ + ν) = Gs

t + Rs
t (λ, μ + ν).

For Case (b), E[Gs
t+δ|X = b] = E[Gs

t +Hs
t ], whereHs

t is an independent copy of Gs
t .

Thus,

E[Gs
t+δ|X = b] = 2Gs

t .

For Cases (c) and (d), we have: E[Gs
t+δ|X = c] = 0 and E[Gs

t+δ|X = d] = Gs
t . Thus,

by the law of total expectation,

Gs
t+δ = E[E[Gs

t+δ|X ]] = Gs
t + (r Rs

t (λ, μ + ν) + (λ − μ)Gs
t )δ + o(δ).

Consequently, the function Gs
t satisfies the first-order linear differential equation:

d

dt
Gs

t − (λ − μ)Gs
t = r Rs

t (λ, μ + ν), (7.2)

subject to the initial condition Gs
0 = 0. Solving Eq. (7.2) gives:

Gs
t =

∫ t

0
re(λ−μ)τ Rs

t−τ (λ, μ + ν)dτ (7.3)

By making a change of variable we can rewrite Eq. (7.3) as:

Gs
t = re(λ−μ)t

∫ t

0
e−(λ−μ)τ Rs

τ (λ, μ + ν)dτ. (7.4)

Combining this equation andEq. (7.1) provides the explicit expression for Fs
t described

earlier (Eq. (5.2)).
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We now substitute in the expression for Rs
t (λ, θ) from Eq. (5.1) (with t = τ and

θ = μ + ν). For ρ 
= 1, we have:

Gs
t = re(λ−μ)t s(1 − ρ)

∫ t

0

e(μ−λ)τ

(1 − s − ρ)e−λ(1−ρ)τ + s
dτ. (7.5)

Multiplying the numerator and denominator of the integrand by eλ(1−ρ)τ gives
e−ντ

1−s−ρ+seλ(1−ρ)τ , and then by making the substitution x = e−ντ , we obtain:

Gs
t = re(λ−μ)t s(1 − ρ)

ν
·
∫ 1

e−νt

dx

1 − s − ρ + sxβ
, (7.6)

for the value of β described in the theorem. Combining Eqs. (7.1) and (7.6) gives:

Fs
t = re(λ−μ)t s(1 − ρ)

ν
·
∫ 1

e−νt

dx

1 − s − ρ + sxβ
+ F0R

s
t (λ, μ + ν). (7.7)

Thus, for ρ 
= 1,

Fs
t

F1
t

=
s
∫ 1
e−νt

dx
1−s−ρ+sxβ + o(1)

∫ 1
e−νt

dx
−ρ+xβ + o(1)

,

where the two terms of order o(1) (which converge to zero as t grows) refer to the
last term on the right of Eq. (7.7) which is bounded above by the constant F0 and so
is asymptotically negligible in comparison to the term e(λ−μ)t in Eq. (7.6). This gives
the limit for ϕFD(s) as stated in Part (a) for fixed ρ 
= 1.

In the case where ρ = 1 (which implies β = 0), we use the corresponding
expression for Rs

t (λ, θ) from Eq. (5.1) with t = τ and θ = μ + ν to obtain:

Gs
t = rse(λ−μ)t

∫ t

0

e−(λ−μ)τ

1 + λsτ
dτ.

By a similar approach to the above we are led to the second equation in Part (a).
Part (b): Let Tt be a birth–death tree with rates λ,μ where λ > μ, let n(Tt ) denote

the number of leaves of Tt present at time t , and let E ′ be the event that n(Tt ) > 0 (i.e.
the non-extinction of Tt ).

Conditional on the event E ′, the number of leaves in Tt tends to infinity (with
probability 1) as t → ∞ (Jagers 1992), and so we can define a sequence of trees
T1, T2, . . . , Tn, . . . by letting Tk denote the tree Tτ at the first time τ = τ(k) when Tτ

has k extant leaves (we ignore leaves of Tt that have already become extinct by time
τ ).

Next, we establish that E[FD(Tn)] ≥ cn for a constant c > 0 (in order to apply
Theorem 3.1). The tree Tn has n extant pendant edges, and the length of a randomly
selected pendant edge in Tn has a strictly positive probability p of having length at
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least κ > 0 (dependent on μ and λ), by Theorem 3.1 of Stadler and Steel (2012).
Now, E[FD(Tn)] is bounded below by the total number of features that arises on
the n pendant edges and survive to the end of the edge (since all these features will
necessarily be distinct from each other, and from other features that arise in the tree).
Moreover, for each edge having length at least κ the expected number of features that
arise on this edge and survive to the end of the edge is at least r

ν
(1 − e−κν). Thus the

expected number of features contributed by the pendant edges to FD(Tn) is at least
n · p r

ν
(1 − e−κν).

Thus, we can now apply Theorem 3.1, since cs = limn→∞ E[FD(T s
n )]

E[FD(Tn)] exists, and

equals ϕFD(s), so FD(T s
n )

FD(Tn)
(and thus FD(T s

t )

FD(Tt ) ) converges to ϕFD(s) as n (respectively
t) grows.

Part (c): We apply Proposition 2.2. By Part (i) of that result, and condition-
ing on Tt we obtain E[FD(T s

t )|Tt ] ≥ sFD(Tt ), and so, taking expectation again
(over the distribution of Tt ) gives: E[FD(T s

t )] ≥ sE[FD(Tt )], and thus ϕFD(s) =
limt→∞ E[FD(T s

t )]
E[FD(Tt )] ≥ s.

The inequality ϕFD(s) ≤ 1 is clear since, for any choice of Tt , we have FD(T s
t ) ≤

FD(Tt ) with probability 1.
For concavity, Proposition 2.2 implies that the conditional expectation

E

[
FD(T s

t )

FD(Tt ) |Tt
]
is concave as a function of s, and (by taking expectation over the

distribution of Tt ), E
[
FD(T s

t )

FD(Tt )

]
is also concave as a function of s. Finally, by Part (a)

of the current theorem, E
[
FD(T s

t )

FD(Tt )

]
converges (deterministically) to ϕFD(s) and so

this function is also concave as a function of s. ��
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