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Abstract

The variations between homologous nucleotide sequences representative of various species are,
in part, a consequence of the evolutionary history of these species. Determining the evolutionary
tree from patterns in the sequences depends on inverting the stochastic processes governing the
substitutions from their ancestral sequence. We present a number of recent (and some new)
results which allow for a tree to be reconstructed from the expected frequencies of patterns in
its leaf colorations generated under various Markov models. We summarize recent work using
Hadamard conjugation, which provides an analytic relation between the parameters of Kimura’s
3ST model on a phylogenetic tree and the sequence patterns produced. We give two applications
of the theory by describing new properties of the popular “maximum parsimony” method for
tree reconstruction. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Trees; DNA sequences; Markov processes;, Maximum parsimony; Hadamard matri-
ces; Site substitution models

1. Introduction

A fundamental problem in biological classification is the following: how can the
large and rapidly expanding array of DNA and RNA sequences be best exploited to
provide an accurate picture of how species evolved from common ancestors? It is
increasingly recognized that approaches to this question should be statistically based
[34]. This requires the underlying sequence evolution to be modelled stochastically,
and a variety of models have been proposed. We first describe a number of classes of
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such models. We then discuss the fundamental and biologically important “inversion”
problem of reconstructing trees uniquely, given only the expected frequencies of their
induced leaf colorations (patterns). This provides the mathematical basis for statistical
approaches to phylogeny reconstruction, where the frequencies of patterns in finite
length sequences are approximations to these expected frequencies.

Next we review two important, classical characterizations of phylogenetic trees — as
set systems, and as distance functions satisfying a “four point condition”. In Section 2.1
we describe how the second of these characterizations allows for the inversion problem
to be solved with very few assumptions regarding the associated transition matrices.

We then consider more specific models in which progressively more structure is
imposed on the model: from insisting that the transition matrices belong to some pre-
scribed semigroup, and special cases of such models — Stationary models and Group-
based models for which we present new results for these models in Theorems 4 and 5.
Group-based models include the symmetric model for 2 colors (based on the cyclic
group C>) and an extension of the biologically relevant 3-parameter model due to
Kimura [32] which corresponds to the group C; x C,. Recently, it has been shown that
both these models (and others based on abelian groups, particularly elementary abelian
groups) result in a particularly nice and fully invertible relationship between a tree
and the frequencies of the patterns it induces (see [25, 44, 50]). This is summarized
in Section 2.2.3 using the characterization of a phylogenetic tree as a set system from
Section 1.2.1. In particular, for the Kimura 3ST model [32], we present a self-contained
and transparent proof of the main inversion theorem from Steel et al. [44], which com-
plements the more abstract approach to group-based models (based on discrete Fourier
analysis) adopted by Székely et al. [44, 50]. We also summarize in Section 2.3 some
recent extensions that allow for a distribution of rates across sites.

In Section 3 we present two new applications of the theory to analyze the popular
tree building method based on “maximum parsimony”: (1) we show that this method
is statistically consistent on four species, under Kimura’s 3ST model, with a molecular
clock, and (2), under the symmetric 2-color model we prove the “Bealey Theorem”
which bounds the expected number of sites requiring 2,3,... substitutions on the true
tree in terms of the expected number requiring 0 and 1 substitution (regardless of the
parameters on the underlying tree); an application of this theorem to biological data
has already appeared in [35].

1.1. General formulation

In this section we provide the framework from which we formulate the inversion
problem and detail some assumptions necessary for this inversion.

1.1.1. Randomly coloring phylogenetic trees

Evolutionary relationships are generally represented by a phylogenetic tree, T, that is,
a tree whose leaves are labelled (bijectively) by a set S of species and whose remaining
vertices are unlabelled and of degree at least 3. When all the non-leaf vertices have
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degree 3 the tree is said to be fully resolved. If we take a phylogenetic tree T and
either distinguish a non-leaf vertex by labelling it p, or bisect an edge of T and label
the newly created degree 2 vertex p, the resulting tree, denoted 717, is called a rooted
phylogenetic tree. In taxonomy, the leaves of 7 and 77 generally represent extant
species, the remaining vertices represent ancestral species. The root vertex p in 71
represents the most recent common ancestor of the species set S.

We represent the assignment of characters of biological interest as a coloring of
the vertices of T*7. Direct the edges of 777 away from p, and for each edge e, we
write e as the ordered pair (u,v) if u lies between v and p. Consider the following
probability distribution on the set of leaf-colorations of T by elements of a set C of
¢ colors. First, assign a color 2 € C to the root vertex p with probability n,(p). Then,
randomly color the remaining vertices of T/ recursively, from the root towards the
leaves, as follows: if e=(u,v) has vertex u assigned a color, say 2, and v is yet to
be colored, then assign a random color f§ to v with probability p.(2, f#). Eventually all
the vertices of 77, including the leaves of 777, will be colored, and each such total
coloration (coloration of all the vertices of 7+”) 7 produced in this way will have a
certain probability. Now, suppose we are given a coloration y of § by C — we call
this a pattern on S. If we regard S as the set of leaves of 7" then y has an induced
marginal probability, equal to the sum of the probabilities of that subset of the total
colorations which extend y.

We denote by f,, the probability of generating pattern y, so that

L= "mp) I pei).2()), (1)
i

e = (ur)

where the summation is over all total colorations 7 which extend y and the product is
over all edges of T**. Note that if 77" has @ non-leaf vertices there will be ¢ such
extensions.

For e={(u.v), an edge of T*”, we will let M(e) denote throughout the transition
matrix M(e)={[p.(2, f)]. Thus, if we order C as («,...,2.), the rs entry of M(e)
is the conditional probability that 7(v)=u«,, given that 7(u)=x,. Consequently, each
row of M(e) sums to 1. As a simple example, consider the tree in Fig. [, together
with the indicated 2 x 2 transition matrices and the root distribution n(p)=(m, 7).
The probability of the pattern y(1)=y(2) =0, x(3) =2, is

Sr=ml(1 — p )1 = p2)(1 = p3)pa+ (1 = p1)p2gs(l — qa)]
+malg1g2(1 — p3)pa + qi(1 — g2)g:(1 — g4)].

In our recursive description above of how to generate random patterns based on n(p)
and {M(e)}, we have tacitly assumed that each new coloring of a vertex is dependent
only on the color of its immediate ancestor. In the interests of precision we now make
explicit this assumption. Let < be a total ordering on the vertices of T that respects
descendency from the root, so that if e =(u,v), then v < ¢ (hence for example < may
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T = [m, w2

A 1 2 3
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Fig. 1. A simple example of a non-homogeneous Markov tree on two colors «;, %, with distribution n(p) at
the root vertex p, and an associated pattern y on leaf set $={1,2,3}.

be induced by time). Then in order for (1) to hold, we need only assume the following
equality of conditional probabilities for each edge e = (u,v) of 777,

(AD) P {i(b‘):%

Informally, (A1) states that given the state at vertex u, the state assigned to vertex
v is conditionally independent of the states at all other “earlier” vertices. (Al) im-
plies Eq. (1) by the well-known identity in probability theory, for a family of events
A, A4z,

A )Z(W)} =Pli(v) =a| j(u)).

w=r

P {ﬂA,} =P[4,]P[4, | A )P[43 | 4, AAd3] - --

If the tree 77 consisted of a path from p to a single leaf, then (Al) would be
precisely the definition of a non-homogeneous Markov chain (see [30, chapter 71).
Thus, (A1) defines what one might call a “nonhomogeneous Markov tree”.

1.1.2. Inversion

A fundamental issue for phylogenetic methodology is the inverse problem, of finding
T* and {M(e)}, or relevant information about these matrices, given just the prob-
abilities of the various patterns on S together with certain restrictions on {M(e)}. If
{M(e)} is not required exactly, it may still be desirable to determine, or to at least
place bounds on the “edge lengths” — that is the expected number of changes of color
on each edge under the assumption that the transition matrix for that edge is the re-
sult of a continuous-time Markov process (see Remark 2.2.1, below). For stationary
models (discussed in Section 2.2.1) these lengths are proportional to time, so that their
determination allows for the temporal dating of different evolutionary episodes. As an
intermediate step, it would be desirable to at least be able to order the vertices of
T consistently with the temporal order of the evolutionary events that such vertices
represent (namely the creation of new species from an ancestral species).
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Actually, as we shall see, the position of the root in 7# cannot be uniquely es-
tablished without invoking additional assumptions — in taxonomy the inclusion of an
additional outgroup species, or the imposition of a hypothesis such as the molecular
clock (discussed below) are used to estimate the position of the root. Thus, a more
reasonable goal is the following:

o Tree reconstruction problem.: Given f =[f,], or some knowledge of its distribution,

find 7, and information about {M(e)}.

In taxonomic applications, f, is usually estimated as the observed proportion of sites
in a collection of aligned sequences which correspond to y. Provided the sites in the
sequence have evolved identically and independently (i.i.d.) according to the above
model, these estimates will tend, with probability 1, to the true probability value as
the length of the sequences increases. In taxonomy, with sequences of finite length,
statistical methods must be appended to a solution of the inversion problem in order to
determine confidence limits for reconstructed trees (we do not consider these here, see,
for instance, [S1]). Also in taxonomy the assumption that the sites have an identical
distribution satisfying (A1) is often violated, however we describe how, for certain
models that allow the rate of evolution to vary across sites, the inversion problem can
still be solved.

Note that restrictions must be placed on {M(e)} for 7 to be uniquely described by
the f,’s. For example, with only two colors, putting p.(a, f)=0 for all edges e, we
see that all phylogenetic trees induce exactly the same distribution on the set of leaf
bicolorations (namely the degenerate distribution which colors all the leaves o with
probability m,(p)). Similarly, setting p.(«, f)=0.5 for all x, , we obtain the uniform
distribution on the »’s.

A further technical point concerns the occasional practice in taxonomy of grouping
the four nucleotide bases into the two purine bases and the two pyrimidine bases,
thereby replacing 4-colorations of the vertices of 77 by 2-colorations; although as-
sumption (Al) may apply for four bases, (A1) may fail when the four colors are
grouped into pairs.

1.2. Representations of phylogenetic trees

In this section we review two fundamental theorems concerning phylogenetic trees,
both of which provide neat existence and uniqueness results for a tree in terms of an
induced structure, and are central to later sections.

1.2.1. A phylogenetic tree as a system of splits

Normally a phylogenetic tree is thought of as a graph. However, there is a natural
way to represent an (unrooted) phylogenetic tree on a leaf set S as a collection of sub-
sets of S, and this representation is an essential aspect of inversion formulae discussed
later. If we take a phylogenetic tree, 7, with leaf set § and we delete an edge of 7,
this disconnects 7" into two components and thereby partitions S into a pair of subsets;
this pair is frequently referred to as a split. If we distinguish one element R of S, one
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Fig. 2. Three unrooted, fully resolved phylogenetic trees 77, 7>, T3 on leaf set S = {1,2,3,4}, with the edges
indexed by subsets of $' = {1,2,3}.

of the two subsets in a split will not contain R. We select this subset to identify the
split. The collection of these split identifying subsets for all the edges of the tree 7 is
a collection, ¢ = o(T'), of nonempty subsets of §' =S — {R} which have the following
two properties:

(i) S'eg and {i}€q,Vies,

(i) if B, p* €0 then B ¥ € {B,p*.0}.

Condition (ii) is often expressed by saying that  and 8* are compatible. 6(T) has
at most 2|S| — 3 sets, and this upper bound is achieved precisely if T is fully resolved
[9]. For example, for the fully resolved tree 71, in Fig. 2, taking R =4, we have

o(T)={{1}.{2}. {3}.{1,2.3}.{1,.2}}.

Buneman [9] established the fundamental converse result:

Theorem 1 (Buneman [9]). Any collection o, of non-empty subsets of S’ which satisfy
(i) and (ii) corresponds to a(T) for a unique unrooted phylogenetic tree T on S.
Furthermore, this tree can be recovered from o in polynomial time.

Methods for reconstructing 7' from ¢ include Meacham’s “Tree popping” method
(see [2]), or Gusfield’s linear-time method [24]. More generally, Buneman [9] described
a natural association of a graph to any collection ¢ of subsets of S, and showed
that this graph is a tree T precisely if the sets in ¢ are all pairwise compatible (in
which case ¢ =0(T)). For further details the interested reader should consult [8].
Unfortunately, for this construction the number of vertices in the graph can grow
exponentially with n=|S|. A preferable graphical representation of ¢ — which extends
to positively weighted splits — is provided by the recently developed split decomposition
method [3]. In this representation, “weakly compatible” sets of positively weighted
splits induce an edge-weighted graph with a small (order #?) number of vertices, and
this graph is a tree exactly when the splits are pairwise compatible.

1.2.2. A phylogenetic tree as a distance function

A distance function on S is a map d: S x S — R>? (the non-negative real numbers)
which is symmetric (i.e., d(x, v)=d(y,x) for all x,y<S) and for which d(x,x}=0
for all x€S. A (rooted or unrooted) phylogenetic tree 7 whose edges are weighted
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according to non-negative real-valued function Z, induces a distance function d = d(T, 1)
on the leaf set S by simply letting d;; be the sum of i(e) over all edges e on the path
in 7 connecting i and j. That is,

dy=dy(T.2):= Y Ae),

ecP(T;ij)

where P(T;i,j) is the path in T connecting leaves i and j. If a distance function d on
S can be expressed in this way then d is said to be additive on T, and 4 is said to
realise d on T.

Such a d not only satisfies the triangle inequality, it also satisfies a stronger “four
point” condition:
e For any four leaves i,/,k,/, (not necessarily distinct),

dij +du<max{dy +dj,diy +dy}. @

This condition is equivalent to the following: of the three pairwise sums (dij + du,
dix +dj and dy + dy) two sums are equal and they are at least as large as the
other sum. Several independent proofs (see [1] for references) have been given of the
following fundamental result:

Theorem 2 (Buneman [9]). (1) 4 distance function d on S is additive on some tree
if and only if d satisfies the four point condition (Eq. (2)).

(2) If d is additive on some tree, then there exists only one pair (T,1), where T
is an unrooted phylogenetic tree, and i is a non-negative edge weighting of T, with
Me)>0 if e is not incident with a leaf, and such that 1 realizes d on T. Both T and
/2. can be constructed from d efficiently (i.e. in polynomial time).

Both parts of this theorem have natural analogues when £ is allowed to be any real-
valued function defined on the edges of 7, or, more generally, where 1 takes values in
a suitably structured abelian monoid (for details, see [4]). A useful connection between
these two representations of trees — as splits and as a distance function - is given by
the “isolation index” of a split — for details and extensions the interested reader is
referred to [3].

2. Varieties of models and their inversion

We now describe some of the types of models that arise when additional assumptions
are added to the Markov property (A1). The most general of these seeks only to avoid
the null and random effects, while more structured models require some semigroup
structure in the stochastic process. In all cases we show how the expected frequencies
of patterns on S can be used to identify the generating tree uniquely and sometimes
additional information, such as the “lengths” of the edges.
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2.1. The general model

As mentioned earlier, even with two colors, and M(e) symmetric for all edges e, it is
not always possible to recover the unrooted tree 7', because if we set both off-diagonal
entries in all the matrices M(e) either to O or to 0.5, then every rooted phylogenetic
tree T1° induces exactly the same distribution on the set of leaf bicolorations. Note
that in these cases det(M(e))=1 and 0 respectively, where det(M ) denotes throughout
the determinant of matrix M. In the general model, in addition to (Al), we therefore
make the following mild (and biologically reasonable) assumption:

(A2) For all edges e of TP det(M(e))+#0,+1;m,(p)#0, for all colors x e C.

It is easily shown that det(M(e))=1(—1) < M(e) is an even (odd) permutation matrix.
The general model therefore allows ¢? — ¢ parameters in each transition matrix (subject
only to non-negativity, the ¢ linear stochastic equations, and the inequalities of condition
(A2)) and so is of the type of model discussed in [7, 13] and (for 2-color characters)
[41].

Theorem 3 (below) shows that conditions (Al) and (A2) are sufficient for the f,’s
to uniquely determine 7. However as shown in [50], the root p cannot be located on
T under assumption (A2) alone.

Note that (A2) does not require M(e) to be diagonalizable, nor to have all its
eigenvalues real. Also, the general model does not make any assumption about the
actual process occurring on an edge which produces net random transitions of colors
between its ends, in particular it does not assume any sort of fixed continuous-time
process, let alone a “rate” matrix constant across edges of the tree (as in the stationary
models discussed below). Since we do not make any further assumption about the root
distribution 7(p) or the structure on the family of transition matrices, apart from those
properties prescribed by (A2), the model is valid for a much wider class of models
than is usually considered in molecular taxonomy (see [42]). We now describe an
analytical result which shows that 7 can be easily and quickly reconstructed from the
/s in the general (nonsymmetric) case, with any number of colors, under assumptions
(A1) and (A2).

Let C={ay,...,a.} be the set of ¢ colors, and for any vertex u of 777 let m;(u) be
the probability that vertex u is assigned the color . (By (Al) this will be a function
of n(p) and the transition matrices on the path from p to u.) Let II(ux) = diag[n;(u),...,
()] (the diagonal matrix with m;(u) as its (k, k) entry) and for leaves 7, of T, let
Fj=[fij(k,1)] be the ¢ x ¢ “divergence” matrix with (k, /) entry fi;(k, /), the probability
that leaf i is colored oy and leaf j is colored a;.

Theorem 3. Under the general model, with underlying generating tree T™F,

b= — In[| det(F};)|] + 0.5(In[det({I()I1(j))])
g >

(3)

c

is a well-defined distance function, which is additive on (and hence defines) T.
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Thus, each phylogenetic tree T (without specifying the placement of its root) is
uniquely defined by the collection of probabilities of the patterns it induces under as-
sumptions (A1) and (A2), and it can be reconstructed from the f;; values in polynomial
time. The condition 7,(p)# 0 can be relaxed for tree recovery, although in that case
the function ¢;; of (3) is infinite for all pairs of vertices i,/ separated by p.)

Variations on the Theorem 3 are due, independently, to Steel [43], Lake [33] and
Chang and Hartigan [13]. Lake [33] refers to ¢,; as “Paralinear distance”. Barry and
Hartigan [6] defined a similar, but different measure, based on the logarithm of the
determinant of the conditional (rather than joint) probability distribution on the colors
of leaves i and j. Consequently, their measure ¢;; does not have the tree-like prop-
erty described for ¢;; in the following theorem — in fact, as they point out, it is not
even symmetric with respect to i and j, whereas, from (3), ¢;; = ¢;;. However, ¢;; =
%((b{j + ¢};), and in [13], Theorem 3 is stated without proof (later provided in [12]).
Similar ideas have also been developed, independently, in [53].

With a finite sample of sites generated by the general model we can only estimate
the f;; values, which suggests the following procedure (provided the number of sites
is large):

e Step 1. For each pair of leaves i,/, and each &,/=1,...,c, estimate f;;(k /) by
setting it equal to the proportion of sites in which / and j are colored x; and oy,
respectively.

e Step 2. Using (3), calculate ¢;; for each pair /,j using the entries from step 1.

o Step 3. Use a suitable distance-based tree reconstruction method, using the ¢;; values
from step 2.

By a “suitable” method in step 3 it is desirable to use a method which can be
implemented in reasonable time, even for large values of #n=|S|, and which, as a map
from distance functions on S onto the subspace of additive distance functions on S has
the properties that it:

(1) fixes every additive distance function,

(i1) is continuous in a neighborhood of each additive distance function.

There are many such methods, one of the earliest being the Buneman retraction [9],
which has the stronger property of being continuous on the entire space of distance
functions (unlike other methods, such as neighbor-joining), see [37] for a proof.

Under these conditions, and provided the sites evolve i.i.d. such a method will be
statistically consistent in the following sense: as the number of sites grows, the re-
constructed tree will (with probability tending to 1) be the true tree with, perhaps,
some additional (short) edges, but the maximum length of these “phantom” edges
will go to zero (with probability tending to 1) as the number of sites tends to infinity. In
case the true tree is fully resolved, then these phantom edges eventually disappear
entirely and the reconstructed phylogenetic tree will actually equal the true tree given
sufficient sites (see [12] for a discussion of this issue, in relation to maximum
likelihood).

An application of the above procedure to biological data is given in [36], where it is
also extended with the deletion of a proportion of constant (uniformly colored) sites,
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under the assumption that this proportion represents the number of invariant sites, with
the remaining sites evolving i.i.d.

Theorem 3 can also be used to show that the maximum (average) likelihood method
described by Barry and Hartigan [7] will identify uniquely the correct tree given suffi-
cient data, under the general model, and assuming the underlying tree is fully resolved
(for a proof see [12]). A maximum likelihood approach may be preferable, particularly
from the perspective of statistical efficiency to the above procedure if only a moderate
number of sites is available. Indeed the above procedure will not work if any of the
matrices £5; is singular, which can occur with a small number of sites. In any case it
is useful to estimate the variance of the ¢;; values, and also correct statistical bias (see
[5, 22, 36]).

Once 7 has been reconstructed, it is natural to ask if the transition matrices M(e)
and the root distribution m(p) can also be recovered from f = [/;]. Of course these
parameters apply to 77/, which differs from 7 if p has degree 2, but in this case, by
re-rooting 7 on any other vertex p’, it is possible to assign a distribution n(p’) of colors
to this vertex, and transition matrices M’(e) to the edges of 7" in such a way that
the induced distribution on patterns is precisely f (and furthermore, n(p’) and {M’(e)}
satisfy (A2) — for details see [47]), and so it is not possible to recover the position
of the root just from f. Furthermore, the distribution of patterns on pairs of leaves
does not suffice to determine the parameters {(M’(e)),n(p’)}, however under certain
restrictions on the underlying parameters, the distribution on triples of leaves does.
These last two results are due to Chang [12] (who extended earlier results confined to
two-color characters, by Pearl and Tarsi [41]). We now describe additional constraints
which are frequently imposed upon the family {M(e)}, and the implications these have
for the reconstruction problem.

2.2. Semigroup models

Semigroup models assume that the transition matrices M(e) all belong to some
prescribed semigroup. An example is the general model in which the transition matrices
satisfy condition (A2) (det(M(e)7#0,4+1). A (commutative) semigroup of transition
matrices arising with ¢ =2 colors is the family:

L-ple)  ple)
YO o) 1o
where x>0 is independent of e, and 1 — p(e)(1+x)>0 (this last constraint is imposed
in order for det(M(e))>0). If x=1, we obtain the 2-color Neyman model ([39]; see
also [10, 17]).

A number of biologically relevant semigroups for four color models have been stud-
ied, for example, the six-parameter unbalanced transversion model, see Nguyen and
Speed [40]. We now consider two important subclasses of semigroup models.
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2.2.1. Stationary models

These are based on (Al) and three further assumptions:

(i) Color changes on edges are described by a continuous time Markov process.

(i1) The associated intensity matrix R is the same for all edges of the tree.

(iit) The distribution of colors at the root of the tree is the equilibrium distribution.

A number of stationary models of relevance to taxonomy have been described and
studied by Rodriguez et al. [42]. Note that conditions (i)—(iii) can be restated as
follows:

R*
M(e)=exp(Rie) =1+ | 2o/, (4)
k>0
R=0, (5)
where A,>0 is a parameter associated with edge e and where n=[=n,,...,n.], (and
where m; =7m;(p) for i=1,...,¢). The matrix R is often called the (substitution) rate

matrix. A further condition which is sometimes imposed is the molecular clock hy-
pothesis which states that the sum of the A.’s on the path in 7” from p to any leaf
x is the same for all x, and so the A.,’s are proportional to time (we do not assume
this here, except in Section 3.1). Condition (5) asserts that the colors at the root are in
equilibrium, thus the probability distribution of colors at any individual vertex of the
tree is also 7. Note that the rows of R sum to 0, and since R;; >0 for i #/ it follows
that tr(R)<0, where “tr” refers to the matrix trace function. The condition tr(R)<0
together with Jacobi’s identity (see [21]):

det(exp(A)) = exp(tr(M)) (6)

applied to M =R/,, shows that stationary models satisfy not only the first part of
condition (A2) but the stronger constraint,

(A2') 1> det(M(e))>0 for all edges e of T.

Stationary processes also lead to transition matrices which form a semigroup, by
virtue of the identity:

exp(Ri.) exp(R2,) = exp(R(j. + 7).

An important class of stationary models are the reversible models, which assume
in addition that TR is symmetric, where IT is the diagonal matrix diag[n,,...,7.].
This condition implies that the Markov chain with transition matrix M(e) is reversible
(see [42]). Examples of reversible models are the symmerric models for which R=R"
(which implies that 7; =- - - = 7. = l/c; the converse is true only for two colors). More
generally, the matrices corresponding to reversible models are precisely the matrices
R which can be obtained by multiplying the row i (i=1,...,¢) of a symmetric rate
matrix 0 by x;>0. Thus, for four colors, each reversible model is defined by 9 free
parameters (or 6 if we specify =), and with only two colors every stationary model is
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reversible. In the latter (2-color) case the set of transition matrices forms the semigroup
described at the beginning of Section 3. If we write the corresponding rate matrix as:

1

—X

R:(lﬁ-x)l{_x1 }, x>0,

(so that 7w =[x/(1 +x),1/(1 +x)] and R> = —R), then M(e) =171 + (1 — exp(—7.))R.

2.2.1.1. Dissimilarity. A common measure of the difference between two species i
and j is the proportion of sites in a collection of aligned sequences at which the
two species differ (proportional to the Hamming distance between the sequences). Let
pij denote the probability that leaves / and j are differently colored (which can be
estimated from the sequences by the Hamming distance). Note that p; =1 — tr(F}).
In Theorem 3 we derived from Fj; a measure which was “tree-like” (i.e., satisfied the
four point condition); in Theorem 4 we show that such a tree-like measure can be
calculated just from p;;. This is relevant in biology where p;; is sometimes estimated
from dissimilarity values and where the full divergence matrix £; may not be available.
Of particular interest is the relationship between p;; and the expected number of color
changes (“‘substitutions™) occurring on the path joining leaves i/ and j for a stationary
model. We denote this quantity by d;;. Clearly,

Si= Y O (7
e€P(THP,1,f)
where J, is the expected number of color changes occurring on edge e.

Thus, d;; (but not p;;) satisfies the four point condition described in Eq. (2), so that
determining the J;; values allows for T to be reconstructed, along with its “true” edge
lengths (in terms of the expected number of substitutions). For a stationary model, we
have, from [6] or [42]:

S, = (Z Rmn1> e = —tr(1TR)A,. (8)

xeC

The main result from Rodriguez et al. {42] is that for a certain class of stationary models
(including all reversible models and all models for which 7 is the uniform distribution),
d;; can be calculated from the divergence matrix F; (discussed in Theorem 3) and
IT1= diag[n,..., 7] (which can in turn be estimated, for stationary models, from £;).
Their result states that

8y = —te(IT In[IT7"£;;])

where for a matrix M, In[M]=-3, ., — M) /k , provided this sum converges.
(Actually, Rodriguez et al. [42] assume a molecular clock, though their proof can
easily be modified so as to apply without this assumption.)

In the special case where the root distribution 7 is the uniform distribution, m = 1/c,
then it is easy to show that J;; = ¢;;, where ¢;; is the additive quantity described in
Theorem 3 (see [23]). Thus, in this special case, not only can 7 be found, but in
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addition, for each edge, the expected number of substitutions (the “edge length”) can
be found. We now describe an invertible relationship between d,; and p;;.

Theorem 4. For « stationary reversible model,

(H)

—8;
pii=1- tr(Hexp <tr (H;?)R>) (9)

(2) Eq. (9) is invertible.
(3) If the reversible stationary model applies to just two colors, o, p, then letting
7 =2m g, we have

"Y

Proof. (1) We have F; =M/IIM;, where II =diag[n,,...,n.], and for x =14, 7,

M= JI  exp(Ri)=exp(Riy),

eCP(T*?; 1,x)
where
Ay = E Ao
ecP(T—7; v,x)

and where v denote the most recent common ancestor of /i and ; (the last vertex
common to the paths in 71 from p to i and to j). Now, since R'IT =IIR, we have
MHI =IIM; so that,

; Oy
1 — py=tr(IIM;M;) =tr(IT exp(R(2; + 7;)) =tr (H exp (jt—rﬁﬁa]Q),
from (7) and (8), giving (9).
(2) By the spectral theory for reversible Markov chains [38, pp. 32-34], one can
write

.
pij=1- Z e o,
k=1

where % >0 and ), o4 =1, and f; >0 with at least one ;>0 (provided R #0). Thus
pij is a strictly monotone increasing function of ;; and so is invertible.

(3) Since there are just two colors, we can (as described above) scale R so that
R? = —R, and hence exp(AR) =1 + (1 — exp(—A))R, which makes the inversion of (9)
straightforward. [J

Remark. Suppose that for an edge e = (u,v) of 777 M(e) is described by a continuous-
time Markov process (so that we could write M(e) = exp(R4.)) but that the distribution
7 =mn(u) of colors at u is not necessarily the equilibrium distribution (so that 7R # Q).
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In this case the expected number of substitutions on edge e is d, = —tr[V In(M(e))]
with V =diag[v(,...,v.], where v, = [, ¢,(+)ds, and for which [¢(1),...,¢u(1)]=n
exp(? In[M(e)]). Thus, &, is determined by M(e) and 7 (i.e. without knowing R and
/e separately). If m is the equilibrium vector, we recover (8). For two colors we can
find J. explicitly:

. I 2P Py In(l — P
O = F(P,sz + P3ymy — PPy — —Iz'igi————))

where P =Py + P and where P; = p.(i, /).

2.2.2. Group based models
If we regard C as a group under some operation (written here multiplicatively), a
group-based model places the following constraint on the transition matrices:

(G1) po(a, f)=h.(2~'B) for all edges e of T**,

where h,:C+[0,1] is defined for each edge e of T77.

Thus, in a group-based model, we can think of a random group element g(p) being
assigned to p according to the distribution 7 =7n(p) and a random group element g(e)
being assigned independently to each edge e of 777 (according to the distributions 4, ).
Each leaf i is then colored by the product (in the group) of g(p)g(e;) - - g(er) where
ei,...,e; is the directed path from p to i. It can be checked that the set of all transition
matrices satisfying (G1) for a particular group structure on C forms a semigroup, so
that the set of group-based models are indeed a subset of the semigroup models.

When C is a finite abelian group, Székely et al. [SO] used discrete Fourier anal-
ysis to describe a relationship which gives the pattern probabilities in terms of the
underlying tree with its associated functions /., and which is invertible under various
restrictions on the A,’s. Of particular interest are the elementary abelian 2-groups, Cé'.
These correspond to the 2-color Neyman model [10, 17, 39] (described at the beginning
of Section 2.2) when k=1, and to an extended version of Kimura’s 3ST model [32]
(described in Section 2.2.3 below) allowing different rate matrices on different edges,
when & =2. Note that for a C5-based model, the associated transition matrices form
the multiplication table of the group C%, since p.(,ff) = he(x~'B)=he(af).

Definition. Consider the following equivalence relation on patterns on S: yx; is equiv-
alent to y», if, for some element g € C, and all leaves i €S,

11() = x2(i)g,

where multiplication is carried out in the group. Each equivalence class of patterns
is called a quotient pattern, and the probability of a quotient pattern ¥ denoted
f;i = f;i(T ¢ h,m(p)) is the probability of generating any pattern in the class (the
sum of f, over all patterns y in x™), where h:={A.}. Let » be an arbitrary leaf of 7.
Note that the quotient patterns on § are in 1-1 correspondence with the patterns on
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S’ =8—{r}; simply choose a color =, and map each pattern y on §’ to the equivalence
class of the pattern y,, where y,|s» =y and y,(r)=o.

By taking the quotient patterns for the C%-based models we factor out the influence
of the distribution n(p) of the root p and of its location on 7. This result, which is
formalized in the following theorem, is central to the next section, by allowing all
calculations to be carried out on the unrooted tree 7', rather than 7%, For each edge e
of T, let h,: C+ [0, 1] agree with 4, if e appears in 77, otherwise if there is an edge
e of T that is bisected to form two edges ej,e> in 777 (i.e. in case p has degree 2)
let /. be the convolution of 4., and #,,, that is

HA@)="> he,(x)her(x7g).
xeC
Let f;i(T,h’ ,7') be the probability of generating the quotient pattern x* under the
model described above, when the root of the tree T is taken to be leaf », with associated
color distribution 7, and where &' := {I}.

Theorem 5. Let n' be any distribution of colors at leaf r. Then,
j;(T,h',n’)zfz"i(T*",h, n(p)).

(Thus f* is independent of the distribution n(p) of the colors at the root p, and of
its location in T.)

Proof. Let g(p) (resp. ¢'(#)) denote the random element of C:C§ assigned to p
(resp. r) under n(p) (resp. ©'). Let g(e) (resp. g'(e)) denote the random element of C
assigned to edge e according to the distrbution 4, (resp. /), and let x(i) (resp. ¥'(i))
be the induced random color of leaf i, for i€ S’ by (T *,h,n(p)) (resp. (T.KH,z')).
We have,

W=gpyx [ ae.
eEP(THr; p,i)

For i€S’, let Z; := y(i)x(r). Then,

zi=gyx [ aexlamx I ae= [ ae. @0
e P(TH; p,i) eEP(T: pr) CEP(THPi,r)
since C% is abelian and x> =1 in this group. Similarly, for i € 8’, if we let Z] := x/(i)
1'(r)=x'()g'(r) we have
zi= [ 4. an

e€P(T; i,r)
It follows from Egs. (10) and (11) and the definition of %, that the random vectors
Z:=[Z: i€S8'] and Z':=[Z]: i € §’] have the same distribution. Now, the probability
of any quotient pattern x* under (717, 4, n(p)) (resp. under (7,/4',7’)) is simply the
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probability that Z; (resp. Z]) equals yo(i)xo(r) for all i€ S’, where yo is any pattern
on § in the equivalence class y*. Since Z and Z’ have the same distribution, we obtain
the desired equality.

2.2.3. Inverting the extended Kimura 3ST model

Kimura [32] introduced a model he called the “three substitution-type (3ST) model”,
where he assigned three rate parameters for nucleotide substitutions, % for the rate of
transitions (A «» G and T(U) < C), and f and 7 for the two types of transversions.
(The type I transversions (of rate /) are A — T(U) and G « C, and the type II (of
rate y) are A < C and T(U) <> G.) He denotes P,Q and R as the probabilities of
each of these substitutions between homologous sites of two sequences, descended from
a common ancestral sequence over a time interval /. This set of nucleotide substitution
types forms the Klein four group C; x C;, writing the element (1,—1) to correspond
to a transition, (—1,1) and (—1,—1) to correspond to transversions of type 1 and II
respectively, together with (1,1) representing no substitution [15].

Under Kimura’s stationary model the expected number of substitutions is

K=—%ln[(1 — 2P —20)1 —2P —2R)(1 — 20 — 2R)], (12)

which is the sum of three components, being the expected numbers of each of the
three substitution types,

Qoo = 20t = —LIn[(1 = 2P = 20)(1 — 2P — 2R)/(1 — 20 — 2R)],
O_y = 2Bt = —Lm[(1 —2P = 20)(1 — 20 — 2R)/(1 — 2P — 2R)), (13)
O__ = 2yt = —Lin[(1 — 2P — 2R)(1 — 20 — 2R)/(1 — 2P — 20)],

writing Q. _ for the expected number of changes corresponding to (1,—1), etc.

We show below (Eq. (20)) that Egs. (13) are easily inverted, so that the probabil-
ities can be expressed as functions of the Q;; components. These ;; components are
linear with time for fixed rates under the stationary model, so they represent additive
parameters for successive edges of a tree 77, From Theorem 5 we recall that the
nucleotide differences at the leaves of 7''# are independent of the root location and
its color distribution, so we can apply our analysis to the associated unrooted tree 7.
We will refer to the Q;; components as “edge lengths” for each of the edges of 7. In
[44, 29] we considered the following generalization of Kimura’s 3ST model.

For each edge e of T (with n leaves), we can specify three probabilities P, _(e),
P_.(e) and P__(e), (analogous to Kimura’s P,Q and R), for the substitutions of
each type across e. These will be determined from three edge length parameters
O._(e),0_i(e) and Q__(e). (Under a stationary model these Q(e) values will be
the expected numbers of changes of each type along edge e, but the relationship be-
tween the P(e) and Q(e) values does not depend on the assumption of stationarity).

Our spectral analysis [29] relates the set of quotient patterns at the leaves of the
tree with the three edge lengths Q;;(¢) for each edge of the tree, using elements of the
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Hadamard matrix H,—y. (Hy is a square matrix of 2% rows, whose entries are -1 or
—1, obtained by taking the k-fold Kronecker product of

SO

and H ' =27%H,.)

Once the edge lengths are known for all the edges of 7, we are able to determine
the probabilities of the quotient patterns at the leaves of 7', which by Theorem 3, is
independent of the root distribution. For each pair of subsets «, f of $'=58 — {r} let
s,p be the probability of the occurrence of the quotient pattern with

a={ieS' (D= —1},  B={eS|(xr) Wi =—1}

(The suffixes refer to the first and second components of the elements of V = C, x C,.
Thus spp is the probability that all the leaves have the same color.)

We will refer to the vector (for a suitable ordering) s of probabilities as the sequence
spectrum. These 4"~ probabilities are functions of the 3 x £ edge length parameters,
where &£ <2n — 3 is the number of edges of 7. However, for convenience, we embed
these 3k values in another vector of 4"~! entries, called the edge length spectrum g,
also indexed by pairs of subsets of S'. Let £(7) be the set of edges of T. For the
edge e=¢, € E(T), (x CS’) which induces the split 2,5 — « on the leaves of T, let

9oz = Q-+ -(e), qx0 = Q-+ (e), Gz =Q——(e).
We do this for each edge e € E(T). Set

qoo=— »_ (Qi_(e)+0_i(e)+ 0 _(e)),

ecE(T)

and set all the remaining ¢, entries to 0. (Thus E% pcs dxp =0 and the positive
entries of the edge length spectrum define 7.)

Theorem 6 (Steel et al. [44])
s=Hy,|, exp(Han_2q), (14)
where the exponential function is applied to each component of the vector individually.
The proof of this theorem is based on a more general result in [44, 49, 50] using

group theory. Below we will give an outline of a proof which interprets some useful
intermediate terms. However we will first introduce some useful corollaries.
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Inverting Eq. (14) we obtain the edge length spectrum as a function of the sequence
spectrum.

Theorem 7
g=H; ) In(Hy,_,s). (15)

where the logarithmic function is applied to each component of the vector individually.

If we index the entries of the Hadamard matrix /,_, by the subsets of S’, we find
the entry

hog = (=1, o, pC s (16)

and then Egs. (14) and (15) can be usefully expressed [29] as

i
Sypp = Ry hppr exp hg,fxlr/’l;;'/;nqgwﬂu Vo, BC S, (17)
qn 1
a,qﬁ/QAS/ x/f’/j// gS/
and
1
9ap = 2o Z hya hgp In Z oo R oo Syre oo Vo, fC S (18)
2 TS 2B C S

In particular, with n=2, Theorem 6 gives us the relationship between the s and ¢
vectors for a single edge e. Let P, ,(e) be the probability that the endpoints of e have
the same coloration (so Zi.je{+l,—~l} P;=1), and let O, (e)=—K (so 3

ije{+1,—1}
Q,'j = 0), then with
Py. 0
P(e)= ﬁi; =5 and Qe)= g:; =gq,
P__ o__
HyP(e) =exp(Hy0(e)). (19)

(It is useful also to note that the entries in H,P(e) are the eigenvalues of the transition
matrix of nucleotide substitution across e.)

Proof of Theorem 6. For any set X of edges of T, let y(X)= He:(u’l‘)e){x(u)_'
#(v). (As y(u)~" = y(u), the orientation of e is irrelevant.) For i, j € {+1,—1} let P(X)
be the probability that y(X)=(i, /), and let P(X') be the vector of P,;(X) values. Then,
by Eq. (19) (which may easily be proved directly without recourse to Theorem 6) we
have

P(X)=H; ' exp(H2Q(X)), (20)
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where Q(X)= " ., Q(e). For any subset x C S’ we define a path set II, as the
disjoint union (symmetric difference) of the sets of edges in the paths from vertices
ic€otor in T. The set t, of leaf labels of I1, is an even ordered subset of S, in
particular

x is even,
b= when x|
aU{r} is odd.

We can determine the totality of substitutions across the edges of IT, by examining the
product of the colors at the leaves. P;(II,) is the probability that Huez, wu)y=1_=,J),
which can be readily computed using Eq. (20).

We find by induction [26] that an edge e, belongs to path set IT, <= Ay = —1.
Thus

—(qu0 + G + qurz)
oLy = 3 4 : (21)
By = | G0
9y

Consider the general term of p=Hyq:

pup=(Hq)yp = Z Nt Appr Gt

o B TS
All the terms of this sum are zero, except for gyp and the three edge lengths for each
edge in £(T). Thus

Pap =qop + Z (Maw g + h/ioz"]@y_’ + h;m"]a’x’ ),
e €E(T)

where y = a7 f§ is the disjoint union of « and . However, as —qgp is the sum of all
the other ¢ terms, we find

pap= — 200+ (I,) + Q) + O _(IT)]. (22)

We now rearrange the terms of Eq. (22), noting that [T, can be partitioned into
X UZ, Il can be partitioned into Y UZ, and II, can be partitioned into X U Y, where
X=MH,— 1l Y=Hy ~ 11, and Z=11,N Il Hence Eq. (22) can be expressed as

Pup = =2([Q—+(X) + O (X)) + [0 (Y) + Q- (V)] + [Q—(Z) + Q. —(Z))]).
(23)
Taking the exponential we obtain the product of three terms. The first term is
exp(—2[Q4 (X)) + @ (X)) = [Pt (X) = P (X) + P. _(X) — P__(X)]
by Eq. (15), which we can write as

exp(—2[0+-(X)+ Q- (X)= > aPu(X).

ahe{—,+}
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Likewise we can express the other two terms as

exp(—2[0- () + 0 (D= > dPu(¥),

cde{—.+}
exp(—2[01 (2)+ 0 (D))= Y. efPy(2).
e, fe{—+}

The three sets X,Y and Z are each disjoint, so the probabilities can be multiplied
together to give

(expHg)y = | D aPuX) | x| > dPu(Y)

a,bc{—,+} cde{—,+}

x| Y efPp2)),

e, fe{—.+}

= ). adefPu(X)Pul(Y)Pey(2),
a,b,e.d,e fE{—+}

= Z ade f Py (X YPa(Y )P, p(Z),
ad,e fe{—, +}

where we write P.(X)=F,_(X)+ P,.(X), etc. The terms of s which contribute to
FPasl X)Pea(Y Yo (Z) = Pou(Hy, — T y)Poq(Il g — I,)P, p (11, N 1)

are the terms 5,5 where
hwo-py=a,  hppa=d, heanp=e and hyponpg =f. (24)

Hence, noting that ha/(xA/;)hml(x npy = hyy and h{y(ﬁ,.,,)hzl(y ng) = h/}/j/:

*
(exp Hq )a/ﬁ - Z Z hyy hv{j/leaI/j/ s

ad,e fe{l,—1}

where the inner sum Y% is over all pairs of subsets o/, 8 which satisfy Eq. (24) for
the given values of #, f,a,d, e, f. These conditions ensure that all 16 sign combinations
from Eq. (24) are met, so changing the order of summation, we sum over all pairs of
subsets to obtain

(expHq)yp = Z Do b Sy, (25)
2B C S

from which the theorem follows. We had initially applied spectral analysis to the two-
color Neyman model [26], which is described at the start of Section 2.2. This case can
be obtained from Theorem 6 by setting the probability of all transversions to 0. Then
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we are able to express the results in a simpler manner, where we write s, for s, and g,
for g,p so both become vectors of 2"~ components indexed by the subsets of §'. [J

Theorem 8 (Hendy [26])
s= 1'-],,‘_1I exp(H,—1q),
and

g=H,' | In(H,_5).

These equations can also be interpreted in terms of pathsets where for £ C S’ let

pp= Y hupd==2Y g (26)

% C 8 ex€lly

which we define as the length of I1g. (Under a stationary model pg is the expected
number of changes along the edges of pathset f1g.) Thus from Theorem 8,

5, = Z hg, exp(pg)- (27)

pcs
2.3. An extension: variable rates across sequence sites

Suppose that the substitution process is according to the generalized Kimura 3ST
model, but is proceeding at different rates across the sites. For convenience, we let
C(T)= U.eor 170 07,77} Recall that for 6 € C(T) (with associated 7 € a(T)),qq is
the expected number of one of the three types of substitution (considered by Kimura)
on the edge(s) of T which induce the split (7,5 — y) in 7. Suppose that this quantity
varies from site to site in the sequences: then let gy(j) denote the expected value of
qu at site j. We consider the more general model specified by the condition:

qo(J) can be written in the form gy x 4;.

Here A; can be thought of as the rate at which substitutions occur at site j, and gy
is the average (over all the sites) of the expected number of the particular type of
substitution on the edge of T corresponding to 0, divided by the average value of the
4;’s. This type of “geometric” scaling model is also considered by Chang [11].

Let pu(x)=(1 /m)z;fl:l exp(x4,), the average value of the numbers exp(xi;) (aver-
aged over all sites j). Thus, if the rate parameters /; are drawn independently according
to some distribution, then u(x) is approximated by the moment generating function of
this distribution. Now, 4; is positive for all j, and so u(x) is monotone increasing, and
therefore has a unique left functional inverse, u~'(x), so that u='(u(x))=x, VxeR.
Let 5§ be the average value of the sequence spectrum across the sites. Then we have
the following result, where u and p~! are applied componentwise on vectors.
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Theorem 9 (Steel et al. [46]). For the extended 3ST model with underlying tree T
and arbitrary root distribution, we have

§=H,,' j(Hay-2q), (28)

and

q=H,' 5 (Hyo$). (29)

Example. (1) In the case that all the sites evolve at the same rate (=/), we have
u(x) = exp(Aix), giving u~'(x)=(1/2)In(x), and so Theorem 7 is just a special case
of Theorem 9.

(2) Jin and Nei [31] suggest that the gamma distribution
exp(—vx )xk 1y

Slx)= —W‘,

x>0,

may approximate the distribution of the 4;. In this case,

v k
ux)= (v hx)

so that u='(x) =v(1 — ¢y(x)), where ¢i(x)=x""*, and so

(€1 — (Hy, 'y p(Hoy25))yp = 0 af ¢ C(T) U {00},
where ¢, =[1,0,0,0,...]".

Remark. (1) Theorem 9 shows that, provided the distribution of rates across sites is
known, then 7 can be recovered from §. Indeed this holds under certain conditions,
even if the distribution (or §) is not known exactly, but suitably constrained [47].
However if the distribution is variable, it is possible for all trees to give identical §
values (and hence render consistent tree reconstruction impossible by any method) by
suitable choices of distributions and edge parameters for each tree (for details, see
[471).

(2) In the case of a stationary model, a distribution of rates across sites is modelled
by taking the rate matrix for the process at site j to be R x ;. In that case, provided
R forms a reversible model, the transformation

by = —u(Tu '[IT7'F))
(where, u~! is as above, but applied to matrices, and F; is the divergence matrix
described in Section 2.1) is additive on the true tree, and recovers the underlying
unrooted tree (for details see [52] or [23]).
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3. Applications

Theorems 6-8 describe correspondences between the edge length spectrum and the
sequence spectrum under the two or four color models described. From the edge length
spectrum, the tree 7 can be identified. There are a number of applications that can be
made from these relationships, which we now list.

Firstly, for the analysis of sequence data, we use an observed set of frequencies §
of patterns from sequence data as an estimate of the probabilities s, then provided the
logarithms exist, Theorems 7 and 8 can be used to calculate an estimate v =/ ~' In(H§)
of the edge length spectrum. We refer to this transformation of the observed data as a
Hadamard conjugation and to vy as the conjugate spectrum. Various fitting procedures
can be used to estimate 7 from p. In [26] we introduce a least-squares procedure called
the closest tree procedure. This procedure estimates the edge length spectrum, ¢, from
which s = H ' exp(Hy) can be calculated and compared to the observed frequencies
§; see [29] for an application to biological data. Alternatively, as the entries of y
represent “corrected” lengths, a traditional method, for example maximum parsimony,
can be applied [45].

Another application of Theorems 6-8 is the derivation and classification of all the
“phylogenetic invariants” (polynomial functions of the pattern probabilities which for
some associated phylogenetic tree take the value 0 for any choices of the matrices
M(e)). Furthermore, one can classify all /inear invariants for various submodels of the
Kimura 3ST model, and the 2-color Neyman model (both with and without a molcular
clock). In particular, the dimensions of the vector space of linear invariants for these
models can be conveniently detailed by formulae that in some cases just involve the
number of leaves (n) and Fibonacci numbers. (For details on linear invariants see
[20, 28], and for the classification of non-linear invariants for the Kimura 3ST model,
see [46] and [15]).

A third application of Theorems 6 and 8 is to analyze various phylogenetic tree
building methods. We can generate sample sequence frequencies from a known tree
T and specified edge lengths. Samples can then be used to test the accuracy of the
method. Sometimes methods are inconsistent under a particular model of sequence
generation, i.e. the methods do not improve with accuracy as the sampling error is
reduced by using longer sequences, leading to the situation that the incorrect tree is
always found when the sampling error is zero. Felsenstein [18] showed that the pop-
ular maximum parsimony method (applied to §) can be inconsistent, even under the
2-color Neyman model with only four taxa. In his example the molecular clock hy-
pothesis was violated. In [27] the Hadamard conjugation was used to show that for the
2-color Neyman model under the molecular clock hypothesis, maximum parsimony
must be consistent for four taxa, but it can be inconsistent with five or more taxa. As
an illustration of the usefulness of Theorem 6 we show below that maximum parsimony
on § is also consistent with four taxa under Kimura’s 3ST model and the molecular
clock.
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3.1. Consistency of maximum parsimony on four colors and four taxa with the
molecular clock hypothesis

Let 7% be a fully resolved phylogenetic tree on leaf set S={1,2,3,4}. We may
assume that the associated unrooted phylogenetic tree 7 is the tree 77 shown in Fig. 2;
the other two unrooted fully resolved phylogenetic trees on leaf set S are also shown
as 75 and T3.

Suppose we have a phylogenetic tree 7 on leaf set S, together with a collection of
aligned sequences, one for each species in a set S, and thereby inducing a collection of
patterns on S. For each site the Fitch length [19] is the minimum number of edges of 7
which must be assigned differently colored ends in any extension of the leaf coloration
(of the pattern induced by the site) to all vertices of T. The parsimony length for T
is the sum of these Fitch lengths over all the sites. We define the length of T,/(T), to
be the average of the Fitch length over all sites. The maximum parsimony tree is the
unrooted fully resolved tree 7' with the smallest parsimony length and hence the tree
for which /(T) is minimal. Hence for a set of four taxa, 7| is the maximum parsimony
tree < I(T1)</(T7) and I(T\)</(T3).

Theorem 6 gives the expected frequency of sites with pattern (x, ) as sq5. For a
given tree T, and i.i.d. sequence site evolution, the expected length I(T) is the expected
value of /(7) under the extended Kimura 3ST model, and so is the sum, over all
patterns (u, 8), of s, times the Fitch length for that pattern on 7. Most patterns have
the same Fitch length on each tree, and for trees on four taxa the differences between
their expected lengths are a combination of the frequencies of only 6 of the 64 terms.
Hence for example with x={1,2},={1,3} and y={2,3},

UT>) — I(T1) = (Spx + a0 + Sax) — (Spp + Spo + Spp). (30)
Thus 7, is the maximum parsimony tree <

(Sox -+ Sxp + 52x) — (Spp + 5o + 5pp) >0
and

(Spx + Sx0 + Sax) — (Sgy + S50 + 57)>0.

The molecular clock hypothesis states that a “time scale” can be applied to the edges
of 717, so that the expected numbers of color changes on an edge are proportional
to this time. Specifically for each vertex v, we assign a parameter “time” #(v). (Bio-
logically this refers to the historical time that the bifurcation event at v occurred.) For
each edge e, = (u,v) of T we define the time span ¢, = |#(u) — #(v)|. (Thus the sum

of the time spans on the path from p to any leaf is constant.) For the edge ey =(w,x)
of T where w and x are adjacent to p in 777, we define 15 = [21(p) — t(w) — 1(x)|.
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In Kimura’s 3ST model of nucleotide evolution this implies that there are three
parameters, 41,4, 43 >0 so for each edge e, of T,

qap = Aty qpx = laty, Gy = A3ty

to give the edge length spectrum for 7.

Theorem 10. Maximum parsimony is consistent under Kimura's 3ST model for four
taxa with the molecular clock hypothesis.

Proof. There are two cases to consider: (1) the root p is on the central edge ey, 5} of
Ty or (2) the root p is on one of the pendant edges, e(; ; 3}, say.

In case (1), the molecular clock hypothesis implies that there are three independent
time parameters 7,5, and &3, where £ =1{1) =t2y, 0 =1{3) =t{1,2,3}, and 3 =1(; 2} >
|ty — #2|. Applying Theorem 6 to (30) we can show

= = 1
T2) = I(Ti) =g 3 exp(=2(b + )t + 1))

ab.c

x[1 —exp(—=2(b + ¢)t3)][1 + exp(—4a(t; + t2))]
+T16 Z[exp(—Z(b + o)ty —exp(—=2(h + )

a,b,c

+% Z exp(—4a(t) + &2))[exp(—2(bt; + ctr))

ab.¢

—exp(—2(bt> + ct) )T,

where the sums are over the three even permutations (a,b,c) of (L1, /42, 43). As each
of the exponentials lie in the interval (0,1), each term in the sums is positive, and
(T2)>IKT)). As t{1}y = t{zy we can interchange vertices 1 and 2 to find T3)=I(T>).
Hence T, has the smallest expected length.

In case (2), with the root on edge ey 3}, the molecular clock hypothesis implies
that there are three independent time parameters #1, 12, and £3, where 1 =t} =1y, =
£1.2.3) and #3 =12} and ty=H +6<n. Hence from (30)

1) ~ T = 5 3 exp(=4(b -+ )0l — exp(—4(h + o)

1
+T€ Zexp(—4at1 ~2(b+c)t + 1+ 1))
x [1 — exp(—4ats)][exp(—4bt; ) + exp(—4ct; )],

where again the sums are over the three even permutations (a,b,c) of (41, 42, 43). As
in case (1), each of the exponentials lie in the interval (0,1), so each term in the
sums is positive, and I T2)>1_(T1). As () =t} interchanging vertices 1 and 2 gives
[(T3)=I(T>). Hence T, has the smallest expected length.
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Thus, in both cases, as the sequence length tends to infinity, the probability that the
maximum parsimony tree is the true tree tends to 1. This is the condition for statistical
consistency. [

We now provide a second application of Hadamard conjugation to the analysis of
the maximum parsimony method.

3.2. A Poisson-style bound for the histogram of Fitch lengths under the 2-color
Neyman model

Suppose the underlying phylogenetic tree T is fully resolved. For a site that evolves
on T, the Fitch length of this site on 7 will always be less than or equal to the true
number of substitutions that occurred on 7 in creating the pattern observed at the
leaves. Thus if the substitution probability on all the edges of the tree is small we
would expect the histogram of the numbers of sites versus their Fitch length to fall
off rapidly as the Fitch length increases, since a site with a large Fitch length must
have required a large number of (improbable) substitutions. Unfortunately with real
data we do not have the privilege of viewing the substitution probabilities, but we
would still like to make predictions regarding the histogram of Fitch lengths. Here we
show that just the first two entries of this histogram (i.e. the expected number of sites
of Fitch length 0 (constant sites) and Fitch length 1) place constraints on the rate of
decay of the remainder of the histogram - regardless of the unknown parameters on
the underlying tree, when the sites evolve under the 2-color Neyman model (described
at the start of Section 2.2). For sequences in which some sites are invariant (cannot
undergo substitution) while the remaining sites evolve i.i.d. according to the 2-color
Neyman model, Theorem 11 predicts a lower bound on the number of invariant sites
(see [35] for an application).

Let P[k] denote the probability of generating under the 2-color Neyman model on
tree 7*F, a pattern with Fitch length & on 7, and let P*[k]:= Z/sz[j]’ the prob-
ability of generating under the 2-color Neyman model on tree 717, a pattern having
Fitch length at least £ on T. Let u= P[1]/P[0]* .

Theorem 11

i—1
P*KI<P[1]Y “;!

Jzk

Proof. First note that since 7 is fully resolved, and we may assume p has degree 2,
777 must have precisely 2n — 2 edges, where n=|S|. Let R[k] denote the probability
that there are exactly k edges of 7"” on which a color change occurs under the 2-color
Neyman model. Let £(717) be the set of edges of T+°. Thus,

Rij1= > ([lre II C-»ro). (31)

UdU]=j \e€U  ecE(T+)—U
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where p, is the probability of a color change on edge ¢, and the first summation is
over all subsets U of edges of 717 of cardinality j. Let

E : Pe

1/’— _—

i 1 — pe
eCE(T7)

then, by (31),
R[1]=R[0]yv and R[j]sR[OJ;—f. (32)

A pattern of Fitch length 1 on 7" is always generated whenever exactly one edge of
T+7 has a color change (under the model), thus P[1]>R[1]; also, a pattern with Fitch
length at least £ on T requires at least £ edges to have color changes on 777 in its
generation (under the model) so P*[k]< Y sk R[j]. Combining these two inequalities
with the two inequalities in (32), we deduce that

P[1]=R[0]v, (33)
* / W
P [k]gR[O]Z%gP[l]Z—ﬂ—. (34)
izk izk
We claim
P[0}* <R[0]. (35)

The theorem then follows; since combining (33) and (35), gives v<P[1]/P[0]* , which
together with (34) gives the theorem.

We now proceed to establish (35). For each edge e of T'7, let ¢, := — % In(1-2p,),
then,

1 — —24, 1
o= [] (-po= I 00

2
eCE(T'7) eCE(T)

< > [Tew(-24.).

UCE(T-#)e€U

where the summation is over all subsets U of the 2n — 2 edges of 7*°. Thus,

R[O]:Ef;:i > exp (—Zqu>. (36)

U CE(T+) ecl

We now invoke Theorem 8. First let e; and e; denote the two edges of 77 incident
with p. For « € o(T), let ¢, = q., if (2,5 —a) is the split obtained from T** by deleting
an edge e#e,. ey, and set g, =g., + g., otherwise. Extending g, to all subsets a of
S’ following the terminology of Eq. (27), P[0] is just sy for T with this associated
vector g. Thus, from Theorem 8§,

1
PlO]=sp= 5 D exp(pp),
pCs
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where pg is given in Eq. (26). Thus,

1
P[O]z = 22n~2 Z eXp(p/; + Py ),
BB CS

and so that, from Eq. (26)

PlOY?

BB CS 2€y U My

where n=|S| and Iy, I ;, are pathsets as defined in the proof of Theorem 6.

Now, for any rooted fully resolved tree 7+ there is a bijection ¥ from 25" x 25
to the set of subsets of E(T*") (the edge set of 7*) such that ¥(f, ') is a subset
of Py U Py ¥V, B €S’ (such a bijection can be constructed recursively). This bijection
shows that each summation term in (37) is less than a corresponding summation term
in (36), hence P[0} <R[0], as required, completing the proof. [

4. Conclusion

Under very few restrictions on the stochastic process of character substitution on a
phylogenetic tree 777, the discrete structure of 7' can be recovered from the expected
frequencies of colorings at its leaves. This is important for phylogenetic inference, as
it shows that for sufficient data, the tree is potentially recoverable from observable
sequence data. The assumption that sites evolve at identical rates can be weakened
and the conclusion is still valid in some cases. However the invertible relationships are
between probabilities; any real data will be from finite samples and hence the effects
of sampling need to be considered. These issues have recently begun to be seriously
addressed, see [14, 16, 51]. It is apparent that the edge lengths must not be too small,
or too large, as in that case, errors induced by sampling can be dominant. There are of
course other potential complications influencing the accuracy of such inference, such
as the validity of the i.i.d. assumption and the possibility of data error.

The other main focus of this paper has been Hadamard conjugation, and its applica-
tions. It is likely that many more applications of this technique can be found, partic-
ularly for analyzing the performance of different phylogenetic methods under suitable
models.
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