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Abstract—Phylogenetic trees from real-world data often include short edges with very few substitutions per site, which can
lead to partially resolved trees and poor accuracy. Theory indicates that the number of sites needed to accurately reconstruct
a fully resolved tree grows at a rate proportional to the inverse square of the length of the shortest edge. However, when
inferred trees are partially resolved due to short edges, “accuracy” should be defined as the rate of discovering false splits
(clades on a rooted tree) relative to the actual number found. Thus, accuracy can be high even if short edges are common.
Specifically, in a “near-perfect” parameter space in which trees are large, the tree length £ (the sum of all edge lengths) is
small, and rate variation is minimal, the expected false positive rate is less than £ /3; the exact value depends on tree shape and
sequence length. This expected false positive rate is far below the false negative rate for small £ and often well below 5% even
when some assumptions are relaxed. We show this result analytically for maximum parsimony and explore its extension
to maximum likelihood using theory and simulations. For hypothesis testing, we show that measures of split “support”
that rely on bootstrap resampling consistently imply weaker support than that implied by the false positive rates in near-
perfect trees. The near-perfect parameter space closely fits several empirical studies of human virus diversification during
outbreaks and epidemics, including Ebolavirus, Zika virus, and SARS-CoV-2, reflecting low substitution rates relative to
high transmission/sampling rates in these viruses.[Ebolavirus; epidemic; HIV; homoplasy; mumps virus; perfect phylogeny;
SARS-CoV-2; virus; West Nile virus; Yule-Harding model; Zika virus.]

A “perfect phylogeny” is an evolutionary tree construc-
ted from discrete character data in which no character
state evolves more than once (Gusfield 1997; Fernandez-
Baca and Lagergren 2003). Homoplasy (Wake et al.
2011) is absent. Real-world data sets rarely allow
reconstruction of perfect phylogenies, but algorithms
can be modified to search efficiently for “near-perfect”
trees when a small amount of homoplasy is present
(Fernandez-Baca and Lagergren 2003; Awasthi et al.
2012). In this article, we address how best to measure
accuracy in such “near-perfect” trees, what factors
guarantee accuracy is high, and whether real data sets
with such minimal levels of homoplasy even exist.

The concept of perfect and near-perfect phylogenies
played a key role in early attempts to understand
the connections among phylogenetic tree reconstruction
methods, such as maximum likelihood (ML), maximum
parsimony (MP), and maximum compatibility. In a land-
mark paper, Felsenstein (1973) showed that a sufficient
condition for ML and MP to infer the same tree was
for the expected number of substitutions on edges of
the tree to be very small. Then, “[i]f our assumption
were true that evolutionary change is improbable during
the relevant period of time, most characters should be
uniform over the group. A few would show a single
change of state during the evolution of the group. But
only very rarely would we find more than one change
of state, so that few or no characters would show
convergence.” This last statement may have been the
first hint of a probabilistic description of “near-perfect
phylogeny.” This condition can be stated more formally
as £ <1, where £ is the expected number of substitutions

per site summed over the entire tree (i.e., the tree length
per site). Homoplasy is rare but has a nonzero probability
of occurring.

Felsenstein’s concluding comment on near-perfect
phylogenies was skeptical: “Real data is certainly not
like this...” (Felsenstein 1973). Homoplasy has since
been viewed as a commonplace feature of phylogenetic
data sets (Wake et al. 2011) and, reasonably enough,
most phylogenetic theory has been developed with
this sentiment as an implicit assumption. However,
extensive surveys of genetic diversity in RNA viruses
have revealed that some viral phylogenies, particularly
those associated with outbreaks and epidemics, do
exhibit small per site total tree lengths consistent with
near-perfect phylogenies (Dudas and Bedford 2019).
These data sets often comprise full-length viral genomes
from RNA viruses, which are typically 10-30 kb in

length and have a substitution rate of around 1072
substitutions/site/year.

The potential of these data to yield fully resolved
phylogenies has been of particular interest in epidemi-
ology, because internal nodes in viral trees represent
transmission events (Campbell et al. 2018; Grubaugh
et al. 2019; Dudas and Bedford 2019). This objective
motivates placing a premium on minimizing false neg-
atives (i.e., on deciphering all such transmission events)
and thereby maximizing resolution. Increased phylogen-
eticresolution is achievable by analyzing longer genomic
fragments from viruses with faster evolutionary rates
(Dudas and Bedford 2019). However, understanding the
false positive rate remains a key issue in characterizing
phylogenetic accuracy (Felsenstein and Kishino 1993),
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particularly in the special case of a poorly resolved tree
with few—but well-supported—clades.

Here we explore what assumptions comprise “near-
perfect” phylogenies and decouple the false-positive and
false-negative components of accuracy in such trees. In
particular, by focusing on a mathematically tractable case
in which tree size is large yet tree length is small, we
will show that the false positive rate can be very good,
even when the false negative rate is not: most of the
clades inferred are probably correct, even though the
tree may be only partly resolved. We also survey a set
of viral phylogenies that have many properties of this
near-perfect space and estimate their accuracy. Finally,
we briefly consider phylogenetic “support” measures
in relation to accuracy in near-perfect data. Whereas
accuracy relates to the overall performance of a tree
estimator relative to the true tree, support relates to the
probability of making a mistake in deciding about some
aspect of that tree—typically the presence of a particular
split—using a statistically based decision rule such as
the bootstrap support value or a posterior probability
(Felsenstein 1985; Felsenstein and Kishino 1993; Hillis
and Bull 1993; Efron et al. 1996; Susko 2008, 2009; Alfaro
and Holder 2006; Simmons and Norton 2014).

This article is organized as follows: “Materials
and Methods” are divided into two parts:
first, mathematical theory (with proofs in the
Supplementary material available on Dryad at
http://dx.doi.org/10.6076/D12S3M), and  second,
simulation protocols, data, and data analysis. “Results”
begin with a more expository description of the theory,
illustrated with simulation results, and then describes
results from analyses of robustness and support, and
data analyses. Following these is the Discussion.

MATERIALS AND METHODS I. THEORY

Definitions of Accuracy
Given a true unrooted binary tree, T, and an estimated

tree, T, a strict measure of accuracy is just Prob(T=T)
(Huelsenbeck and Hillis 1993; Erdos et al. 1999). In large
trees, it is useful to measure partial agreement, such as

the proportion of nontrivial splits on T that are also on
T, out of a possible n—3 (Yang 1998).
A still more nuanced definition of accuracy is useful

when either T or T is only partially resolved (not binary),
that is, when the number of nontrivial splits, C(T), is
less than n—3 (Warnow 2013). Let Ngp be the number of

splits on Tbutnot T (false positives), and let Npy be the

number of splits on T but not T (false negatives). When
both trees are binary, Npp=NpNn (Berry and Gascuel
1996; Smirnov and Warnow 2021); otherwise they can
contribute differentially to error. The Robinson-Foulds
(RF) distance (Robinson and Foulds 1981), drg =Ngp+
NEgN, combines both errors in one measure of overall
accuracy. Here, we distinguish between these errors

explicitly by defining false positive and negative rates
(Smirnov and Warnow 2021):

FPr =E[Ngp/C(T)],

1)
ENt=E[Ngn/C(T)].

Both error rates are expectations over some generating
model for the data, described next.

Evolutionary Model

Let B(n) denote the set of unrooted binary phylogenetic
trees with leaf set [n]={1,2,...,n}. Note that a tree T €
B(n) has 2n—3 edges. Consider a Jukes—Cantor model
(JC69; Felsenstein 2004), with rate parameter %, in which
the probability of a state change between the endpoints
of an edge e, denoted pe, is given by p.=p, where p=
%(1—exp(—4)\/3)). Assume further that all edges have
the same value of \. Let £ denote the expected number
of state changes per character in T. Thus, §=x-(2n—3).

A character refers to the assignment of states to the taxa
at a given site of an alignment.

We will say that a character evolves “perfectly” on T
if there is a single change of state across one interior
edge (say €) and no change of state on any other edge
of T. Thus, a character that evolves perfectly on T is
homoplasy-free, and the two notions are equivalent for
binary characters. However, for multistate characters, the
notion of a perfectly evolved characters is stronger than
that of being merely homoplasy-free. We deal here with
this stronger notion for two reasons: firstly, it simplifies
the mathematical analysis, and second, the expected
proportion of homoplasy-free characters that are not
perfectly evolved under the models we consider tends
to zero as the number of taxa becomes large.

We will say that a character f evolves on T with c edge
changesoney, ..., e if state changes occur onedgesey, ..., ec
and on no other edge of T. More briefly, we say that f
evolves on T with c edge changes if f evolves with c edge
changes for some set of ¢ distinct edges of T (mostly we
will deal with the case c=2).

Recall that a split refers to a bipartition of the leaf set
[1] into two nonempty subsets (and splits are induced by
binary characters). A character that has evolved perfectly
on T produces a split, and these splits (across a set of
perfectly evolved characters) are compatible and so form
a (generally unresolved /nonbinary) tree on leaf set [n].

Probability of False Splits

Suppose that m characters evolve on T and that, of
these m characters, k of them are perfectly evolved on
T (note that more than one of these characters may
correspond to the same split of T). Next, consider a single
additional character f which has evolved on T with 2
edge changes, on ey, ey (there is no restriction that these
must be interior edges). Under certain conditions, the
MP tree for these characters will include a false split
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FIGURE 1.  How a false positive split is inferred by maximum
parsimony (MP). On true tree (top) sites 1-3 are binary and “perfect”;
that is, they have only a single change (locations marked by filled
circles), but site 4 is binary and homoplastic, changing twice (open
circles), on edges e; and e;. The dotted line is the path between the
two homoplastic changes in site 4. If no perfect sites change along the
dotted line path on the true tree, a false positive split is inferred on the
MP tree (bottom).

(false positive)—a split not on T (Fig. 1). In particular,
a false split occurs if no perfect character changes state
along the path between e and e; (see Lemma 1 in the
Supplementary material available on Dryad).

Let d>§lf) be the probability that a character f that has
evolved on T with 2 edge changes generates a false split
under MP, which means:

(C-i) itis a binary character,
(C-ii) the corresponding split is not a split of T, and

(C-iii) the split described by f is compatible with k
characters that are perfectly evolved on T (by the
Markovian process described above).

In other words, we are interested in “false splits” (i.e.,
splits in the reconstructed MP tree that are not present
in the—underlying and unknown—true tree T'). The split
corresponding to f (by condition C-i) should not be in T
(condition C-ii); however, condition C-iii would lead MP
to add this false split into the reconstructed tree based on
the other “true splits” since the false split is compatible
with all of the latter.

Given a tree T € B(n), let dr(eq,ep) denote the number
of edges of T that lie strictly within the path between
e1 and e; (i.e., excluding e; and ep). Thus, e1 and e are
adjacent if and only if dr(e1,ep) =0. In addition, let o7 =
(e1(0), 7(1),..., o7(n—3)), where ¢r(i) is the number of
(unordered) pairs of edges {e,e’} of T for which dr(e,e’) =
i. Finally, for i between 1 and n—3, let

or(i)

e)

or()= )

The probability of a false split is then given by
the following theorem (see Supplementary material
available on Dryad for proof).

Theorem 1. For each T € B(n), and k >1 we have:

‘Dgf) Z‘PT(”( ))k

Theorem 1 shows that for fixed k and n, the shape
(k)

of T plays a significant role in determining ®;’; in
particular, unbalanced trees (such as caterpillars) will

have a smaller value of <I>¥<) than more balanced trees.

k)

Indeed, it is possible to calculate the value of CD(T
exactly for the two extreme cases of caterpillar trees
and fully balanced trees to determine the extent of this
dependence (see Supplementary material available on
Dryad).

Estimating the Expected False Positive Rate

Given a binary phylogenetic tree T, and m characters
evolved randomly on T by the model described earlier,
the false positive rate (FPT) is the expected value of the
ratio of false splits to all splits in the estimated tree (Eqn.
1; here we assume that if the reconstructed tree is a star,
this proportion [which is technically 0/0] is zero). Recall
that £ is the expected number of state changes in the tree
T per character, under the model described earlier. FP
is a function of the three parameters T (specifically, its
shape and number of leaves), m, and ) (equivalently, FPt
is a function of T, m, and §).

In general, it is mathematically complicated to
describe FP7 in terms of these parameters. However,
when the number of leaves in a tree grows faster than the
number of perfectly compatible characters, it is possible
to state a limit result to provide an approximation to FP
for large trees.

In the following theorem, we consider the following
setting:

(1) mt=0(nP) for some 0 <P < %, and
(I) mg2=0(1),

where O(1) refers to dependence on 7 (thus m&? is not
growing with n). Note that Condition (I) implies that
the number of perfectly evolved characters grows with
the number of leaves, but at a rate that is slower than
linearly. Conditions (I) and (II) imply that £ decreases as
n increases.

In this setting, we show that the false positive rate is

(asymptotically) of the form % times a function Q that
involves T (via its shape), m, and £. If we now treat £ as
a variable, then for £ =0, the function 2 is close to 1 (for
large n) and so FPr initially grows like £/3. However,
as £ increases, 2 begins to decline at an increasing rate,
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resulting in the false positive rate reaching a maximum
value before starting to decrease.

To describe this result, we need to define this function
Q. Let

n-t e—i/(1=3) _ o1t

QTy.5.m)=Y _r,(i)-
i=1

1-i/(n—=3)
where:
"2
and where ¢r, (i) is given in Eqn. (2). For example, for

any caterpillar tree, we have ¢, (i)=4(n—2—1)/ (2”2_ 3)).

Notice that Q(Ty,&,m) depends on Tj only via the
coefficients §r, (i), and this dependence is linear. Thus,
if D is a distribution on trees (e.g., the PDA or YH), then
the expected value of Q(T,&,m) is given by:

e—ib/(1=3) _ g

n—4
ED[Q(Tn,s,m)]=ZED[¢Tn(i)]~m. 3)
i=1

For the PDA distribution, the term Eppa [@7, (/)] has an
explicit exact value, namely,

(i+3)2i2n—i—4)(n—2)!
@n—4)(n—i-3)(*57)

Eppalér, (@)= 4)

for all i between 1 and 1 —3 (see Supplementary material
available on Dryad for proof).

Theorem 2. For each n>1, let Ty, be a binary phylogenetic
tree with n leaves, and suppose that Conditions (I) and (II)
hold.

(i)
BPr, = (T & m)- (1 o(1),

where o(1) is a term that tends to 0 as n grows.

(ii) If Ty is sampled from a distribution D (e.g., PDA, YH),
then the expected value of FPr,, denoted Ep[FPr, ],
satisfies

Ep[FPy, = % Ep[QT.&.m)]-(1+0(1)).

Remarks. Note that FP7, depends only on the shape of
the tree T}, (and not on how its leaves are labeled), thus
for a tree distribution D on either the class of caterpillar
trees, or symmetric trees, we have FPr =Ep[FPr, ].

Notice also from Fig. 3 that as £ increases from 0
the estimate of Ep[FPr, ] given by %-Q(Tn,é,m) for the
YH, PDA distributions and for symmetric trees initially
increases (approximately linearly) with § but then begins
to decrease with increasing &. By contrast, when T}, has
the caterpillar tree shape, the estimate of FPr, appears
to be constant as & increases from 0 (see Fig. 3). Indeed,
when T}, is a caterpillar tree, the expression for FPr, in

Theorem 2(i) reduces to the following remarkably simple
expression as 1 becomes large:

FP7, ~4/(3m),

which is independent of & (and 7). Details are provided
in the Supplementary material available on Dryad.

MATERIALS AND METHODS II. SIMULATIONS, DATA, AND
DATA ANALYSES

Main Simulation Pipeline

Simulations were run to assess goodness of fit and
robustness of mathematical predictions under various
regimes of model parameters and tree inference criteria
(MP or ML), as well as to estimate expected accuracy
in empirical data sets. Each of R simulation replicates
(with r sub-replicate tree searches in each) consisted
of the following sequence of steps: i) generation of a
random binary tree T with n leaves according to either
a “proportional-to-distinguishable-arrangement” (PDA)
or Yule-Harding (YH) model (Aldous 2001) (as well
as the two extreme cases of completely unbalanced
caterpillar trees, and completely balanced symmetric
trees); ii) assignment of edge lengths of T according
to a gamma distribution with shape parameter o, and
mean X; iii) generation of a sequence alignment of m sites
using Seq-Gen v. 1.3.4 (Rambaut and Grassly 1997), with
either JC69, HKY, or GTR models (and base frequencies
and rate matrix parameters set or estimated from data),
and with one of four across-site-rate (ASR) variation
models: no variation, invariant sites model, gamma
model, or free-rate model ranging from 2 to 10 bins
(Kalyaanamoorthy et al. 2017)—the free-rate model was
implemented in Seq-Gen by using 2-10 site partitions;
iv) reconstruction of estimated tree T [using PAUP 4.0a,
build 166: Swofford (2003)) for MP with options “hsearch
add=simple swap=no nreps=r;contree “all/strict”; and
using IQ-TREE 2 (v. 2.0.6) (Minh et al. 2020) for ML with
options “-m JC+FQ -nt 1 -redo -mredo —polytomy -blmin
1e-9,” replicated r times, followed by strict consensus];
v) tallying Ngp and Ngy from T and T and computing
error rates. Mean rates across replicates were then tallied.
All steps except iii) and iv) used custom PERL scripts
(available in the Dryad repository).

A typical data set size of n=513 (chosen to allow
perfectly symmetrical trees plus one outgroup, when
such were needed), and m=1000 was used to model
trees large enough to potentially satisfy the near-perfect
assumptions, and to have a sufficient number of sites to
infer a range of accuracy when combined with A values
ranging from 107 to 0.316 substitutions per site. Gamma
shape parameters were set at 0.1, 1.0, and 10.0, which
encompasses distributions ranging from highly variable
to nearly constant. For edge length variation this range
encompasses what we observed in the empirical virus
data sets. For ASR variation, it captures much of the
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range of inferred values we have seen in the literature.
Finally, R was generally set to 1000 and r to 100.

Support Simulations

Phylogenetic support measures were estimated in
trees simulated via the main pipeline described above
with n=513, m=1000, a JC69 model with no rate
variation, and PDA random trees. Ten values of \
in the interval [1075,0.31622] were analyzed. PAUP
(Swofford 2003) was used for MP bootstrapping (same
heuristic search as above but with 100 replicates x 10
subreplicates); IQ-TREE 2 (Minh et al. 2020) was used
(50 random tree replicates) for SH-aLRT (“-alrt 1000”),
aBayes, and ultrafast bootstrapping (“-B 1000”), with
additional options enforcing minimum branch lengths

of 1072 and collapsed polytomies. Mean support across
replicates was computed.

Perfect four-taxon alighments were generated in which
each of the five branches had a single, nonhomoplastic
nucleotide substitution in the alignment and all other
sites were constant. Alignment lengths ranged between
40 nt and 30,000 nt. ML trees were inferred in IQTree2
with a JC69 model, minimum branch lengths of 1079,
and collapsed polytomies. Clade support was determ-
ined using Felsenstein’s bootstrapping (1000 replicates),
ultrafast bootstrapping (10,000 replicates), transfer boot-
strap exchange (TBE; 1000 replicates), SH-aLRT (10,000
replicates), and aBayes. Full Bayesian inference was also
performed in MrBayes v3.2.7 (Ronquist and Huelsen-
beck 2003) with a single run per replicate of 2.5 million
generations, with the first 10% of generations discarded
as burnin.

Alignments for larger, perfect symmetrical and asym-
metrical (caterpillar) trees were generated with 8, 16,
32, 64, and 128 taxa. Each branch, including terminal
branches, had a single nonhomoplastic nucleotide sub-
stitution in the alignment with all other sites constant.
Alignment lengths ranged from 236 to 32,768 nt. ML
trees were inferred as described above for the four-taxon
alignments, and support was assessed by Felsenstein’s
bootstrap, ultrafast bootstrapping, TBE, SH-aLRT, and
aBayes.

All Python scripts related to perfect tree simulations
are available in the Dryad repository.

Virus Data Sets

Viral phylogenies were obtained from the NextStrain
(Hadfield et al. 2018) website (accessed May 5, 2020)
(Table 1). Phylograms were downloaded for dengue
virus, dengue virus serotype 1, Ebolavirus (Dudas et al.
2017), enterovirus 68 (Dyrdak et al. 2019), measles
morbillivirus, mumps virus, respiratory syncytial virus,
West Nile virus (Hadfield et al. 2019), and Zika virus. In
addition, we also analyzed an iatrogenic HIV-1 outbreak
in Cambodia (Rouet et al. 2018) and the first wave of the
SARS-CoV-2 epidemic in China (Pekar et al. 2021). The

SARS-CoV-2 phylogeny is the ML tree used in Pekar et al.
(2021) (see Data S1 of the Supplementary material avail-
able on Dryad at https://dx.doi.org/10.6076/D12S3M
for list of GISAID Accession IDs). Publicly available
genomic sequences (or genetic sequences for HIV-1)
were downloaded from GenBank and aligned with mafft
v7.407 (Katoh and Standley 2013) (accession numbers
can be found in Data S2 of the Supplementary material
available on Dryad).

False positive rates for the virus phylogenies were
estimated with our simulation pipeline, setting paramet-
ers to values estimated from published trees and publicly
available sequences used to construct them (Table 1,
Table S1 of the Supplementary material available on
Dryad). For each virus, we used IQ-TREE 2 to infer
the six rate parameters of a GTR substitution model
with empirical base frequencies. The optimal site-to-
site rate variation model, including free-rate models,
was determined using the Bayesian information criterion
(BIC) in IQ-TREE 2 (Kalyaanamoorthy et al. 2017). These
models were used to parameterize sequence simulation
in Seq-Gen, as described above.

Edge length (per site) variation was assumed to follow
a gamma distribution: A ~ I'(a, /%) having mean » and

variance %> /. The distribution of substitutions is a
mixture of Poisson and gamma distributions, which is
a negative binomial with a variance to mean ratio of
1+ o )
Qe
which was shown by Bedford and Hartl (2008) for an
equivalent parameterization. Virus trees were prepro-
cessed, setting any edge lengths <1.1 x 1070 to zero,
assuming these reflected ML numeric artifacts. Then, »
was estimated from the observed sum of per site edge
lengths divided by 2n—3, and Eqn. 5 was then used to
estimate a,.

Ideally, we would fit the data to the random tree
model, but standard methods either assume binary
trees or model polytomies with an a priori assumption
about the tree model itself (e.g., Bortolussi et al. 2006).
Therefore, we repeated simulations using both PDA and
YH models.

REsULTS

Owerview of Results on Accuracy

Simulations of tree inference with MP over a large
range of tree lengths, £, and other parameters, illustrate
several known results (Fig. 2) and perhaps a few less
well known ones. First, resolution of the inferred tree
increases with tree length. Second, “overall” accuracy,
as measured by the RF distance, is optimal at an
intermediate tree length, £* (Yang 1998; Bininda-Emonds
etal. 2001; Steel and Leuenberger 2017). Moreover, when
£ >>£*, the false positive error rate, FPr, is similar to the
false negative rate, FNT, as might be expected because
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TABLE1.  Parameters of 11 empirical virus phylogenies.
Abbreviations Virus Leaves Sites Resolution
DENV Dengue virus 1197 10,264 0.8795
DENV-1 Dengue virus serotype 1 1067 10,264 0.8160
EBOV Ebolavirus 1610 18,164 0.3632
EV-D68 Enterovirus 68 824 7293 0.8029
HIV-1 Human immunodeficiency virus type 1 189 1038 0.2193
MeV Measles morbillivirus 109 15,782 0.7009
MuV Mumps virus 458 15,154 0.2961
RSV Respiratory syncytial virus 997 14,986 0.6121
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 583 29,668 0.2324
WNV West Nile virus 2512 10,395 0.5960
ZIKV Zika virus 543 10,320 0.5453

the true and estimated trees are nearly binary; therefore
Npp =NEpN-

However, when & <<&*, then FPr <<FNr, and the
false positive error rate can remain quite good (<0.05)
over a large range of £ even when the false negative error
rate is very high. However, the range of tree lengths
for which this result holds depends critically on rate
variation across edges and sites. When & <1, the false
positive rate is low and insensitive to the presence of rate
variation; but, when & > 1, the false positive rate is much
more sensitive to rate variation—high when variation is
present and low when absent (contrast Fig. 2a,b). In real-
world data, as & increases, we expect that evidence of rate
variation will become more apparent.

Key elements of these findings can be shown analyt-
ically in a “near-perfect” zone described by a simple
evolutionary model.

Overview of the Mathematical Theory

First we define “near-perfect” more formally. Assume
the data consist of an alignment of m independent
and identically distributed nucleotide sites that have
evolved according to a JC69 model (Felsenstein 2004)
on an unrooted binary tree T, with n leaves. Each of
the 2n—3 edges of T have length %, and thus the total
tree length is £=\(2n—3). When n is large and £ <1,
the expected number of substitutions per site is <1;
the number of edges on which a site changes state is
approximately Poisson distributed with mean &; and
the probability of more than one change on an edge
is low, meaning multiple changes at a site occur on
distinct edges. Though these conditions will generate
alignments dominated by “perfect” sites exhibiting no
homoplasy, a few sites may exhibit homoplasy even with
£ <1, which motivates the term “near-perfect.” Under
these conditions, tree reconstruction methods will tend
to infer relatively unresolved trees unless the number of
sites is very large.

Rare sites that exhibit homoplasy can introduce false
positive splits on the inferred tree (Fig. 1). A naive
argument using equation 1 might suggest that FPr
would depend on £ roughly as O(£2)/0(£)=0(¥), namely
the ratio of the expected numbers of sites having changes
on two edges (i.e., those that are potentially homoplastic

and misleading) to those sites having only a single
change (those that are reliable), for sufficiently small £.
But because only one-third of those two-edge sites are
actually homoplastic in a JC69 model,

FPr=§g/3,

which implies FPt is small when £ is small enough (e.g.,
FP7 <0.05 whenever & <0.15).

This approximation can be improved further by
recognizing that not all two-edge homoplastic sites
induce false positives, depending on their position in
the true tree (Fig. 1). Given the evolutionary model, the
probability that k perfect sites, and another site f that
has evolved with two edge changes will produce a “false

positive” under MP is denoted @%’f) (Theorem 1 above).
Because this probability is often less than one, FPr can
remain below 0.05 at higher values of £ than the naive
argument suggests.

If the true tree were known with some precision,
the first part of Theorem 2 could be used directly to
calculate false positive rates. However, in the “near-
perfect” parameter space of large n and £ <1, estimates of
the true tree are likely to be only partially resolved (Fig.
2). We therefore derive the expected false positive rate
for a distribution, D, of randomly generated trees of size
n, Ep[FPr, ], generated from parameters based on the
inferred tree. In the remainder of this article, the “expec-
ted false positive rate” will generally refer to Ep[FPr, ].
We assume that D is usually either a “proportional-to-
distinguishable-arrangement” (PDA) or Yule-Harding
(YH) distribution (Aldous 2001), but also consider the
two extreme cases of completely unbalanced (caterpillar)
trees, and completely balanced (symmetric) trees. Unlike
PDA and YH trees, these last two have a constant tree
shape (with random leaf labels). From the second part
of Theorem 2, we see that, for a JC69 model and trees
inferred with MP, the following approximation holds
increasingly well as n increases:

ED [FPT,Z = % -E'D[Q(Tn, E, m)] (6)

given the assumption that £ is sufficiently small and
the number of sites does not grow too quickly with
the size of the tree. The function Q(T},&,m), defined in
Materials and Methods I, is monotonically decreasing in
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FIGURE 2. Accuracy of maximum parsimony phylogeny reconstruction in simulations over a wide range of per site tree length, &, and other

parameters. Solid and dashed curves are mean false positive and negative error rates, respectively (log scale left); dashed sigmoidal curve is
fractional resolution of estimated tree (linear scale right). Trees are generated by a random proportional-to-distinguishable-arrangement (PDA)
model for 513 taxa, from which a sequence alignment length of 1000 sites is generated. The dotted horizontal line is placed at an error rate of
0.05. Asterisk marks the location of the optimal tree length with best overall Robinson-Foulds accuracy, £*. Each point is mean of 1000 replicates
x 100 sub-replicates (see Methods). “Near-perfect” values (§ <1.0) are shaded. a) JC69 model with no edge length or across-site-rate variation
[because of y-axis log scaling, two y values of zero were set to 0.0001]. b) JC69 model with substantial edge length and across-site-rate variation,
both modeled as a gamma distribution with shape parameters o, =oasg =0.25).
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FIGURE 3.  Mean false positive (FP) rate in four tree models. Fit
to theoretical predictions from Equation 6 (or the limit expression of
4/3m for caterpillar trees: see Methods) are shown by dashed lines.
Each point is mean of 1000 replicates x 100 sub-replicates. Simulation
conditions were n=513,m=1000, with a JC69 model. Predicted values
are not known for YH model.

£ and m, and depends on the shape of T. Simulations
indicate that the approximation is close for £ <1 (Fig.
3), but if many equally parsimonious trees are present,
the search algorithm should take a strict consensus
of a broad sample of those solutions (Fig. S3 of the
Supplementary material available on Dryad). Ep[FP7, ]
is better on average for PDA than YH trees, and both are
bounded between a theoretical worst case error rate for
symmetric and best case error rate for caterpillar trees.
In fact, the expected false positive rate for the latter is just
4/(3m) in the limit of large n, which is independent of &.

Robustness to Violation of Assumptions

Violations of assumptions tend to increase the expec-
ted false positive rate above the predictions of equation
6. For example, adding edge length (EL) variation or
across-site-rate (ASR) variation increases Ep [FPr, ] (Figs.
2,4 and Fig. 54 of the Supplementary material available
on Dryad). The difference between predicted Ep[FPT, ]
based on Eqn. (6), with no edge length variation, and
simulation-based estimates with edge length variation
included is small when &€ << 1but increases substantially
as £ increases. When edge length variation is large
(gamma shape parameter o, =0.1), there is no longer
a local maximum value of Ep[FPr, ] around £=0.1;
instead, Ep[FPr, ] increases monotonically with & and
eventually exceeds 5% for the simulated data set sizes.
The impact of ASR variation is deleterious at all values
of £, but even when ASR variation is large (gamma shape
parameter aasr=0.1), the false positive rate remains
slightly below 5% for simulated data set sizes in the
absence of EL variation (Fig. S4 of the Supplementary
material available on Dryad).

Departure of the substitution model from the JC69
model assumed in the “near-perfect” zone can also
increase the expected false positive rate. For example,
a strong transition—transversion bias increases Ep[FPT, |
substantially, though it still remains well below 5% under
our typical simulation conditions when £ <1 (Fig. S5 of
the Supplementary material available on Dryad).

Thus, the near-perfect tree length of £ <1 is a region
in which rate variation appears to have less of an impact
on false positive rates than when tree lengths are longer.
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FiGURE 4.  Effect of edge length variation on expected false positive
(FP) rate for different values of the shape parameter of the edge length
gamma distribution, a.. Smaller values of o, correspond to higher rate
variation. ASR variation is assumed absent. The dashed curve is the
prediction from Eqn. (6), in which both sources of variation are absent.
Simulation conditions assumed PDA trees with n=513, m=1000,
1000 replicates, 100 subreplicates. Gray rectangle shows “near-perfect”
values of £ <1.

This suggests that the definition of near-perfect zone in
practice can include substantial rate variation.

Expected False Positive Rates in Virus Phylogenies

We estimated key parameters from the trees and
underlying data for 11 empirical virus phylogenies
(Table 1, Table S1 of the Supplementary material avail-
able on Dryad) and used simulation to estimate expected
false positive rates (Fig. 5). The studies span a wide
range of tree size and resolution and alignment length,
and their tree lengths span three orders of magnitude.
Seven of these viruses fell within the “near-perfect” tree
length zone of £ <1.0, and six of those had Ep[FPr,]<
0.05 irrespective of random tree model. Ep[FPr,] was
generally lower for PDA versus YH models. As expected,
Ep[FPT,] increased roughly with &, despite the large
differences in these data sets.

Epidemics with young crown group ages on the order
of years or decades (e.g., Zika virus, West Nile virus, and
mumps virus) had expected false positive rates below
5%, even though West Nile virus had a & slightly above
1. Viruses encompassing single epidemics (e.g., SARS-
CoV-2 in China, EBOV in West Africa, and HIV-1 in
Cambodia) also had expected false positive rates below
5%. Remarkably, HIV-1 had a low expected false positive
rate even though the tree was constructed using the
fewest number of sites in our sample (from only a single
partial gene). Number of site affects accuracy through
the Q(Ty,&,m) term in Eqn. 6.

Trees with lowest levels of resolution (Table 1) had
the highest expected false positive rates. For example,

dengue virus serotype 1, which does not represent a
single epidemic, had low phylogenetic resolution, a £ >
1, and a correspondingly high expected false positive
rate. The phylogenetically more diverse dengue virus
tree representing all four DENV serotypes had an even
higher tree length and expected false positive rate.

The measles virus tree was an outlier with Ep[FPr, ]
above 5%, even though its tree length was below one.
Notable, MeV had the fewest taxa of any virus analyzed
(Table 1) and subsequently lower phylogenetic resolu-
tion. This combination of factors implies sensitivity to
the assumption of large # in our results.

Extension to ML Inference

Theoretical results hint that ML and MP should
reconstruct the same tree under “near-perfect” assump-
tions. For example, ML provably converges to MP when
there are enough constant characters in an alignment, a
condition similar to £ <<1 (Tuffley and Steel 1997, Thm.
3). Further arguments presented in the Supplementary
material available on Dryad support this conjecture.

We used simulation to check how well equation 6,
derived for MP, predicted the expected false positive rate
under ML inference in the near-perfect zone. Simulations
with £ <1, a JC69 model, and no edge length or ASR
variation, with trees inferred by IQ-TREE 2 (Minh et al.
2020) under the same model, are close to the equation’s
predictions (Fig. S6 of the Supplementary material
available on Dryad). Nonetheless, some differences were
observed, which tended to imply better accuracy for
MP. These differences could largely be attributed to
technical or implementation issues in ML software. First,
the computational expense of ML searches makes it
tempting to undertake fewer replicate searches for local
optima, but this was as critical to improve the fit to
Equation 6 for ML as it was for MP (Fig. S6 of the
Supplementary material available on Dryad). Second,
ML programs set hard numerical lower bounds strictly
greater than zero on edge lengths, often (by default) on
the same order as X for the virus data sets, so these must
be reset downward to obtain correct tree likelihoods
(Morel et al. 2021). Finally, inferred edge lengths that
are larger than these programs’ lower bounds but still
smaller than about 1/m tend to be included in the ML
tree despite weak evidence (IQ-TREE 2 issues a warning
about this). We saw this in ML searches roughly when
£ >0.1, when three-state sites become more common in
alignments than they were at lower values of &. Even
without homoplasy, ML tends to over-resolve trees in
a way that elevates Ep[FPr, ]. By collapsing short edge
lengths inferred by ML to be less than 1/m, this behavior
can be mitigated (Fig. S6 of the Supplementary material
available on Dryad).

In general, ML is expected to be more accurate than
MP under more realistic model conditions and higher
rates, something we observed commonly in simulations
in which & > £*. However, simulations also suggest that
in the near-perfect zone, MP can achieve an Ep[FPr, ]

1202 4890100 0| uo Jasn Ateiqi] Aunglaiue) jo Alsianiun Agq £40£G£9/6909eAs/01qSAS/SE0 L 0L /10p/a]01B-20UBApPE/OIgSAS/W O dNo-olwapede//:sdiy wouy papeojumoq


https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab069#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab069#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab069#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab069#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab069#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab069#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab069#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab069#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab069#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab069#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab069#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab069#supplementary-data

2021 WERTHEIM ET AL.—ACCURACY IN NEAR-PERFECT VIRUS PHYLOGENIES 9
DE‘NV
DENV-1
)
% - MeV. )
£ ° EV-D68
S @
utJ o) 9 RSV
® HIV-1
& MuV WNV
S - ZIKV
o o -
S o
o
® o
SARS-CoV-2 ®
EBOV

S

8 -

e | T T T

0.01 0.1 1 10
§

FIGURE 5.

Expected false positive (FP) rates, Ep[FPr, ], for 11 empirical virus phylogenetic data sets (Table 1) for maximum parsimony (MP)

inference, estimated by simulation using parameters estimated from the data (Table S1). Abbreviations given in Table 1. Simulation experiments
used either a Yule-Harding random tree distribution (open circles) or PDA distribution (closed circles: some data points have indistinguishable
differences between random tree models). Each point is mean of 500 replicates x 100 sub-replicates. The near-perfect zone of £ <1.0 is shaded.

Horizontal dashed line indicates a 0.05 expected false positive rate.

comparable with ML but with much faster running
times.

Accuracy and Support in Near-Perfect and Perfect Trees

False positive “accuracy,” defined as 1—-Ep[FPT, ], is
very high in the near-perfect zone of small tree lengths,
whereas conventional support values are quite variable
in this zone under the same simulation conditions
(Fig. 6). At very low &, the average bootstrap support
for MP is about the theoretically expected 64% for a
single nonhomoplastic substitution supporting an edge
(Felsenstein 1985). Model-based support measures had
higher values, with aBayes (Anisimova et al. 2011) being
greater than ultrafast bootstrap (Hoang et al. 2018),
which, in turn, was greater than SH-aLRT (Guindon etal.
2010), but only aBayes was close to our 1 —Ep[FPT, | false
positive accuracy across the range of tree lengths in the
near-perfect zone. Notably, aBayes is the only one of the
metrics that is not based on resampling.

We explored other factors impacting support in the
boundary case of perfect trees. For sequence length,
we computed standard support metrics in an ML
framework in perfect four-taxon data sets, in which
each branch was defined by a single change, and
alignments range between 40 nt and 30,000 nt (Fig. S7
of the Supplementary material available on Dryad). As
observed for MP, Felsenstein’'s ML bootstrap support
is approximately 63%, regardless of sequence length,

in accordance with theoretical predictions (Felsenstein
1985). Transfer bootstrap exchange (TBE) (Lemoine et al.
2018; Lutteropp et al. 2020) values were indistinguishable
from Felsenstein’s bootstrap. Of the other ML model-
based support metrics, aBayes provided higher values
than ultrafast bootstrap and SH-aLRT, both of which rely
on bootstrap resampling. The aBayes support reached
>95% for alignments as short as 100 nt, which tracked
the full Bayesian posterior support estimates that had
support >95% in alignments as short as 60 nt. The dis-
crepancy between the Bayesian estimates and those that
use bootstrap resampling, in light of our other results,
suggests that resampling methods used in the presence
of splits defined by only a single informative site may fail
to integrate relevant information about low tree lengths.

On the other hand, in perfect trees from 8 to 128 taxa,
in which the mean edge length remained the same (but
therefore & grew with 1), mean SH-aLRT and aBayes
support was unchanged, but mean ultrafast bootstrap
supportincreased (Fig. S8 of the Supplementary material
available on Dryad). The TBE method was developed
to correct for a downward bias of bootstrap values often
seen in large trees. As expected, TBE exceeds conven-
tional bootstrap support as taxon number increases.
However, this increase is modest in perfectly symmet-
rical trees compared with perfectly asymmetric trees
and only surpasses 95% in the largest asymmetric trees
(Fig. S8 of the Supplementary material available on
Dryad).
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FIGURE 6.  Statistical support measures compared to expected
false positive accuracy, as a function of tree length. The solid curve is
the mean value of (1 — Ep[FPr,]) x 100 in simulations. The near-perfect
parameter space is shaded.

DiscussioN

In this article, we study a “near-perfect” parameter
space for phylogenetic inference on large trees with small
tree lengths and no rate variation within or between
sites or edges. The “near-perfect” tree length of £ <1
means that few sites exhibit homoplasy and, for MP
inference, the false positive rate can be much better than
the false negative rate and well under 5% for typical data
sets with thousands of sites. The near-perfect conditions
defined here to allow mathematical derivations appear
to be sufficient but not necessary. For example, with no
rate variation, the false positive rate can be very good
even when £ >1 (Fig. 2A, Fig. S5 of the Supplementary
material available on Dryad), and, if £ <1, a substantial
level of rate variation can be present without elevating
the false positive rate by nearly as much as when & >
1 (Figs. 2, 4, Fig. 54 of the Supplementary material
available on Dryad).

The second case is clearly more relevant in real-world
data. The 11 empirical virus data sets all had substantial
rate variation and showed a general increase in false
positive rate with &, with almost all rates below 5%
occurring when & <1, much like the predicted patterns
seen in Figures 2B and 4. This observation accords with
our simulation results suggesting that the good “near-
perfect” false positive rates may emerge even when
relaxing the strict near-perfect assumption of no rate
variation—as long as £ <1.

These and many other empirical findings about RNA
virus phylogenies sampled intensively in epidemics
postdate much of the extensive body of other work on
accuracy and support in phylogenetics. Not surprisingly,
little note has been made about the stark contrast
between false positive and false negative rates in phylo-
genies in which tree length is well below the optimal tree
length for “overall accuracy,” since published examples
have been relatively rare. The goal of much of the field

of phylogenetics is, after all, to maximize tree resolution,
even if this effort requires adding (or switching to)
sequence data with more variation and thus longer tree
lengths.

Because “near-perfect” data sets reflect a combination
of the number of taxa and sites, evolutionary rate and
time parameters, and assumptions about the substitu-
tion model, they also implicitly reflect sampling of the
true tree, which is particularly relevant in epidemic
trees in which sampling is far below disease incidence.
Sampling can continue over time, increasing #, and
the viruses continue to evolve over time, increasing
the depth of the tree. Both of these increase £ but in
different ways; therefore, it is possible for the same
RNA virus to have near-perfect and not near-perfect data
sets depending on the study. For example, the SARS-
Cov2 data set we included had n=583 and £=0.02,
well within the “near-perfect” zone, but a much more
intensively sampled tree over a longer period of time
(Lanfear 2020) with n=147,156 has a tree length of
£=3.89 (after collapsing any edges with x <1.1x107°),
which is remarkably small for such a large tree but lies
just outside our definition of near-perfect. This finding
suggests that large-scale phylogenetic approaches for
SARS-CoV-2 surveillance are appropriate (Ferreira et al.
2021; Turakhia et al. 2021) and that such approaches
are unlikely to falsely suggest close relatedness (i.e.,
transmission clusters) where none exists.

Other mathematical results on phylogenetic accuracy
have largely focused on either the limiting case of
infinite sequence length (“consistency”), or the number
of sites needed for accurate inference (the “sequence
length requirement”). For MP, for example, the shortest

edge length is critical and limy,—, oo Prob(Typ =T) =1 as

long as hmin >£2/(1—&) (Steel 2000, Thm. 1(A)). More
generally, let m’ be the number of sites needed for

Prob(f"Mp =T) to exceed some fixed required accuracy.
For the neighbor-joining method m’ grows exponentially
with n (Lacey and Chang 2006); for ML, m" is polynomial
or better in n, depending on edge lengths (Roch and Sly

2017). Moreover, m’ also grows as O(1/ )\fmn) for ML and
some more ad hoc estimators (Erdos et al. 1999; Roch
2019), implying again that short edges tend to degrade
accuracy when accuracy is defined in terms of total

agreement between T and T, in contrast to our findings
here.

A cryptic factor affecting the false positive rate is tree
shape. Highly asymmetric trees have better expected
false positive rates than highly symmetric trees, because
expected path lengths are longer and it is harder to
induce false positive splits by chance (Fig. 1). Thus, a
random sample of PDA trees will have a better Ep[FPr, ]
than more symmetrical YH trees. Differences in tree
shape among RNA virus phylogenies have long been
noted (Grenfell et al. 2004), such as the typically more
asymmetric influenza trees.

Perfect and near-perfect phylogenies have been stud-
ied as discrete optimization problems (Gusfield 1997;
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Fernandez-Baca and Lagergren 2003) in which the goal
is to find an optimal tree when, at most, some small
number of sites exhibit homoplasy. Little of this work
has considered accuracy per se, but Gronau et al. (2012)
highlighted the connection between short edge lengths
and false positives, and developed a “fast converging”
algorithm (i.e., having an O(poly(n)) sequence length
requirement) that returns a tree with short edges
collapsed when they do not meet a threshold probability
of being correct, thus minimizing false positives. The
connection between this tree and those built by more
conventional methods is unclear, but it may be a
promising approach for building trees in the near-perfect
zone.

Model-based phylogenetic inference methods such as
ML and Bayesian inference are generally regarded as
theoretically superior to MP, especially for data sets
that fit substitution models much more complex than
our “near-perfect” JC69 model with no rate variation.
Though our mathematical results for expected false
positive rates were derived for MP, there is both relevant
theory and considerable simulation evidence to suggest
that in the near-perfect zone, the ML expected false
positive rate is approximated by the MP theory, both in
terms of its absolute value and its shape as a function
of tree length. As & increases, especially above &*,
ML consistently has better accuracy than MP, but we
conjecture that the false positive rates of MP and ML
differ much less as & gets very small. Further work is
needed to test this conjecture.

The connection between the false positive rate as
a measure of accuracy and conventional measures of
phylogenetic support appears to be sensitive to the
choice of support method when & <<1 (Fig. 6). The
aBayes method corresponds well to what is implied
by 1—-Ep[FPr, ], but resampling methods using either
likelihood or parsimony correspond less well. The
connection between phylogenetic accuracy and support
in frequentist and Bayesian settings has been studied in
detail (Felsenstein 1985; Hillis and Bull 1993; Felsenstein
and Kishino 1993; Efron et al. 1996; Susko 2008, 2009;
Alfaro and Holder 2006; Simmons and Norton 2014)
but remains somewhat fraught. We hesitate to draw
firm conclusions without a formal analysis of support in
the “near-perfect” parameter space, but we do note the
variability in support estimates we found and suspect
that Bayesian measures may be better reflections of
false positive accuracy in practice (Fig. 6). If individual
clade support needs to be invoked in near-perfect
viral phylogenies, we recommend Bayesian approaches
that do not rely on bootstrap resampling of sparse
substitutions. In near-perfect trees, Bayesian approaches
can make use of the limited amount of genetic diversity
to draw strongly supported inference, as opposed to
bootstrapping approaches which require multiple sites
supporting a clade before inferring similarly strong
support. When phylogenetically informative data are
limited, as in near-perfect trees, the consistency of the
data supporting a clade appears more relevant than their
prevalence.

The low false positive rate in near-perfect trees
suggests that phylogenies describing viral epidemics in
this zone can be interpreted directly without defaulting
to identifying clades with strong support values. This
finding supports the current practice in SARS-CoV-2
nomenclature, whereby clades (e.g., denoting variants or
migration events) are defined with reference to specific
synapomorphies (Rambaut et al. 2020; Worobey et al.
2020; O’Toole et al. 2021). We acknowledge that frequent
convergent evolution, and recombination in positive-
strand RNA viruses, can complicate phylogenetic infer-
ence and may increase the false positive rate in real-world
trees (Morel et al. 2021).

The benefit of real-time viral genomic sequencing for
public health action became apparent during the 2014—
2015 West African Ebola epidemic (Gire et al. 2014,
and is a critical component of tracking the COVID-19
pandemic (Oude Munnink et al. 2020; Grubaugh et al.
2021). Consequently, the viruses responsible for these
diseases, Ebolavirus and SARS-CoV-2, epitomize near-
perfect phylogenetic trees in our analysis. We can expect
a greater intensity of genomic sequencing accompanying
future viral outbreaks, increasing the importance and
relevance of near-perfect phylogenies.

In conclusion, we have shown that many RNA virus
datasets satisfy assumptions used to derive results
on near-perfect phylogenetic accuracy. These criteria
include sufficiently low substitution rates across a large
enough tree and no recombination. Any set of genomes
sampled in a clade on a short enough time scale, or
highly conserved regions of genomes sampled across
a deeper clade, can also satisfy the first assumption,
but recombination would remain problematic in many
taxa. Springer et al. (2020) illustrate a potential path
forward in their study of “low-homoplasy” retroelement
characters in mammal genomes. They pursue a species
tree inference approach to such data, which would likely
be “near-perfect” were it not for recombination. It may
be possible to derive additional results on accuracy
when local near-perfect trees (or sub-alignments) are
combined under the multispecies coalescent (Liu et al.
2019).
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