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ABSTRACT

Evolutionary tree reconstruction is a challenging problem with important applications in
biology and linguistics. In biology, one of the most promising approaches to tree reconstruc-
tion is to find the “maximum parsimony”’ tree, while in linguistics, the use of the “maximum
compatibility’ method has been very useful. However, these problems are NP-hard, and cur-
rent approaches to solving these problems amount to heuristic searches through the space of
possible tree topologies (a search which can, on large trees, take months to complete). In this
paper, we present a new technique, Opfimal Tree Refinement, for reconstructing very large
trees. Our technique is motivated by recent experimental studies which have shown that cer-
tain polynomial time methods often return contractions of the true tree. We study the use of
this technique in solving maximum parsimony and maximum compatibility, and present both
hardness results and polynomial time algorithms.

1. INTRODUCTION

HE TASK OF THE SYSTEMATIC BIOLOGIST is to recover the order of speciation events that gave rise to the ob-
served species under investigation. This order of speciation events is represented in the ropology of the evo-
lutionary tree for the species. For scientific as well as information-theoretic reasons, locating the root of the
evolutionary tree is quite difficult (and even impossible under certain models of evolution), so that the primary
objective of a phylogenetic method is the recovery of the unrooted version of the tree that gave rise to the taxa.
Many of the popular methods in phylogenetic tree reconstruction attempt to solve NP-hard optimization
problems and are usually implemented as heuristic searches through the space of different trees. Maximum
parsimony, maximum compatibility, and maximum likelihood are three such optimization problems which
have been used in biology, but polynomial time methods, such as neighbor-joining (Saitou and Nei, 1987),
also exist. By assuming a model of how biomolecular sequences evolve, it is possible to explore the perfor-
mance of these methods. A recent result by Tuffley and Steel (1997) showed that under a certain model of
biomolecular sequence evolution (which is less constrained than what is usually assumed), maximum like-
" lihood and maximum parsimony are equivalent. On the other hand, there are conditions under this general
model in which these two methods (and indeed, any method at all (Steel ez al., 1994; Chang, 1996) are incon-
sistent (a method is said to be inconsistent under a model of evolution if there are some model trees in that
model for which the probability that the method will recover the correct tree topology given infinite length
sequences is not 1; see Felsenstein (1978)). There are conditions under which it is possible to guarantee that
the topology of the tree can be recovered (with arbitrarily high probability, given long enough sequences), but
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these conditions are unreasonable with respect to biomolecular sequences, since they assume that the sites
within the sequences evolve identically and independently (the iid assumption). Under the iid assumption,
however, it is known that all “reasonable” distance-based methods are consistent, that is, each will recover
the correct topology given long enough sequences (Erdds et al., 1997; Steel, 1994). For this reason, some
statisticians and biologists prefer distance-based reconstruction methods over parsimony-based methods.

However, heuristic methods for solving parsimony continue to be a major technique used by systematic
biologists, even for large trees (See, for example, Rice er al. (1997), reporting on a parsimony-based analysis
of a 500-taxon data set), despite its computational difficulties and its inconsistency under some models of
evolution (Kim, 1996; Felsenstein, 1978). Furthermore, both experimental (Rice and Warnow, 1997; Huson
et al., 1998a) and analytical studies (Erdds et al., 1997; Atteson, 1997; Ambainis et al., 1997; Farach and
Kannan, 1996) suggest that the actual sequence length that suffices for the various promising distance-based
methods to obtain (with high probability) an accurate topology estimation may be exceedingly large if the
true tree contains significant divergence, even under the iid assumption. Consequently, although distance-
based methods tend to be fast and are provably consistent under some models of biomolecular sequence
evolution, they may not obtain even approximately correct reconstructions of the topology of the evolutionary
tree, if that evolutionary tree is very large and contains significant divergence. On the other hand, heuristic
approaches for the maximum parsimony problem have performed very well in experimental studies, and often
perform significantly better than the best polynomial time distance-based methods, such as neighbor-joining
(Saitou and Nei, 1987) in reconstructing very large trees (Hillis, 1997; Rice and Warnow, 1997; Huson er al.,
1998a). For this reason, many important data sets are analyzed in biology using heuristic parsimony searches.
Unfortunately these searches can last for months or longer (see Rice et al. (1997)) without necessarily finding
the most parsimonious tree(s). This is partly due to the fact that parsimony is NP-hard to solve exactly (Foulds
and Graham, 1982: Day, 1983), and also perhaps due to the techniques (primarily branch-swapping) that have
been used to search the tree space. Obtaining faster and more accurate methods for solving parsimony is an
important objective in phylogenetics.

Evolutionary studies in historical linguistics similarly have the primary objective of recovering the topology
of the evolutionary tree, and here too the most effective optimization problem (the Maximum Compatibilitv
problem) is NP-hard to solve (Bodlaender et al, 1992; Day and Sankoff, 1986; Steel, 1992). However,
computationally expensive but exact algorithms exist for the Maximum Compatibility problem (Agarwala
and Fernandez-Baca, 1996; Agarwala and Fernandez-Baca, 1994; Kannan and Warnow, 1994; Kannan and
Warnow, 1995) (see Warnow (1993) for a survey of results related to maximum compatibility). The application
of these maximum compatibility algorithms to linguistic data for the Indo-European family of languages has
potentially resolved conflicts that have troubled the historical linguistics community for centuries (Warnow,
1997; Warnow ez al., 1996). Further studies by the researchers in this project have indicated that these current
algorithms are not fast enough to handle the more complex data sets they are encountering in analyzing other
language families, such as Dravidian, and that faster algorithms for the Maximum Compatibility problem
(and the related problems that apply to polymorphic data (Bonet er al., 1996)) need to be developed (Tandy
Warnow, personal communication).

In this paper, we describe new methods for solving parsimony and compatibility, and at the same time we
present a new general technique for tree reconstruction. Our methods and general technique are motivated
by recent experimental studies (Berry, 1997; Huson et al., 1998; Huson er al., 1998a), which demonstrated
that some fast tree construction methods return with high frequency a contraction of the true tree (that is, the
reconstructed tree can be obtained from the true tree by contracting some set of edges). Consequently, the
true tree is a refinement of the reconstructed tree. We pose and study the Optimal Tree Refinement Problem,
and consider this problem specifically for the maximum parsimony and maximum compatibility optimization
criteria. Although some of our results are negative, showing that generally the optimal tree refinement problem
is NP-hard to solve, we also obtain algorithms which will be efficient for many of the cases that we may expect
to find in practice. We conclude with open problems.

2. DEFINITIONS
Definition 1: We let [r]* denote the set of k-tuples over {1,2, ...,r}.

Definition 2:  Let S be a set of n taxa. Then T is leaf-labelled by S if the leaves of T are bijectively labelled
by S.
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Definition 3: An n-star is a tree with n leaves and exactly one internal node.

Definition 4: Ler T\ and T be two trees each leaf-labelled by S. Suppose T, can be obtained from T, by
contracting some of the edges in T\. Then, Ty is a refinement of T,, and T, is a contraction of 7.

Definition 5: Let G = (V, E) be a graph. For any v € V, the degree of v is degree(v) = |{fw € V :
(v, w) € E}|, i.e., the number of edges incident to v. Given a path between two nodes, the length of this path
is the number of edges that it contains.

Definition 6: The height of a rooted tree T is the maximum length of all root-to-leaf paths in T .

Definition 7: Let S be a set of taxa (i.e., species, languages, etc.). A character is a funcrionc : § —
{1,2,...,r}. Each c(s) is called the character state of c on species s.

Let C be a set of k characters. Each species in S is identified with a vector of length k over the integers, so
that § C [r]*. Thus, for the ith character in C, the character state of this character on a species s € S is equal
to the ith component of the vector for s. When dealing with a set of aligned biomolecular sequences, each
column (or site) in the alignment corresponds to a character. For example, assuming no insertions or deletions
in the alignment, for DNA sequences, each character has four character states—A, C, T, and G.

Definition 8: Let T be a tree leaf-labelled by S and let L be a labelling that assigns a vector from [r]¥ to
each internal node in T. Then the cost of T under this labelling L (denoted by cost(T, L)) is the total number
of times each character changes state in the tree. This may also be calculated as

cost(T, L) = Z Hamming(e),

ecE(T)

where Hamming(e) is the Hamming distance between the endpoints of e, i.e., Hamming(e) = {{i : x; # yi}),
where e = (x, y).

The parsimony score of T is then the minimum of cost(T. L), taken over all possible internal labellings
L of the nodes of T. The problem of finding the tree with the lowest cost for a given set of sequences which
will label the leaves of the tree is the maximum parsimony problem.

We now define the maximum compatibility problem. As before, let 7 be a tree leaf-labelled by S, and
let L be an internal labelling of the nodes of T, where all labels and elements in S are drawn from [r]*. Now
consider a particular character ¢, and let r, be the number of distinct values at the leaves for this character. It
should be clear that no matter how the internal nodes of the tree are labelled in L, that the tree 7 must contain
at least r. — 1 edges on which this character changes state between the endpoints.

Definition 9:  Any character c which has the property that on (T, L) it changes exactly r. — 1 times is said
to be compatible or convex on (T, L). A character which is not compatible on T is said to be incompatible.
The number of such characters that are compatible on (T, L) is denoted by compat (T, L).

The compatibility score of T is then the maximum of compat (T, L), as L ranges over all possible ways
of labelling the internal nodes of T. The problem of finding the tree with the highest compatibility score for
a given set S is the maximum compatibility problem.

Both maximum parsimony and maximum comparibility are NP-hard optimization problems, even when set
C consists of binary characters (that is, each character ¢ € C maps S to {0, 1}) (Day and Sankoff, 1986;
Day, 1983). However, the related problems of determining the optimal labelling (with respect to either the
parsimony or compatibility criteria) of a fixed leaf-labelled tree is solvable in polynomial time, using the
Fitch-Hartigan algorithm (1973).

There is a relationship between maximum compatibility and maximum parsimony, which we now describe.
When it is possible to obtain a tree T for a given set S of taxa defined by characters C, on which all characters
are compatible, then T also has the minimum possible parsimony score. Consequently, such a tree optimizes
both the maximum compatibility and the maximum parsimony problem. When such a tree exists, it is called a
perfect phylogeny, and the set C of characters is said to be compatible. Consequently, the perfect phylogeny
problem is also known in the literature as the character compatibility problem. (See Warnow (1993), Warnow
(1996) and Felsenstein (1982) for a review of this and related problems.)
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As noted earlier in this paper, some experimental performance studies suggest that some methods frequently
return contractions of the true tree. This motivates the following problems.

Optimal Tree Refinement with respect to Parsimony: (OTR-parsimony)

Input: A tree T which is leaf labelled by S (described by a set C of characters).
Output: A refinement 7’ of T, such that the cost of T" is the least among all refinements of 7.

Optimal Tree Refinement with respect to Compatibility: (OTR-compatibility)
Input: A tree T which is leaf labelled by species from S (described by a set C of characters).

Output: A refinement 7” of T, such that the compatibility score of 7" is the largest among all refinements
of T.

Throughout this paper, we will use the following notation for the parameters to the problem. We will let

S denote the set of taxa (whether languages, biological species, or genes) with n = [S].
C denote the set of characters with k = |C].

r denote the maximum number of states per character.

d denote the maximum degree of any node in 7.

Some of these parameters may in general be expected to be small on some of the data sets we examine. For
example, in biology, biomolecular data (such as DNA or RNA sequences) are typically used to reconstruct
trees, and for such data r is typically 4. When the tree to be refined is significantly resolved, then d may be
quite small, and in general we may expect d to be not particularly large. On the other hand,  is the sequence
length, and when using biomolecular sequences & can be on the order of hundreds or thousands, and n may
take any number in a range between, say, 10-1,000.

As discussed earlier, the maximum compatibility and maximum parsimony problems are NP- hard even for
r = 2; consequently, OTR-parsimony and OTR-compatibility will be NP-hard in general. The related perfect
phylogeny problem is NP-hard in general, but solvable in polynomial time for the various fixed-parameter
versions of the problem (i.e., when r, k, or n is fixed). (See Kannan and Warnow (1995), Agarwala and
Fernandez-Baca (1996), Agarwala and Fernandez-Baca (1994), Bodlaender er al. (1992), Steel (1992) and
McMorris et al. (1993).)

3. OTR-PARSIMONY

3.1. Preliminary results on OTR-parsimony
Theorem 1. OTR-parsimony is

(i) Solvable in polynomial time when n is bounded,
(ii) NP-hardforr =2, ifk, d, and n are unbounded,
(iii) NP-hard fork =1, ifr, n, and d are unbounded.

Proof.

(i) If n is bounded, then OTR-parsimony is tractable, since an exhaustive search through all the refinements
of the tree T combined with the computation of the optimal labellings of the tree (using Fitch (1971)
and Hartigan (1973)) is a polynomial time algorithm.

(i) The reduction is from the maximum parsimony problem on binary characters (shown to be NP-hard
(Day, 1983)). Given an instance of the maximum parsimony problem with n binary sequences each of
length k, we create an instance of the OTR-parsimony problem by letting T be an n-star and labelling
each leaf in T distinctly with one of the # sequences. It is then easily seen that a solution for the maximum
parsimony problem is a solution for the OTR-parsimony problem and vice-versa.
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(iii) We now prove that OTR-parsimony is NP-hard for k = 1, when the degree of the tree, the number of
states per character, and the number of leaves are all unbounded. The proof is by a reduction from Vertex
Cover which has been shown to be NP-complete (Garey and Johnson, 1979).

Vertex Cover Problem

Input: A graph G = (V, E) and an integer B.

Question: Does G have a vertex cover of size B, that is, is there a subset V; C V of size B such that for
all edges (a, b) € E atleastone ofa or bisin V,?

Let (G = (V, E), B) be an input to Vertex Cover. The input to OTR-parsimony is defined as follows. We
make degree(v) copies of each vertex v in V, and these constitute the species set S. We label these species
by the pair (v, ¢), so that e = (v, w) for some w. Thus, |S] = 2| E|. There is one character ¢ defined on S by
c(v, e) = v. Thus ¢ has | V| states. The topology of the tree T is as follows. T has an internal node r with
| E| neighbors, each labelled by an edge from G. The node in 7 labelled by e is adjacent to (v, €) and (w, e),
where ¢ = (v, w). Thus the tree T has 3|E£| + 1 nodes: an inner node r, a middle ring for the edges from G
(called the “edge” vertices), and the outer ring of leaves, two to each node in the middle ring. We can then
show that G has a Vertex Cover of size B if and only if we can refine T so that the resultant tree 7’ has a
parsimony score of at most B — 1 + |E]|.

Suppose G has a Vertex Cover Vj, of size L, and let Vy = {vy, v2, ..., v, }. For each edge e € E, pick an
endpoint within Vp and call it e*. We now define the topology of T".

Foreachv € Vp, let E, = {e € E : ¢* = v}. This defines a partition of E into L’ < L sets. We will
introduce into 7 L' new nodes, one for each distinct selected ¢*. Make every “edge” vertex e in T a child
of the new node ¢*, and let e* be adjacent as well to the internal node r. This is a refinement of 7. We set
the ¢ states as follows: c(e) = c(e*) = e*, but c(r) is selected arbitrarily from Vj. To compute parsimony
cost of this tree, note that the only edges on which any change occurs are from r to the new nodes with
different labels, and exactly one edge incident to a leaf from each *“edge” node. Thus the parsimony cost of
T'isL'—1+|E|<L-1+|E|

For the converse, suppose that a refinement 7’ of T has parsimony cost at most L — 1 + |£|. The only
refinements of this tree are refinements around the node r, and no matter how one sets the states of the nodes.
there is always at least one leaf-incident edge from each “edge” vertex e that contributes to the cost. Hence
the parsimony cost is at least | £]. To obtain a refinement that has parsimony cost at most L — 1 + | E| means
that we can refine around r so that the introduced nodes each contribute at most L — 1. Without loss of
generality, we can assume that all the introduced nodes have distinct ¢ states, and hence there are at most L
introduced nodes. Let these be ai, az, ..., a, for p < L, and without loss of generality assume c(r) = c(ay).
If c(a;) # cle) for some edge node e adjacent to a;, then we can make e adjacent to r directly. Thus, without
loss of generality, c(a;) = c(e) for all e incident to a;. Furthermore, if c(e) ¢ {a, b} for e = (a, b), then
by changing c(e) to be one of a, b, we can modify the c states, and then the topology of the tree, without
worsening the parsimony score. Thus, we can assume that c(e) = c(a;) € {a. b} for e = (a, b) and ¢ incident

to a;.

We now show that the set A = {c(a;),i = 1,2, ..., p} defines a vertex cover (we already know that the
number of new nodes is at most L). Suppose not, so that there is some e = (a, b) € E suchthat {a, b)NA = .
Since c¢(e) = c(a;) € {a, b}, this is a vertex cover. |

The proof of Theorem (i) is given by a simple exhaustive search algorithm through all tree topologies.
Since we will use that algorithm in a later section, we give it here:

Algorithm 1. Given T, we root it at some node. Then, we simply examine each refinement and compute its
optimal labelling using Fitch-Hartigan (Fitch, 1971; Hartigan, 1973). This uses O((2d —3)! !)dh/(d‘ Dnkr) time,
for a tree of height h, degree d, and having n < d" leaves, where 2d —3)!! = (2d — 3)(2d — 5)(2d = 7). .. 3.

3.2. Dynamic programming algorithms for OTR-parsimony .

In this section we present three other algorithms for OTR-parsimony. Algorithm 2 is an exact algorithm,
Algorithm 3 is a 2-approximation, and Algorithm 4 is a Polynomial Time Approximation Scheme (PTAS).
All these algorithms share a common structure and are based upon a dynamic programming formulation of
the OTR-parsimony problem.
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Recall that parsimony is the Steiner Tree problem for Hamming distances in which the input is a set S
of sequences of length k over the alphabet 1,2, ..., 7, and any sequence of the same length can label the
internal nodes of the evolutionary tree. However, if we restrict the set of labels that may be used at the internal
nodes (the Steiner points), then we can approximate the optimal parsimony tree; for example, if we restrict
these labels to be drawn from the input set S, then we obtain a 2-approximation, and it is achievable in
polynomial time using standard minimum spanning tree algorithms (this is a well-known and classical result
in phylogenetics, but see Warnow (1996) for a proof). Thus, although accuracy is compromised, the decrease
in running time can be significant.

As we will show, we may also obtain approximate solutions for OTR-parsimony and bound the loss of
accuracy through restricting the set of Steiner points.

The OTR-parsimony probiem allows the internal nodes of the refinement to be assigned any sequence in
[r]¥, and the variations we will consider will permit the internal nodes to be drawn from proper subsets of ri.

Definition 10: Let £ and A denote subsets of [r}t. Let pars(A) denote the parsimony score of the most
parsimonious tree for leaf set A, given that all internal nodes are labelled by L. Let OTR-Parsimony be the

problem:

o Input: Tree T leaf-labelled by S C [r]*
e Output: Tree T’ refining T with all internal nodes labelled by sequences drawn from L, of minimum

parsimony score.

Thus, if £ = [r]¥, then we have the original OTR-parsimony problem, but if we restrict £ we may obtain
faster algorithms at the cost of accuracy with respect to the original OTR-parsimony problem. We will show
that by restricting £ to be §, we can obtain a 2-approximation algorithm, and that by a variant in which some
nodes in the refinement are labelled by S and others have labels drawn from [r]¥ we can obtain a polynomial
time approximation scheme (PTAS). Both these approximation algorithms and the exact algorithm for OTR-
parsimony have a dynamic programming structure, which we now describe.

Definition 11: Let T’ be an arbitrary refinement of T. We associate each node in T to a unique node
in T', as follows. For v € V(T), we denote by T, the subtree of T rooted at v. For each node v € V(T),
let S, be the set of leaves in T,; we then associate 10 v the node v' € V(T') defined by v/ = lcar(Sy).
We will call this mapping from V(T) to V(T') the canonical mapping, and denote by v’ the image of v
in T' under the canonical mapping. Note that this natural mapping is injective. Given a node v € V(T)
with children vy, vz, ..., vp(p < d), let Fr(v) denote the minimal subtree of T' containing the node set
(v, (0, (W), ....(v,)}. Lets € L, and let v € V(T). Then costc(v, s) will denote the cost of the most
parsimonious refinment of T, given that v is labelled by s and all internal nodes of the refinement are drawn
from L. (In other words, costc(v, s) is the parsimony score of the solution to OTR-parsimony applied to the
set L, U {s}, where L, denotes the sequences labelling the leaves in T,.)

Thus, we can solve OTR c-parsimony by finding the minimum cost (root, s), as s ranges over L. Furthermore,
if we compute all cost(v, s) from the bottom up, then solving cost(w, s) depends only upon the previously
computed cost(v, s") for v € Children(w) and s’ € L, as we now show.

Let w have children wy, wa, ..., w,, and let T’ be a solution to OTR-parsimony for L, U {s}. Let
W, Wy, - ,w’ be the nodes in 7’ associated to wy, w2, ..., Wp, and let A € L be the set of sequences
labelling w}, w5, ..., w), in T’ given the optimal £-labelling. Note that |A| < p < d, since A may have fewer
than p sequences in it, if some sequence labels more than one node in the tree 7"

Now, the parsimony score of T is the sum of the weights of all edges, and the edges in T’ can be partitioned
into p + 1 sets, as follows. Let B; be the edges in T’ below w;, fori = 1,2, ..., p,andlet By be the remaining
edges, so that By are edges which fall between w’ and w] for some i. Then, it is easy to see that

p
cost(w, s) = Z Z Hamming(e).
i=0 e€B;
Now,

Z Hamming(e) = pars (AU {s}),

e€By
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and

Z Hamming(é) = cost(w;, a),

e€B;

for some a € A. Therefore,
cost(w, §) = minacp {parsc(A U{sh + Z best(w;, A) ¢,

where the minimum is taken over all subsets A € £ of cardinality at most p, and where
best(w;, A) = min{cost(w;, a) : a € A}.

These observations allow us to formulate a dynamic programming algorithm for OTR.-parsimony as
follows:

Dynamic Programming Algorithm for OTR ;-parsimony:

p—

Preprocessing: Compute parsc(A”) for all sets A’ € £ of at most d + 1 elements.
2. Compute cost(w, s) forall w € V(T) and s € L: Starting at the leaves and moving upwards towards the

root, compute

p
cost(w, $) = miny ’parsC(A U{{sh+ Z best(w;, A) ¢,

i=l1

where the minimum is taken over all subsets A C £ of at most 4 elements.
3. Return mingec{cost(root, s)}.

Running time of the dynamic programming algorithm. We now discuss the running time of this dynamic
programming algorithm for OTR;-parsimony.

We have two approaches for preprocessing, in which we compute pars (A”) forall sets A’ € £ of cardinality
at most d + 1. The first approach actually computes this value, but the second approach potentially obtains
a better value than can be obtained by using only labels from £; this does not cause us any problem for our
applications, since we are using OTR-parsimony in order to approximate OTR-parsimony.

The first of our two approaches simply examines all sets B € £ of cardinality at most 2d — 1, and computes
the minimum spanning tree on B. This technique amounts to determining not only the labels for the nodes w’
and w, wy, ..., w;, but also for all the nodes that will be introduced into 7’ between w’ and w;] for some i.
This technique uses O(d*k|L£|*) time.

The other approach computes parsy,;(A”) for all sets A’ € £ of cardinality at most d + 1. This may obtain
better scores than can be obtained by solving pars(A"), since the set of Steiner points is larger, but allows
us to use standard techniques (exhaustive search and branch-and-bound) in conjunction with the O(drk)
Fitch-Hartigan (Hartigan, 1973) algorithm. There are f(d) = (2d — 3)(2d — 5)...3 possible trees on d + 1
leaves which have to be examined, so that this approach uses O(rkd|L|¢*! f(d)) time. Since f(d) < |L[%,
this second technique is faster than the first. -

The third step, computmg minsec{cost(root, s)}, takes only O(|L]) time. Consequently, we summarize this

as follows:
Theorem 2. We can “solve” OTR-parsimony in O(nrkdf (d)lﬁld“) time.

{(Note: We have put quotes around “solve” in order to emphasize that using the algorithm described here,
we may in fact obtain solutions that are better than are achievable by only permitting labels to be drawn from
L. Since our restrictions upon £ are made only to improve upon the running time and at the same time obtain
bounds upon the approximation ratio, this is acceptable to us.)

Finally, it is worth noting that although the dynamic programming formulation is stated with respect to
computing the parsimony score of the optimal refinement under the restriction upon Steiner points, it is simple
to modify the algorithm so as to obtain the optimal refinement as well.
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3.3. Algorithm 2: Exact algorithm for OTR-parsimony

We can obtain an exact solution to the OTR-parsimony problem if we set £ = [r1*. Applying the algorithm
for OTR-parsimony in this case, we obtain:

Theorem 3. The optimal refinement of a tree with n leaves labelled by elements of [r]* and degree bound
d can be computed in O(nkr*@+V*1df(d)) time.

3.4. Algorithm 3: 2-Approximating OTR-parsimony

We now show that solving OTR-parsimony yields a 2-approximation al gorithm for OTR-parsimony, where
S is the set of sequences labelling the leaves of the tree 7. In fact, we can show that a 2-approximate solution
can be obtained in O(n*1d3(log d +k)) time through a slight modification to the OTRs-parsimony algorithm.
These results are based upon Wang et al. (1996), which we now summarize.

Assume T is rooted and leaf-labelled by elements of § & [r}*. We now use some techniques and ideas,
with appropriate extensions to this problem, from Wang et al. (1996). We define a lifted labelling of a tree
T to be an assignment of labels to the internal nodes of T such that for each node v in 7', the label for v is
drawn (i.e., lifted) from the set of labels of its children. (Our terminology differs from that in Wang er al.
(1996), in which a lifted labelling is called a lifred tree.) Since in the OTR problem, we simultaneously seek
a refinement as well as a labelling, we now extend the definition of a lifted labelling as follows. We say that
T" is a lifted labelled-refinement of T if T’ refines T, and for each internal node v in T’, the label for v is
drawn from the labels of its children. We now return to the results in Wang et al. (1996):

Theorem 4. (From Wang et al. (1996)): For any tree T and any scoring function on pairwise alignments
which satisfies the triangle inequaliry, there is a lifted labelling of cost no more than twice the cost of an

optimal tree alignment.

Theorem 5. Let T be an arbitrary tree leaf-labelled by elements of [r1¥. Then there exists a lifted labelled
refinement of T of cost at most twice the cost of the optimal refinement.

Proof. Note that the Hamming distance between two sequences is a scoring function on pairs of sequences,
in which deletions or insertions have a very large cost, and any substitution has the same cost as any other.
Consequently, we can apply Theorem 4. Let 7" be the optimal refinement for T'; hence, each node in T is
labelled by elements of []¥, and T" refines 7. If we consider T’ as a leaf-labelled tree, then by Theorem 4,
there exists a lifted labelling of T yielding a 2-approximation for the optimal tree alignment problem on 7"

T’ with this lifted labelling of 7" is a lifted labelled refinement of 7' with parsimony score at most twice that

of the optimal. | |

Thus, to 2-approximate the optimal refinement of 7', we find an optimal lifted labelled refinement of 7.
This is done using the dynamic programming framework discussed in Section 3.2. If we set £ = §, then at
each stage computing costz(A(Yy, §)) is reduced to computing the Minimum Spanning Tree (MST) with the set
A’ € Sand A’ < d. Note that the MST computation combined with the bottom-up approach of the dynamic

programming also ensures that the labelling is lifted. Since |S| = n, there are O(dn?) sets A’, and each MST
computation can be done in O(d*(log d + k)). Thus the total running time is O(n®*ld3(logd + k).

Theorem 6. We can obtain a 2-approximation to the OTR-parsimony problem in On4*'d*(logd + k)
time.

3.5. APTAS

It is also possible to modify the approximation scheme given in Wang ez al. (1996) (and reanalyzed in
Wang and Gusfield (1997)) to obtain an approximation scheme for OTR-parsimony. We begin by discussing
the material in Wang ez al. (1996) and in Wang and Gusfield (1997), which is stated in terms of solving the
optimal tree alignment problem which, as we showed earlier, relates directly to the OTR-parsimony problem.

Definition 12: Let T be a rooted leaf-labelled tree and let X be a subset of V(T') containing the leaves
and the root of T. For v € X, a X-child of v isanode w € X in the subtree of T, such that the internal nodes
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on the path fromv to w in T are not also in X. A X-lifted labelling of T is a labelling of the internal nodes
of T such that the label for each node in X is drawn from its X-children. A b-family for a tree T is a set
V = {Vo, Va, ..., V1] of subsets of V(T) such that V; N V; = {root(T)} U L(T)V,, j.i # j, where L(T)
indicates the leaves of T.

Theorem 7. LetV = {Vo, Vi,..., Vo_1} be a b-family for a ree T, and let T; be an optimal V;-lifted
labelling of T. Then y_,cost(T;) < (b + 2 — f,;)cost(T*) where T* is T equipped with an optimal internal
labelling.

In Wang and Gusfield (1997), this theorem is proved for a particular b-family, but the proof goes through
for arbitrary b-familes as well. We continue.

Definition 13: T’ is a X-lifted labelled refinement of T if T’ refines T and if the labelling of the internal
nodes of T' is a X'-lifted labelling, where X' is the image of X under the canonical mapping.

Using techniques similar to those used in earlier proofs, we can prove the following:

Theorem8. LetV = {Vy, Vo, ..., Vi_i} be a b-family for T, and let T; be the optimal V;-lifted refinement
of T. Then

Zcost(T) < ( b—-2— E) cost(T™)

where T* is an optimal labelled refinement of T. Hence for some i,
cos(T;) < ( I+

We now define the PTAS, that is, a family of algorithms, {A,, b = 1, 2. ...}, where A, has a guaranteed
approximation ratio of (1 + % — ;7%5)-

Algorithm 4,:

® Step 1: Compute a b-family V = {Vy, V|, ..., Vi ]
® Step 2: Compute an optimal (S, V;)-lifted labelled refinement T; of T foreachi =0, 1,...,5 — 1.
® Step 3: Let 7' be the 7; of minimum parsimony score.

We now present the details of how we accomplish each of these steps.

Step 1: The b-family is computed as follows. Partition the nodes of T by levels so that each node v is
in level i, where i = dist(v, root). Hence, the root is at level 0, the children of the root are at level 1, etc. V;
consists of the root, internal nodes at levels which are congruent to i modulo b, and all the leaves. Clearly,
Vb = {Vo, V’_), P Vb_1} 1s ab-family for T.

Step 2:  We show how to compute an optimal (S, V;)-lifted labelled refinement of T for each i =
0,1,2,...,6—1.

® Stage 1: For each node v € V; let X(v) denote the V;-children of v, and let T'(v) denote the minimal
subtree of T containing at v and X (v); thus T (v) is rooted at v and has leaf set X(v). Note that 7 (v) has
depth at most b and degree at most d, and hence at most d® leaves. For each S-labelling L of the nodes in
{v} U X(v), let ¢(v, L) denote the cost of the optimal labelled refinement of 7'(v). The cost of computing
@(v, L) is O(f(d®)rkd®) at worst, where f(d?) denotes the number of trees on d” leaves. Hence, we can
complete stage 1 in O(f(d®)n’rk) time. .

® Stage2: We define ®(y, s) to be the cost of the optimal (S, V;)-lifted labelling refinement of 7, such that
s is the label assigned to y. We now describe the dynamic programming technique for computing ®(y, ).
Suppose we have computed (v, s) for each v € V; below y and each s € S, and we now wish to compute
®(y, s). Let vy, v2, ..., v, be the V;-children of y. For each S-labelling L of {v} U X(v) such that v is
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labelled s, we have already computed ®(v;, L(v;)), and we have already computed ¢(y, L). Hence we can

set d(y, 5) to be the minimum over all such L of ¢(y, L) + Zj‘(b(vj, L(v;)). There are O(ndb) such L for

each y, s, and hence this costs us O (n"+2) time. '
e Stage 3: To find the minimum cost S-labelled refinement, find minses{®(root, 5)}.

The runtime analysis we have given shows that for fixed i, b withO <i < b — 1 and ﬁxed'tree T, we can
compute an optimal (S, V;)-labelled refinement of T in O(f(d?)rkn®’*?) time.

Step 3: Having found the optimal (S, V;)-labelled refinement T; of T for eachi =0, 1, 2,...,b—1,we
then select the best of all such refinements. -

We obtain then:

Theorem 9. We can find tree T’ such that cost (T") < (1 + % - ;%;) cost(T*) where T is a refinement of
T and T* is an optimal refinement of T, in O(f(d*)rkn® *2) time.

4. OTR-COMPATIBILITY

4.1. Preliminary results on OTR-compatibility
Theorem 10. OTR-compatibiliry is

(i) Solvable in polynomial time when n is bounded.
(ii) NP-hardforr =2, ifk d, and n are unbounded.
(iii) NP-hard when bothr > 4 and d > 5 are fixed.

Proof. Parts (i) and (i) are similar to Theorem 1. (The reduction in part (i) is from the maximum
compatibility problem on binary characters shown to be NP-hard in Day and Sankoff (1986).) (iii) We now
prove that the version of OTR-compatibility for r = 4 and d = 5 is NP-hard. The reduction is from the
NP-Complete problem, Exact Cover by 3-Sets (Garey and Johnson, 1979). |

Exact Cover by 3-Sets problem

Input: AsetX = {x1,x2,.. . X3)andasetS = {Y\,Ys,...,Yn} whereeach ¥; € S is a three-element
subset of X.

Question: Is there a subset S’ € S with |S'| = g such that Uyes'¥; = X?

We will consider the version of this problem in which each element x; € X appears in at most three elements
of S. This version is also known to be NP-complete (Garey and Johnson, 1979).

Let I be an instance of the Exact Cover by 3-Sets problem. We will construct an instance I’ of the OTR-
compatibility problem as follows: The tree T will have the topology as shown in Figure 1.

The idea is to have each element of X correspond to an internal node of T. Thus T has | X|, or 3q, internal
nodes. Each internal node v; (corresponding to element x; € X) has 3 leaves incident on it. Thus the total
number of species in I’ is 3| X |, or 9. We will use s}, s, 57 to denote the three species adjacent to the internal
node v; in T. Also, each element of S will have a character that corresponds to it. Thus we will have m
characters in the character set of I'. We will use C = {c;Y; is an element of S} to denote the set of characters.

Each ¢; € C will be a 4-state character with states 0, 1, 2, 3, and is such that for each i, either cl(sil) =
ci(s?) = ci(s?) = 3, or two of the species in the set (s}, s2, 57} will have state 3 and the other species will have

vV, v, \

1

A NN

FIG.1. Topology of tree T.
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state 0, 1 or 2. We will now describe how the states are assigned to the species. Let ¥}, = {x;,, Xi,, Xi,}. Now,
forall i ¢ {iy, ia, i3}, set ¢, (s}) = ¢, (s?) = c;,(s?) = 3. Let x;, also appear in ¥;, and ¥;,. We will describe
how to set the character states for the characters ¢;,, ¢;, and ¢y, on the species s} , 57, s?l. Each of the three
characters will have the state 3 on two of the species and one of either 0, 1, or 2, whichever has been unused
before, on the third species. Without loss of generality, assume that for ¢, we have not used any of the states
0,1 or 2 earlier. Similarly, for ¢;,, suppose we have already used state O earlier and for c;,, we have already used

states 0 and 1 earlier for some species. For the species s! sizl, s?l, we will use states 0, 1, and 2 respectively

0’

for ¢y, ci,, and ¢y, The setting will be as follows: ¢, (s)) = ¢, (s?) = 0, ¢, (s7) = 3. e (s}) = e (s7) = 1,
en(sh) =3, c,(s?) = ep(s]) =2, e (s}) = 3.

Claim: The tree T has a refinement 7" in which g characters are compatible if and only if the instance [
has an exact cover, i.e., there exist a subset S’ C S such that Uy,cg¥; = X and |§'] = q.

Proof. Suppose T has a refinement T’ in which ¢ characters are compatible. Let C' = {¢;,. ¢y, . - ., ¢}
denote this set of compatible characters. Then we claim that ¥}, ¥,,, ..., Y, is an exact cover. To see why,
suppose that ¥;, and Y}, share an element x;, in common. Then, looking at species s,-‘l , 5,.2l and Si31 , we see that
on no refinement of T can both ¢;, and ¢;, be made compatible at the same time. Thus the set C’ is pairwise
disjoint and since it has cardinality g, we infer that ¥}, ¥},, ..., ¥, is an exact cover.

Suppose that instance / has an exact cover, denoted by ¥y, ¥y,, ..., ¥, . Then it can easily be seen that the
set of characters given by C' = {¢;,, ¢pp, ..., clq} can be made compatible on a refinement of 7. It is clear
how to obtain this refinement and thus we omit this part. n

We have shown that OTR-compatibility is NP-hard for unbounded degree trees with binary characters and
also for bounded degree trees with r > 4. In the following sections we will show:

OTR-compatibility is hard to approximate, even when d is bounded.

OTR-compatibility on binary characters can be solved in polynomial time for every fixed degree bound 4.

. The imperfection of a set of binary characters can be 2-approximated in O(k*n) time, and can be solved
exactly in O(k*n + kt + (4/3)'t?) time.

4, Maximum compatibility of r-state characters can be solved in O(2% k'*2n).

W N —

4.2. Preliminary material about binary character compatibility

In the earlier discussion of compatibility, we stated thata characterc : § — Z is “compatible” (or “convex”)
on a tree T leaf labelled by S if the internal nodes of the tree can each be labelled by states for ¢ so that ¢
changes state exactly r. — 1 times (where r. is the number of states ¢ attains on §), and a set C of characters
is compatible if there exists some tree T on which all the characters in C are compatible.

There are particular statements we can make when the characters are binary, because then the space of trees
on which the characters are compatible has a unique minimal element with respect to refinement.

First, we define the character encoding of the tree T as follows.

Definition 14: Each edge e in the tree T defines a bipartition on the leaves of T and hence can be
described by a binary character c,. The collection {c, : e € E(T)} is the character encoding (or set of splits)
of T, and is denoted by C(T).

The following lemma is part of the standard literature (see Gusfield (1991)):

Lemma 1. Let C be a collection of binary characters defined on a set S. Then there is a tree T on which
every character in C is compatible if and only if every pair of characters in C is compatible. Furthermore,
given a set C of compatible binary characters, there is a unique tree T satisfying C(T) = C.

Now, consider the OTR-compatibility problem, in which we are given a tree T and a set C of binary
characters defined on the leaves of 7', and we wish to find a refinement of 7 on which the maximum number
of characters in C are compatible. We will show we can solve OTR-compatibility on a tree T by solving Max
Compatibility on a derived set of characters.



402 BONET ET AL.

Note the following:

Observation 1. Suppose that T" is some refinement of T, and that ¢ € C is compatible on T' (for some
labelling L). Then c is compatible with every character in C (T).

Consequently, we can preprocess the set C by deleting from C any character which is incompatible with
some character in C(T). (Note that this is not the same as deleting characters which are incompatible on T.)
This preprocessing can be done in O(nk) time using an algorithm in Gusfield (1991) for “tree-compatibility.”
We will call the reduced set of characters C*.

We will now prove the following:

Theorem 11.  Let T be a tree with a set C of binary characters defined on the leaves of T. Let T’ be the
optimal refinement of T with respect to companbility, and let C' be the characters in C which are compatible
on T'. Then C’ is a maximum compatible subset of C*, where C* = {c € C : c is compatible with every
character in C(T)}. Conversely, if C' is a maximum compatible subset of C*, then the tree T' defined by
C(T") = C(T) U C' is an optimal refinement of T with respect to compatibility.

Proof. We first prove that the size of a maximum compatible subset of C* is a lower bound for the number
of characters in C compatible on an optimal refinement of 7. If C’ C C* is a maximum cardinality subset of
compatible characters, then the set C’UC(T)is a set of pairwise compatible characters. and hence it is setwise
compatible by Lemma 1. Furthermore, there is a tree 7’ defined by C(T") = C(T)UC'. T' is a refinement of
T and every character in C(T)U C’ is compatible on 7". Consequently, the size of a maximum compatible set
of characters in C* is a lower bound on the number of characters compatible on an optimal refinement of 7.

Now, suppose 7" is an optimal refinement of T, and that C’ c C is the set of characters compatible on 7.
By Observation 1, it follows that C' € C*, and that C’ is a set of compatible characters. Hence, the number
of characters from C compatible on an optimal refinement of T is 2 lower bound on the size of a maximum
compatible subset of C*. Since both quantities are lower bounds of each other. they are identical. n

To summarize, when the set C only consists of binary characters, then in O(kn) preprocessing, we can
reduce the OTR-compatibility problem to the Max Compatibility problem on a derived set of binary characters.

4.3. Maximum compatibility and OTR-compatibility for binary characters

The result in Theorem 16 indicates that the OTR-compatibility problem is hard, even to approximate, for
bounded degree trees when the set of characters is allowed to have an unbounded number of character states.
The exact algorithm for OTR-compatibility for » > 3 state characters was not potentially fast enough to be
of general use except under unusual circumstances. However, when » = 2. then many problems related to
maximum compatibility become tractable. In this section we describe several of these results.

We now describe how to approximate the imperfection of an optimal solution to the Max Compatibility
problem for binary characters.

4.3.1. Approximating the imperfection of binary characters. Let C be a set of characters defined on a set
S of taxa. We begin with some definitions.

Given C and S, we will define the incompatibility graph, G, as follows. The nodes of G are the elements
of C, and the edge (i, j) is in E(G¢) if and only if the characters ; and J are incompatible. An independent
set in a graph G = (V, E) is a subset V) € V such that for all nodes v, win V, (v, w) € E. A vertex cover
in G is asubset Vi C V such that for all edges (a. b) € E, at least one of @ or b is in V1. Consequently, the
complement of an independent set is a vertex cover, and vice-versa. Since pairwise compatibility of binary
characters suffices for setwise compatibility by Lemma 1, the maximum independent set of G¢ corresponds
to the maximum compatible subset of C. Consequently, if we can find a maximum independent set in G we
will have solved the Max Compatibility problem.

The maximum independent set problem is however very hard to solve (Bellare and Sudan), but in the cases
that we are interested in, the imperfection is generally quite low (see the discussion in the introduction).
Consequently, the size of the maximum independent set will in general be quite large, and consequently the
size of the minimum vertex cover (the complement to the maximum independent set) will be quite small.
There is also a very simple and fast 2-approximation algorithm for finding the minimum vertex cover (see
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Corman et al. (1990)) which we will use to obtain a 2-approximation algorithm for the imperfection ¢. We
now briefly describe the 2-approximation algorithm.

A greedy 2-approximation algorithm for the minimum vertex cover. A matching inagraph G = (V, E)
is a subset Ey C E such that no two edges in E, share an endpoint. It follows that if V is a vertex cover Ej
is a matching, then V; contains at least one endpoint from each of the edges in Eg. Consequently, the size of
a minimum vertex cover is bounded from below by the size of any matching. On the other hand, if Ej is a
maximal matching (meaning there does not exist any matching £ which properly contains Ey), then the set
V* which contains both endpoints of every edge is a vertex cover (since its complement is an independent set),
and its cardinality is bounded from above by twice the size of a minimum vertex cover. Obtaining a maximal
matching in a graph is a trivially easy problem—simply remove an edge and both its endpoints from the
graph, until there are no remaining edges. The edges that have been removed constitute a maximal matching.
This is an O(]V| + |E|) algorithm, and it produces a 2-approximate solution to the minimum vertex cover.

Consequently, the following holds:

Theorem 12. The imperfection of a set of binary characters can be 2-approximated in O(k>n) time.

Proof. We begin by constructing the incompatibility graph G¢; this takes O(k*n) time since pairwise
compatibility of two characters takes O(n) time. Then we use the 2-approximation algorithm for the minimum
vertex cover (Corman et al., 1990), which takes O(k?) time. The complement of the vertex cover is then an
independent set in G¢ and hence denotes a set C’ of pairwise (and hence setwise) compatible characters, with

|IC'| = k=2t. |

4.3.2. Solving Max Comparibility of binary characters. We now describe a simple algorithm to solve the
maximum compatibility problem for binary characters.

We begin by constructing G¢, the incompatibility graph. We then compute a 2-approximation to the
imperfection using the above algorithm. This explicitly gives us a vertex cover Vg of size at most 2¢, and
furthermore Vj consists of both endpoints of p < r edges (this follows from the greedy algorithm used to
approximate the vertex cover). The complement of Vj is an independent set, V. Now, consider a maximum
independentset / in G¢.Let A; = [N V. Note that although many different / define the same A;, for each set
A C Vj there is a unique maximum such independent set /(A) such that /(A) N Vy = A. This /(A) is defined
by I(A) = AU (V; — I'(A)), where I"(A) denotes the neighbors of A. Consequently, to find a maximum
independent set, we examine all possible sets A € V; and then in O(k*) time per set A, we compute [(A). At
the end, we return a largest such set /(A). All we need to do is to compute how many different sets A there
are and show we can list them efficiently. There are only 37 sets A, since each A contains at most one of the
endpoints of each of the p edges used to construct V. We do not have to keep track of more than one set A
at a time, so that this does not incur a cost in terms of space.

This technique, which is similar to the one in Papadimitriou and Yannakakis (1993), provides an O(k’n +
3*k?) solution to the maximum compatibility problem. However, a faster algorithm is given in Balasubramanian
et al. (1998) which computes a vertex cover of size ¢ in O(kt + (4/3) 12).

Consequently, we have the following: '

Theorem 13.  The maximum compatibility problem can be solved in O(k*n + kt + (4/3)'t*) time, where
there are k binary characters defined on n taxa, and having imperfection t.

We now address the final result regarding character compatibility for binary characters, which is useful when
¢ (the imperfection) is not small enough to make the exact algorithm feasible, but 4 (the maximum degree) is
small enough to use another technique. Once again, we note that no character which is incompatible with T
will be compatible on any refinement of T, and hence we preprocess the data by deleting all such characters.

Let V be the set of internal nodes in T. Consider the set E’ of edges of T where each ¢; = (4, v) € E’ is
such that neither u nor v is a leaf. Subdivide each edge e; = (u, v) € £’, by adding a new node w; on ¢; (i.e.,

“add edges (u, w;), (w;, v) and remove (&, v)). Let T’ be the resulting labelled tree. Recall that each leaf in
T (and hence in T’) is a species from S and hence each leaf is assigned a state for each character. We now
show how to extend the characters to take values on the added nodes, w;. The deletion of the node w; from
T’ creates two subtrees. For each character c, if there are leaves in the two subtrees having the same state for
¢, then we assign c(w;) to that shared state. If there are two different states which are shared between the two
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subtrees, then ¢ is not compatible on any refinement of T, and we would have deleted ¢ from the set. The
final possibility is that no state is shared between the two subtrees, in which case we assign a new state to that
node. In this way, we have set states for each of the characters on each of the newly introduced nodes, w;. We
now show how this permits us to solve O(n) independent Max Compatibility instances.

Let v be one of the internal nodes in 7" and let S, be {v} U I'(v) where I'(v) is the neighbors of v in the
new tree, T'. It is then easy to see that for each character ¢ € C, there is at most one set S, on which ¢ is nor
constant (this is due to the fact that the characters are all binary, and all characters that are not compatible
on any refinement of 7 have already been eliminated). For this reason, the imperfection of the set C (i.e.,
the number of characters which are incompatible on some fixed optimal refinement of T) is precisely the
sum, over all internal nodes v € V(T), of the imperfection of C on S,. This quantity can be estimated (either
exactly or approximately) by using the appropriate Max Compatibility algorithm for binary characters.

We summarize our results on binary characters as follows:

Theorem 14.  The imperfection of the optimal refinement can be 2-approximatedin O(nk?) time. The OTR-
compatibility problem can be solved exactly in O((4/3)7nq* + k*n* + kqn) time, where q is the maximum
imperfection on any subproblem S,, and in O( f(d)nk) time, where f(d) is the number of rooted binary trees
on d nodes.

4.4. Max Compatibility and OTR-compatibility forr > 3

We can show that approximating OTR-compatibility for a bounded degree tree is as hard as approximating
MAX Independent set on graphs (Arora er al., 1992). We begin with a result from Arora er al. (1992) on
maximum independent set.

Theorem 15. (Aroraetal., 1992) There is an € > O such that approximating MAX independent set within
a factor n is NP-hard, where n is the number of vertices in the inputr graph.

Theorem 16. Let T be a bounded degree tree with leaf set S (described by a set C of k characters). Then
there is an € > 0 such that approximating OTR-comparibility within a factor k¢ is NP-hard.

Proof. We will give a simple reduction from the Independent Set problem.

Let G = (V, E) be the graph, with n nodes and m edges, in the instance 7 of the Independent Set problem.
We will construct the instance I’ to the OTR-compatibility problem as follows. The tree T is given in Figure 2.
Note that it has degree bounded by 5.

T has m internal nodes, u, ua, ..., u,, where node u; corresponds to edge ¢; € E. We will use s}, siz, s,.3
to denote the three species adjacent to the internal node u; in 7. Let A denote the set of species. We will
define n characters, cy, ¢, ..., ¢y, where the idea is that character ¢ ; corresponds to node v; € V. We now
describe how the character states are set for the species in A.

Let e; = (vj, v) be an edge in E. Then, for all [ ¢ {j, k}, set c;(s}) = ci(s?) = ci(s?) = 1. Also, set
cj(s)) = cj(sh) =k, c;(s}) = j and set ci(s}) = c(s?) = j, ck(s?) = k.

We make the following easily proven claim.

Claim: The graph G has an independent set {v;,, v, .. ., v;, } if and only if the character set {c;,, c;,, .. .,
cip} can be made compatible on some refinement of 7.

Because of the nature of the reduction (i.e., an independent set of size p corresponds to a refinement of T
with p compatible characters and vice-versa), it can be seen that approximating MAX OTR-compatibility for
bounded degree trees is at least as hard as approximating MAX independent set. n
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FIG.2. Topology of tree T.
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We describe an algorithm to solve the OTR-compatibility problem that runs in time exponential in the
incompatibility score ¢ and r. We make use of the O (2% nk?) time algorithm of Kannan and Warnow (1995)
for finding perfect phylogenies.

Examine all subsets of characters, from largest to smallest, and find the first such subset Cp such that Cy is
compatible with T (that is, every character in Cy is compatible on some refinement of T). This is equivalent
to testing whether C(T) U Cy has a perfect phylogeny, where C(T') is the character encoding of 7. By the
above, this can be tested in O(22 k2n) time for each set Cy, for a total of O(2% k+2n) time. Thus, we have:

Theorem 17. OTR-compatibility can be solved in 0(22’k’+2n) time.

Algorithm:

Begin
For each Cy C C, where |Cy] = k — ¢, do

® For cach internal v € T which has degree greater than 3, do:

1. Let T'(v) = I'y(v) U I'y(v) where I';(v) consists of all the neighbors of v which are leaves and I'(v)
consists of all the nonleaf neighbours of v. For each u; € I';(v) add a new node w; on the edge (v, u;).
Compute the labelling of w; so as to make every character in Cy convex (each character must contain
every state that appears on both sides of w;).

2. If some new node has a character that requires more than one character state for that character to be
convex, then RETURN(No). Let S, = I';(v) U {w;|w; is a new node and w; is a neighbor of v}. Use
the algorithm of Kannan and Warnow (1995) to determine if a perfect phylogeny exists for (Sy, Co). If
any (S,, Co) fails to have a perfect phylogeny then RETURN(No), else RETURN(yes).

Return (Yes) if and only if some Cy returns (Yes).
End

The run time of the above algorithm is O(2%" k*+*n) since there are O(k’) subsets of size k — ¢, and for each
subset Cy of this size, we apply the perfect phylogeny algorithm to each (S,, Co).

5. DISCUSSION AND CONCLUSION

In this paper we have discussed the computational complexity of solving the Optimal Tree Refinement
problem with respect to two optimization criteria, parsimony and compatibility. This approach to tree recon-
struction is motivated by the empirical observation (see Huson et al. (1998) and Huson et al. (1998a)) that
certain methods are likely to produce trees that are either contractions or close to being contractions of the
true tree. This suggests that a two-phase process of evolutionary tree reconstruction (first obtain a contraction
of the tree, and then refine the tree optimally) may produce more accurate topologies than existing methods.
This approach is especially appropriate when the optimization problem is hard to solve and the two optimiza-
tion criteria we have examined (maximum parsimony and maximum compatibility) are both hard to solve.
Although we show that the OTR-parsimony and OTR-compatibility problems are also generally hard to solve,
the exact algorithms we presented may be sufficiently fast to be useful in cases where the tree obtained during
the first phase has sufficiently low vertex degree.

It is worth noting that the approximation algorithms we provided for the OTR-parsimony and OTR-
compatibility problems can be used to obtain bounds on the scores achieved by the optimal solutions to
these problems, as Gusfield and Wang as noted in Gusfield and Wang (1998). Thus, these fast algorithms can
be used to obtain better evaluations of trees obtained heuristically and for which no guaranteed performance
ratio can be inferred. ,

Finally, we have not addressed the problem of optimally refining a tree with respect to maximum likelihood
estimation, which is potentially a very powerful tool, and we have also not addressed the use of heuristics for
solving OTR problems in general. We leave these problems to later work. :
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