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a b s t r a c t

We say that a collection C of subsets of X is bureaucratic if every maximal hierarchy on X
contained in C is also maximum. We characterize bureaucratic set systems and show how
they arise in phylogenetics. This framework has several useful algorithmic consequences:
we generalize some earlier results and derive a polynomial-time algorithm for a parsimony
problem arising in phylogenetic networks.

© 2012 Elsevier Ltd. All rights reserved.

1. Bureaucratic sets and their characterization

In this work we introduce and study a class of set systems that arise in various ways from trees, graphs and intervals.
We are interested in this class because it can provide a setting in which certain hard optimization problems can be solved
efficiently, and we provide a particular example of this for a parsimony problem on phylogenetic networks.

We first recall some standard phylogenetic terminology (for more details, the reader can consult [1]). Recall that a
hierarchy H on a finite set X is a collection of sets with the property that the intersection of any two sets is either empty or
equal to one of the two sets.

A hierarchy ismaximum if |H | = 2|X | − 1, which is the largest possible cardinality. In this case H corresponds to the set
of clusters c(T ) of some rooted binary tree T with leaf set X (a cluster of T is the set of leaves that are separated from the root
of the tree by any vertex). A maximum hierarchy necessarily contains {x} for each x ∈ X , as well as X itself; we will refer to
these |X | + 1 sets as the trivial clusters of X . More generally, any hierarchy containing all the trivial clusters corresponds to
the clusters c(T ) of a rooted tree T with leaf set X (examples of these concepts are illustrated in Fig. 1(a), (b)). Note that a
hierarchy H is maximum if and only if (i) H contains all the trivial clusters, and (ii) each set C ∈ H of size greater than 1
can be written as a disjoint union C = A ⊔ B, for two (disjoint) sets A, B ∈ H .

We now introduce a new notion.

Definition. We say that a collection C of subsets of a finite set X is a bureaucracy if (i) C ≠ ∅ and ∅ ∉ C, and (ii) every
hierarchy H ⊆ C can be extended to a maximum hierarchy H ′ such that H ⊆ H ′

⊆ C. In this case, we also say that C is
bureaucratic.

Simple examples of bureaucracies include two extreme cases: the set of clusters of a binary tree, and the set P (X) of all
non-empty subsets of X . Notice that {{a}, {b}, {c}, {a, b}, {a, b, c}} and {{a}, {b}, {c}, {b, c}, {a, b, c}} are both bureaucratic
subsets of P (X) for X = {a, b, c} but their intersection, {{a}, {b}, {c}, {a, b, c}}, is not. In particular, for an arbitrary subset
Y of P (X) (e.g. Y = {{a}, {b}, {c}, {a, b, c}}), there may not be a unique minimal bureaucratic subset of P (X) containing Y .
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Fig. 1. (a) A rooted tree T with leaf set X = {1, 2, 3, 4, 5}, andwith the cluster set c(T ) being equal to the hierarchyH consisting of the sets {1, 2, 3}, {4, 5}
and the trivial clusters. (b) A binary tree T with a cluster set consisting ofH ∪{{1, 2}}. (c) A binary and planar phylogenetic networkN over X = {1, 2, 3, 4}
with a soft-wired cluster set sw(N ) consisting of {1, 2}, {2, 3}, {3, 4}, {1, 2, 3}, {2, 3, 4} and the trivial clusters.

In the next section we describe a more extensive list of examples, but first we describe some properties and provide a
characterization of bureaucracies. In the following lemma, given two sets A and B from C we say that B covers A if A ( B and
there is no set C ∈ C with A ( C ( B.

Lemma 1. If C is bureaucratic then:

(i) For any pair A, B ∈ C, if B covers A then B − A ∈ C.
(ii) For any C ∈ C with |C | > 1, we can write C = A ⊔ B for (disjoint) sets A, B ∈ C.

Proof. For Part (i), suppose that A, B ∈ C and that B covers A. Let H = {A, B}. Then H is a hierarchy that is contained within
C and so there exists a maximum hierarchy H ′

⊆ C that contains H . Note that Amust be a maximal sub-cluster of B in H ′

(as otherwise B does not cover A) which requires that B − A is a cluster of H ′ and thereby an element of C.
For Part (ii), observe that the set H = {C} is a hierarchy, and the assumption that C is bureaucratic ensures the existence

of a maximum hierarchy H ′
⊆ C containing H , and so H ′ contains the required sets A, B. �

Note that the conditions described in Parts (i) and (ii) of Lemma 1, while they are necessary for C to be a bureaucracy,
are not sufficient. For example, let X = {1, 2, 3, 4, 5, 6} and let C be the union of

{{1, 2}, {3, 4}, {5, 6}, {1, 2, 3}, {4, 5, 6}, {3, 4, 5}, {1, 2, 6}, {1, 5, 6}, {2, 3, 4}}

with the set of the seven trivial clusters. Then C satisfies Parts (i) and (ii) of Lemma 1, yet C is not bureaucratic since
H = {{1, 2}, {3, 4}, {5, 6}} does not extend to a maximum hierarchy on X using just elements from C.

Theorem 2. A collection C of subsets of X is bureaucratic if and only if it satisfies the following two properties:

• (P1) C contains all trivial clusters of X.
• (P2) If {C1, C2, . . . , Ck} ⊆ C are disjoint and have union ∪i Ci in C then there are distinct i, j such that Ci ∪ Cj ∈ C.

Proof. First suppose that C is bureaucratic. Then C contains a maximum hierarchy; in particular, it contains all the trivial
clusters, and so (P1) holds. For (P2), suppose that C ′ is a collection of k ≥ 3 disjoint subsets of X , each an element of C, and

C ′
∈ C. Then H = C ′

∪ {


C ′
} is a hierarchy. Let H ′

⊆ C be a maximum hierarchy on X that contains H (this exists,
since C is bureaucratic) and let C be a minimal subset of X in H ′ that contains the union of at least two elements of C ′. Since
H ′ is a maximum hierarchy, and


C ′

∈ H ′, C is precisely the union of exactly two elements of C ′; since C ∈ H ′
⊆ C, this

establishes (P2).
Conversely, suppose that a collection C of subsets of X satisfies (P1) and (P2), and that H ⊆ C is a maximal hierarchy

which is contained within C. Suppose that H is not maximum (wewill derive a contradiction). Then H contains a set C that
is the disjoint union of k ≥ 3 maximal proper subsets A1, . . . , Ak, each belonging to H (and thereby C). Applying (P2) to
C ′

= {A1, . . . , Ak}, there exist two sets, say Ai, Aj for which Ai ∪ Aj ∈ C. So, if we let H ′
= H ∪ {Ai ∪ Aj}, then we obtain a

larger hierarchy containing H that is still contained within C, which is a contradiction. This completes the proof. �

2. Examples of bureaucracies

We have mentioned two extreme cases of bureaucracies, namely the set of clusters of a rooted binary tree having leaf
set X , and the full power set P (X). Here are some further examples.

(1) The set of intervals of [n] = {1, 2, . . . , n} is a bureaucracywhere an interval is a set [i, j] = {k : i ≤ k ≤ j}, 1 ≤ i ≤ j ≤ n.

Proof. LetC be the set of intervals of [n]. ThenC contains the trivial clusters. Also, a disjoint collection I1, . . . , Ik, k > 2,
of intervals has union an interval if and only if every element of [n] between min


Ij and max


Ij lies in (exactly) one

interval, in which case the union of any pair of consecutive intervals is an interval, so (P2) holds. By Theorem 2, C is
bureaucratic. �

Similarly, if we order the elements of X in any fashion, we can define the set of intervals on X for that ordering by this
construction (associating xi with i), and can thus obtain a bureaucracy.
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A natural question at this point is the following: Does the extension of intervals in a one-dimensional lattice
(Example 1) to rectangles in a two-dimensional lattice also necessarily lead to bureaucracies? The answer is ‘no’ because
condition (P2) can be violated due to the existence of subdivisions of integral sized rectangles into k > 2 disjoint squares
of different integral sizes, the union of any two of which must therefore fail to be a rectangle (see e.g. [2]).

(2) Let T be a rooted tree (generally not binary) with leaf set X and let C be the set of all clusters compatible with all the
clusters in c(T ). Then C is bureaucratic.

Proof. We have C = {C ⊆ X : C ∩ C ′
∈ {C, C ′, ∅} for all C ′

∈ c(T )}.C is also the set of clusters that occur in at least one
rooted phylogenetic tree on leaf set X that refines T (i.e. contains all the clusters of T ), that is,

C =


T ′:c(T )⊆c(T ′)

c(T ′).

Suppose that H ⊆ C is a hierarchy on X . Then H ∪ c(T ) is also a hierarchy on X since every element of H is compatible
with every element of c(T ). Let H ′ be any maximum hierarchy on X containing H . Then since c(T ) ⊆ H ′, we have
H ′

⊆ C, and so, by definition, C is a bureaucracy. �

(3) Let C be a collection of subsets of X that includes the trivial clusters and which satisfies the condition

A, B ∈ C and A ∩ B ≠ ∅ ⇒ A ∪ B ∈ C. (1)

Then C is bureaucratic if and only if C satisfies the covering condition in Lemma 1(i).
Before presenting the proof, we note that condition (1) is a weakening of the condition required for a ‘patchwork’ set

system on X due to Andreas Dress and Sebastian Böcker (see e.g. [1], where the covering condition of Lemma 1(i) leads
to an ‘ample patchwork’).

Proof. The ‘only if’ part follows from Lemma 1(i). Conversely, suppose that (1) holds for a set system C that includes all
the trivial clusters of X and that satisfies the covering condition of Lemma 1(i). Suppose that H ⊆ C is a maximal
hierarchy contained within C. We show that H is maximum. Suppose that this is not the case—we will derive a
contradiction (by constructing a larger hierarchy H ′ containing H but still lying within C). The assumption that H is
not maximum implies that there exists a set B ∈ H which is the union of three or more disjoint sets A1, A2, A3, . . . , Ak,
where Ai ∈ H (since the rooted tree associated with H has a vertex of degree k ≥ 3). We consider two cases:
(i) B covers none of the sets from A1, A2, A3, . . . , Ak.
(ii) B covers one of the sets from A1, A2, A3, . . . , Ak.
We first show that Case (i) cannot arise under Condition (1). Suppose to the contrary that Case (i) arises. Then for
i = 1, . . . , k there exists a set Ci ∈ C that contains Ai and which is covered by B. For any pair i, j with i ≠ j, if
(B − Ci) ∩ Cj = ∅ then Cj ⊆ Ci. On the other hand, if (B − Ci) ∩ Cj ≠ ∅ then, by Condition (1), (B − Ci) ∪ Cj ∈ C,
which means that B = (B− Ci)∪ Cj (otherwise (B− Ci)∪ Cj an element of C strictly containing Cj and strictly contained
by B) and so Ci ⊆ Cj. Thus Case (i) requires that either Ci ⊆ Cj or Cj ⊆ Ci, which implies (again by the assumption that B
covers Ci and B covers Cj) that Ci = Cj. Since this identity holds for all distinct pairs i, j it follows that C1, C2, . . . , Ck are
the same set C and this set contains

k
i=1 Ai (since Ai ⊂ Ci). But then B =

k
i=1 Ai ⊆ C which contradicts the assumption

that B covers C1 (=C).
Thus only Case (ii) can arise. In this case, suppose that B covers Ai. By the assumption that C satisfies the covering

condition described in Lemma 1(i), B−Ai ∈ C holds, and so we can takeH ′
= H ∪{B−Ai}which provides the required

contradiction. �

(4) Let G = (X, E) be a connected graph. Let C be the set of subsets Y ⊆ X such that G[Y ] is connected (where G[Y ] is the
subgraph formed by deleting vertices not in Y , together with their incident edges). Then C is bureaucratic.

Observe that taking G to be a linear graph recovers Example (1).

Proof. First note that C satisfies (P1), since G itself is connected, as is each vertex by itself. Now suppose that
A1, . . . , Ak, k > 2, are disjoint clusters in C whose union, A, is also in C. As G[A] is connected, at least two clusters
Ai, Aj must contain adjacent vertices, in which case G[Ai ∪ Aj] is connected and Ai ∪ Aj ∈ C. The result now follows by
Theorem 2.

An alternative proof is to apply Example (3) and note that C satisfies Condition (1) and the covering condition of
Lemma 1(i). �

(5) Let C be a maximum weak hierarchy, that is, a collection of non-empty subsets of X such that for all A1, A2, A3 ∈ C the
intersection A1∩A2∩A3 equals at least one of A1∩A2, A1∩A3, A2∩A3, andwith |C| =


|X |+1

2


[3]. ThenC is bureaucratic.

Proof. We prove the result by induction on |X |. The result holds trivially for |X | = 2. Suppose it holds for |X | < n, and
that |X | = n. Consider disjoint C0, . . . , Cd ∈ C, d ≥ 2, such that C0 ∪ · · · ∪ Ck ∈ C. We will show that there are Ci, Cj
such that Ci ∪ Cj ∈ C, and so C is bureaucratic by Theorem 2 (condition (P1) applies automatically for any maximum
weak hierarchy [3]). By Proposition 1 of [3], there is an ordering x0, x1, . . . , xn−1 of X such that C ′

:= {A ∈ C : x0 ∉ A}

is a maximum weak hierarchy on X \ {x0}, {x1, . . . , xk} ∈ C ′ for k ≥ 1, and C = C ′
∪


{xi : 0 ≤ i ≤ k


: 0 ≤ k < n}. If
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x0 ∉ C0 ∪ · · · ∪ Ck then the result holds by induction. Otherwise, suppose that x0 ∈ C0 and so C0 = {x0, x1, . . . , xk} for
some k. Suppose that xk+1 lies in one of the sets Ci, i > 0, say C1. If there is an ℓ such that C1 = {xk+1, xk+2, . . . , xℓ} we
are done, since C0 ∪ C1 = {x0, x1, . . . , xk+1, . . . , xℓ} ∈ C. Otherwise there is an ℓ > k + 1 such that xℓ is an element of
one of the sets Ci, i > 0, say C1, but xℓ−1 ∉ C1. However, putting A1 = {x0, x1, . . . , xk+1}, A2 = {x1, . . . , xℓ} and A3 = C1
gives A1 ∩ A2 ∩ A3 ∉ {A1 ∩ A2, A1 ∩ A3, A2 ∩ A3}, and so this second case cannot arise. �

3. Algorithmic applications

3.1. Maximum weight hierarchies

In general, the problem of finding the largest hierarchy contained within a set of clusters is NP-hard [4]. The problem
becomes trivial in a bureaucratic collection since all maximal hierarchies are maximum. Less obvious, however, is the fact
that the problem of finding a hierarchy with maximum weight can also be solved in polynomial time.

Theorem 3. Let C be a bureaucratic collection of clusters on X and let w : C −→ R be a weight function on C. The problem of
finding the hierarchy H ⊆ C such that w(H) =


A∈H w(A) is maximized can be solved in polynomial time.

Proof. If there are any clusters A ∈ C with negative weight w(A) then set their weights to zero. It follows then that the
weight of any maximum hierarchy H ⊆ C equals the weight of the maximum weight hierarchy contained within H .
The ‘Hunting for Trees’ algorithm of [5] (which uses dynamic programming to construct, for every cluster in A ∈ C, the
maximum weight hierarchy with clusters in {B ∈ C : B ⊆ A}) can now be used to recover the maximum hierarchy of
maximum weight. �

3.2. Parsimony problems on networks

Consider a set C of clusters on X and let f : X → A be a function that assigns each element x ∈ X a state f (x) in a finite
setA (f is referred to in phylogenetics as a (discrete) character). Supposewe have a non-negative function δ onA×Awhere
δ(a, b) assigns a penalty score for changing state a to b for each pair a, b ∈ A (the default option is to take δ(a, b) = 1 for
all a ≠ b and δ(a, a) = 0 for all a).

Given any rooted X-tree T , with vertex set V and arc set E, let l(f , T , δ) denote the parsimony score of f on T relative to
δ; that is,

l(f , T , δ) = min
F :V→A,F |X=f

 
(u,v)∈E

δ(F(u), F(v))


.

In words, l(f , T , δ) is the minimum sum of δ-penalty scores that are required in order to extend f to an assignment of states
to all the vertices of T . This quantity can be calculated for a given T by well-known dynamic programming techniques (see
e.g. [1]). Let l(f , C, δ) (respectively, lbin(f , C)) denote theminimal value of l(f , T , δ) among all trees T (respectively, all binary
trees) that have their clusters in C. Then we have the following general result.

Theorem 4. Suppose that C is containedwithin a bureaucratic collectionC ′ of subsets of X and f : X → A. There is an algorithm
for computing l(f , C, δ) with running time polynomial in n = |X |, |A| and |C ′

|. Moreover, the algorithm can be extended to
construct a rooted phylogenetic X-tree having all its clusters in C and with parsimony score equal to l(f , C, δ) in polynomial
time.

Proof. For any subset Y of X , let

δY (a, b) =


δ(a, b), if Y ∈ C;

0, if Y ∉ C and a = b;
∞, otherwise;

and for any rooted phylogenetic X-tree T , let

l′(f , T , δ) := min
F :V→A,F |X=f

 
(u,v)∈E

δc(v)(F(u), F(v))


,

where c(v) is the cluster of T associated with v.
Let l′(f , C ′, δ) (respectively, l′bin(f , C ′, δ)) be the minimal value of l′(f , T , δ) over all trees (respectively, all binary trees)

with clusters in C ′. By the definition of δY , we have

l(f , C, δ) = l′(f , C ′, δ), (2)
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and by the assumption that C ′ is bureaucratic we have

l′(f , C ′, δ) = l′bin(f , C ′, δ), (3)

since l′(f , T , δ) ≥ l′bin(f , T
′, δ) if T ′ is any binary tree that refines T . We now describe how l′bin(f , C ′, δ) can be efficiently

calculated by dynamic programming.
For an element a ∈ A and Y ∈ C ′, let L′(Y , a) be the minimum value of l′(f |Y , T , δ) across all binary trees T having leaf

set Y and clusters in C ′, in which the root is assigned state a.
For |Y | = 1, say Y = {y}, we have

L′(Y , a) =


0, if f (y) = a;
∞, otherwise

and for Y ∈ C, |Y | > 1, we have

L′(Y , a) = min
Y1,Y2∈C′,a1,a2∈A


L′(Y1, a1) + δY1(a, a1) + L′(Y2, a2) + δY2(a, a2) : Y1 ⊔ Y2 = Y


. (4)

Now,

l′bin(f , C ′, δ) = min
a∈A

L′(X, a).

Notice that when one evaluates L′(X, a) using the above recursion (Eq. (4)), it is sufficient to compute L′(Y , a) for just the
sets Y ∈ C ′ rather than all subsets of X , by the definition of L′.

Thus, in view of Eqs. (2) and (3), one can compute l(f , C, δ) in time polynomial in n = |X |, |A| and |C ′
|. Moreover, by

suitable book-keeping along the way, one can construct a rooted binary phylogenetic X-tree with clusters in C ′ and with a
parsimony score equal to lbin(f , C ′, δ); by collapsing all edges of this tree that have a δ-score equal to 0 we obtain a rooted
phylogenetic X-tree with clusters in C and with parsimony score equal to l(f , C, δ). �

We note that this result has been described in the particular case where C is the bureaucracy described in Example (2)
above, and where f maps to a set Awith only two elements [6]. We provide a second application, to phylogenetic networks,
based on Example (1) above, of intervals as bureaucratic set systems.

Let N be a rooted binary phylogenetic network on X . We say that N is planar if it can be drawn in the plane such that all
the leaves and the root all lie on the outer face [7]. Let sw(N ) denote the set of ‘soft-wired’ clusters in N (the union of the
cluster sets of all trees embedded in N ; see e.g. [8]). A simple example is shown in Fig. 1(c).

Corollary 5. Suppose that N is a binary and planar phylogenetic network on X, and f : X → A. There is an algorithm for
computing l(f , sw(N )) with running time polynomial in n.

Proof. Let x1, . . . , xn be the ordering of X given by their positions around the outer face in a planar embedding of N , where
x1 and xn come immediately after and before the root. Then any tree T embedded in N can be ordered such that the leaves
are in order x1, . . . , xn, implying that the clusters of T are all of the form {xi, xi+1, . . . , xj} for some 1 ≤ i ≤ j ≤ n. It follows
that the set sw(N ) is contained in the set of intervals of X = {x1, . . . , xn} (Example 1, above). The corollary now follows
from Theorem 4. �

4. Concluding comments

While it is beyond the scope of this short note, it could be of interest to characterize maximal bureaucratic set systems.
The following computational question also seems of interest:

Question. Is there an algorithm for deciding whether or not C is bureaucratic that runs in time polynomial in |C| and |X |?
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