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Abstract: In taxonomy and other branches of classification it is useful to know
when tree-like classifications on overlapping sets of labels can be consistently
combined into a parent tree. This paper considers the computational complexity of
this problem. Recognizing when a consistent parent tree exists is shown to be
intractable (NP-complete) for sets of unrooted trees, even when each tree in the set
classifies just four labels. Consequently determining the compatibility of qualita-
tive characters and partial binary characters is, in general, also NP-complete.
However for sets of rooted trees an algorithm is described which constructs the
““strict consensus tree’’ of all consistent parent trees (when they exist) in polyno-
mial time. The related question of recognizing when a set of subtrees uniquely
defines a parent tree is also considered, and a simple necessary and sufficient condi-
tion is described for rooted trees.
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1. Introduction

Suppose we are given a ‘‘sample’’ collection P of trees, each having its
degree-one vertices labeled by a subset of a parent label set S. The following
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question is addressed: is there an efficient way to determine whether there
exists a parent tree T whose degree-one vertices are labeled from S, and
which induces all the branchings occuring in each tree in P? Furthermore, if
s0, how can T, or the (strict) consensus of all trees consistent with P, be con-
structed? These questions arise in a number of contexts, in particular in tax-
onomy (Buneman 1974, Gordon 1986) and linguistics (Dekker 1986), and
they are closely related to the question of the compatibility of qualitative
characters in taxonomy. They can, of course, be ‘‘solved’’ by checking all
possible parent trees, or even just all possible parent binary trees, against
each tree in P.

However such an approach quickly becomes unfeasible as the number
of objects being classified increases, since the number of binary trees on

N ! n
n + 2 labels is asymptotically proportional to 3__2 . An algorithm for testing

n
compatibility (and building a tree if one exists) has been devised by Dekker
(1986), but it has exponential complexity. An important question then is
whether this bound can be substantially improved — in particular whether
polynomial-time algorithms exist for this problem.

We show that in general the problem of determining compatibility
belongs to the class of NP-complete problems, for which, it is believed,
polynomial-time algorithms do not exist (for a discussion of NP-completeness
see, for example, Garey and Johnson 1979). Indeed NP-completeness holds
even for samples of binary trees on label sets of size four. This contrasts with
the special case in which all the sample trees have a label in common (so that
the trees can be thought of as rooted) for which a polynomial-time algorithm
exists, due to Aho, Savig, Szymanski, and Ullman (1981). A direct extension
of this algorithm provides a simple, polynomial-time procedure for construct-
ing the strict consensus tree of all rooted parent trees consistent with a sample
of rooted trees, answering a question posed by Gordon (1986). This problem
has also been independently solved by Kant-Antonescu and Sankoff (1991).

The compatibility question for samples of trees is equivalent to that of
determining the compatibility of qualitative (taxonomic) characters (also
called unordered characters). Thus, this latter problem is also NP-complete, a
result which has been independently established by Warnow (1991). Thisis a
considerable strengthening of part of a well-known result by Day and Sankoff
(1986), who showed that the problem of deciding whether a set of qualitative
characters has a compatible subset of size k (for variable k) is NP-complete.
This result does not, however, entail NP-completeness for the more basic
question of the compatibility of the entire set of characters.

The question of the theoretical complexity of this latter problem has
been raised by Meacham (1983) who proposed an algorithm as a partial solu-
tion. Buneman (1974) posed a related question: given a set of compatible
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characters, is there a ‘‘simple’’ method for constructing a tree consistent with
the characters? A related question, discussed in Section 5, has been raised by
Colonius and Schulze (1981). The compatibility question can also be
regarded as a natural extension of the characterization of tree-like ‘‘neigh-
bours relations,’’ discussed by Bandelt and Dress (1986), when these rela-
tions are defined only for certain quartets. Indeed this problem forms the link
between the compatibility question for trees and qualitative characters. Con-
sequently much of this paper is devoted to bringing together and summarizing
different results related to these problems. Note that the problems considered
in this paper, while appearing similar in spirit to those in Brossier (1990), do
not really overlap since the classification problems considered here do not
require or involve ultrametric distance matrices.

2. Compatibility and Consistency

We begin with some definitions — for standard graph-theoretic con-
cepts the reader is referred to Bondy and Murty (1976).

Definitions (1). Given a label set L a phylogenetic tree on L is a tree without
vertices of degree two, and exactly |1L| leaves (a leaf is a vertex of degree 1)
each labeled with a distinct element of L. Vertices of degree greater than 1,
and edges incident with pairs of such vertices are said to be internal. If the
internal vertices all have degree 3, the tree is called a binary (phylogenetic)
treeon L.

Given a phylogenetic tree T on L, and a subset S of L, let T\ denote the
induced phylogenetic tree on S consisting of the minimal subtree of T con-
necting the vertices labeled from S, and having all degree-two vertices
suppressed, as illustrated in Figure 1. Given two phylogenetic trees ¢t”,ton S
write ¢” — ¢t if ¢ can be obtained by contracting certain edges of . With T
and ¢ as given we say T is consistent with t if T g — t. Clearly if ¢ is binary
this just means T |5 = ¢; extending this concept to phylogenetic trees follows
Constantinescu and Sankoff (1986), except here ‘‘consistent’’ replaces their
“‘compatible.’’ Informally, T is consistent with ¢ precisely if T contains all
the branching information in ¢. Figure 1 illustrates this notion.

For a set P = {t1,...,t}, where t; is a phylogenetic tree on S;, P is
compatible precisely if there is a phylogenetic tree Ton S; U - - - U S, which
is consistent with each tree in P. In this case T and P are said to be con-
sistent.

Note that if P is compatible then P is consistent with a binary phylo-
genetic tree by a standard vertex/binary tree replacement argument; see for
example, Constantinescu and Sankoff (1986). Thus we let <P> denote the
set of binary phylogenetic trees consistent with P. Incase T is the only



94 M. Steel

1 2 | ,
3 | 3
5
4 >
- —_
6 7 8
- 8
7 8
T Ti13578 —> t

Figure 1. Transformations showing that T is consistent with ¢.

phylogenetic tree consistent with P, we say P defines T (thus T must be
binary).

There is a corresponding notion of compatibility for sets of partitions of
L, which we call qualitative characters. More generally we call a partition of
a subset of L a (partial) character and the sets in each character are called
states. For a set C of partial characters we let L denote the labels which
appear in a state of at least one character in C.

To define compatibility for sets of characters, suppose we are given a
tree T (not necessarily binary) with vertex set V, a labelling function f: L -V
and subsets A,B of L. Write A |1 B if the the two minimal subtrees of T con-
necting f(A) and f(B) respectively have no vertices in common. By conven-
tion a character X is said to have convex states on T if for all distinct states
A,B of X, A | B. For example the character {{1,2}, {3,4}, {5,6,7,8}} has
convex states on the tree T in Figure 1. A collection C of characters is com-
patible precisely if there exists a tree T and labelling function f so that each
character has convex states on 7. In this case T and C are said to be con-
sistent.

Again it is easily shown that if C is compatible then C is consistent
with a binary phylogenetic tree (with its implicit labelling function), as
observed by Dekker (1986). Thus we let <C> denote the set of binary phylo-
genetic trees consistent with C. Also by adjoining singleton states, a set of
partial characters C can trivially be extended to a set of qualitative characters
C sothat <C> = <C">.

Note that in taxonomy the term ‘‘qualitative character’’ refers not to a
partition but to a function which assigns a characteristic to each taxon in the
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set under study. For éxample, in taxonomic applications based on DNA
sequences, these functions — one for each site on a sample of aligned seg-
ments of DNA — identify which of the four nucleotides, A,T,C,G, occurs for
each taxon. However, such a function defines a partition of the taxa set (into
states) by considering, for each characteristic, the subset of the taxa set which
are assigned that characteristic. These induced partitions neglect some bio-
logically relevant information but suffice to consider questions of ‘‘compati-
bility’* and for this reason we have defined qualitative characters as above.
Note also that the ordering of the partitions (in the DNA-case, arising from
the natural linear order) is also unimportant here.

The desire for a classification tree to be consistent with a set of charac-
ters C derived in this way is motivated by parsimony: Roughly speaking, a
trec which is consistent with C is one for which the characteristics which
induce the partitions in C could have ‘‘evolved’’ along the edges of the tree
in such a way that each possible change in a characteristic (genetic mutation
in taxonomy) occurs at most once. For further discussion see Meacham and
Duncan (1987), or McMorris (1975).

A character consisting of just two states A,B is called a binary charac-
ter or split (of A UB). A split {A,B} of L has convex states on a phylo-
genetic tree T, on L, precisely if {A,B} is a split induced by T, in the sense that
deleting an edge of T partitions the labels on the leaves of T into the sets A,B.
In this way the splits of L having convex states on T are in a one-to-one
correspondence with the edges of T; indeed any phylogenetic tree is charac-
terized by the collection of splits it induces (Buneman 1971; Bandelt and
Dress 1986). Thus for a binary phylogenetic tree T having n labels there are
precisely 2n — 3 splits of the labels set having convex states on 7. More gen-
erally the following result summarizes enumeratively how convexity confines
the classes of binary trees and characters.

Proposition 1.
(1) Let b(n) denote the number of binary trees on a label set of size n. Then

1
b(n+2)=%):=(2n—1)x(2n—3)x---x3><1.
n!

(2) For a phylogenetic tree t on L’ the number of binary trees T on L D L°
which are consistent with t is

bALD)
bL D) x[1b0@M)),
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where v rdnges over all internal vertices of t having degree d(v) > 3.

(3) For a partial character, X = {Ay, ... ,A,} the number of binary trees on
L for which X has convex states, is

6041 + Hx—2UED o540

(4) For any binary tree T on L the number of qualitative characters having
s > 1 convex states on T is L; :iv -1

Proof. Result (1) is due to Cavalli-Sforza and Edwards (1967) (for an
interesting bijective proof see Erdos and Székely 1989). Result (2) is essen-
tially due to F.J. Rohlf (see also Theorem 1 of Constantinescu and Sankoff
1986). Result (3) is Theorem 2 of Carter, Hendy, Penny, Székely and Wor-
mald (1990), combined with (2). To establish (4), given a binary tree T let
f(T,s) denote the number of qualitative characters having s convex states on
T. Select a vertex adjacent to two leaves u,v and let T =T ,_(y),
T =T, _(4v)- Partition the set of qualitative characters having s convex
states on T into three classes:

C,:  Those containing states {u} and {v}.
Cs: Those for which v occurs in the same state as u.
C3:  Those containing states {u} or {v}, but not both.

Wehave IC | = (T, s =2), |C5| =f(T",s5), IC31 =2(f(T",s = 1) = 1C ).
In this way f(T,s) =f(T",s) + 2f(T",s — 1) — f(T”",s —2). By induction on
IL1, f(T,s) depends only on IL| and s, and not the tree T chosen. The result
can now be derived from (3) by using Lemma 4 of Carter et al. (1990) to
count pairs (7,X) where X is a qualitative character having s convex states on
T. Alternatively, the result can simply be verified by inserting the claimed
formula into the above recursion for f (T,s).

We now describe the relationship between the two types of compatibil-
ity described above — compatibility of trees and of characters — by consid-
ering binary trees on quartets (label sets of size four). Such trees are called
resolved quartets. Given a set C of partial characters we construct a set of
resolved quartets g(C) with <q(C)> = <C>. Also, given a set P of phylo-
genetic trees we construct a set of partial binary characters ¢(P) and resolved
quartets g(P) with <P> = <c(P)> = <q(P)>. Thus compatibility questions
for phylogenetic trees, characters and resolved quartets are essentially
equivalent. Furthermore, these constructions can be efficiently implemented,

L}
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and with 1¢(C)!| Ic(P)! and Ig(P)! having the following orders of magni-
tude: O(IC 1 x IL1%), 0(IL1 x IP1)and O(IL| x | P1), respectively.

Definitions (2). For a resolved quartet ¢ on {a,b,c,d} we write ablcd if
{a,b} |, {c,d}. For example, for the tree T in Figure 1, the resolved quartet
Ti(123.4) is 12134, Given a set of partial characters, C = {X;,....X,},
where X; = {A;1,...,Aiq)) select oy € Ay for 1 <t <s(i), 1<i<r, and let
q(C) =i (ajaloga”. ae Aj,a”e Ay). For a set P of phylogenetic
trees let c(P) denote the set of all splits induced by trees in P.

Proposition 2.

(1) <q(C)>=<C>
(2) <c(P)>=<P>
(3) Thereis a set q(P) of resolved quartets with <q(P)> = <P> and

lgP)I < ¥ (=1+ Y (@()-2)
te P v
(where v ranges over all internal vertices of t). Furthermore, if any
label x appears in all trees in P, q(P) can be chosen so that x is a
label of each tree in q(P).

Proof. (1) Suppose T € <C> and oyjaloza” e g(C). By definition of ¢(C)
there exist states Aiijik e X; e C with ;5,a € A,'j, o,a” € Ay. Since X has
convex states on 7, the path in T connecting o;; and a is disjoint from the path
in T connecting o, and a” thus T (000,007} = o;;alaga’. Since this holds
for all resolved quartets in g(C), we have T € <q(C)>. Conversely, suppose
T e <q(C)>. We show T e <C> by deriving a contradiction from the
assumption T ¢ <C>. For in this case there are states A;;,B; € X; € C for
which A;; I Ay does not hold; that is there exists a path in T with ends
labeled from A;; which intersects a path having ends labeled from A;. Let
a,b denote the labeled ends of the first path, and c,d the labeled ends of the
second. Then T (gp.q) € {ac|bd, adlbc}. Let o= 0y, 0 =0y. Since
Te <q(C)>, we have T quac)=0alt’c, Tiquaq =0alod,
Tiaabe) = 0b10c and T(qopq) =abla’d. Now it can readily be
checked by case examination that the set Q* consisting of these last four
resolved quartets, together with either of the above two candidates for
T |{a,b,c.d}» i incompatible, and hence not consistent with 7. But Q" consists
of induced resolved quartets of 7, (i.e. resolved quartet of type T s for a quar-
tet S) and so, by definition, is consistent with T, giving the required contradic-
tion.

(2) Suppose A,B € X € c(P). Then by the construction of c(P), A U B is the
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label set of some tree ¢t in P, and A |,B. Thus for T e <P>, since
Tisup >t we have A | B. This holds for all A,B,X so T € <c(P)>. Con-
versely, suppose T € <c(P)>. Select t € P, let L” denote its label set, and let
t"=T,.-. Foreach split X = {A,B} induced by ¢, we have A |,- B. Now col-
lapse each edge of ¢” for which the induced split of ¢” is not an induced split
of ¢ to obtain a phylogenetic tree having the same collection of induced splits
as t. Since each phylogenetic tree is characterized by its induced splits (Ban-
delt and Dress 1986) it follows that T,;- = ¢t"—t. This holds for all ¢ € P,
giving T € <P>, as required.

(3) We first note that if <P;>=<P,> and <P’{>=<P’> then
<P, UP’ > =<P,y, UP’>, so that it suffices to prove the result when P
consists of a single tree . We use induction on ILI. The result holds for
IL] =4; suppose it holds for all ILI <k, and that ILI = k> 4. Given
xe L, select a vertex of ¢ which is adjacent to a set of leaves,
U={uy,...,u}, k> 1,with x ¢ U. This is possible since any phylogenetic
tree on 4 or more labels, and having an internal edge, has at least two ver-
tices, each adjacent to at least two leaves (if ¢ has no internal edge the result
holds trivially). Let t° be the phylogenetic tree ¢.-, where
L =L~ {uy,...,u;}. By hypothesis there exists a set @ of at most
A=-1+Y (d(v)—2) (with v ranging over the intemal vertices of )

v

resolved quartets, each labeled with x, and such that <Q "> = <{t" }>. Delet-
ing the vertex v’ of t” adjacent to u; and its incident edges, disconnects ¢”
into the isolated vertex u; and rooted subtrees ¢;,¢,...,%, § 22, as illus-
trated in Figure 2.

Supposing x is a leaf of ¢y, select any leaf y of ¢, and let
Q= {xylujuy,... . xyluju,} Q" Then it is routine to check that
<Q>=<{t}>; thus Q is the required set of A+k—1=A+d(v)—-2
resolved quartets, each containing x, for which <Q> = <{¢}>, completing
the induction step. e

Note that the transformation C — c(q(C)) transforms a set of charac-
ters into a collection of characters, each having all its states of size 2, and for
which <C> = <c(q(C))>. Also, the transformation P — gq(c(P)) is less
efficient than the construction described in Proposition 2 (3), since 1g(P)!| is
bounded linearly by I L1, while 1g(c(P))! is only bounded by IL 3.

We now give two separate characterizations of compatibility for a set
of characters. We must first define two graphs.

Definitions (3). Suppose a graph G is k-partite on vertex sets Vy,...,V;
(that is no two vertices in V; are adjacent for i = 1,...,k). Wesay Ghasa
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Figure 2. Pruning leaves for the proof of Proposition 2(3).

restricted chordal extension if there is a chordal graph which is k-partite on
Vi,...,Vs, and whose edges include those of G (a chordal graph has the pro-
perty that every cycle of length four or more has a chord [an edge joining two
vertices which are not adjacent in the cycle]). Given a collection v of sub-
sets of a set L, the intersection graph of v is the graph with vertex set v, and
with two vertices A,B the ends of an edge precisely if A "B # . For a col-
lection of characters C = {X{,...,X,} the intersection graph of v of the
states of the characters is called the character state intersection graph of C,
denoted G(C). Since each character is a partition of a subset of L, G(C) is r-
partite on X;,...,X,. Two characters X, X, are weakly compatible pre-
cisely if for all states U,V e X|,U",V'e X, atleastoneof UNU ", UNV",
VU’ VNV isempty (a pair of compatible characters are weakly compa-
tible, but the converse does not hold, see Section 3 (1) below). Given C we
define a second graph Q(C) as follows. The vertices of Q(C) consist of all
nontrivial splits {A,B} of Lc (nontrivial means [Al,!B| > 1) which are
weakly compatible with every character of C. Two such splits are the ends of
an edge of Q(C) precisely if they are weakly compatible. The following
results are part of the folklore; for completeness we give proofs here.

Proposition 3. Let C be a set of partial characters. The following statements
are equivalent:

(1) Cis compatible. ,
(2)  G(C) has arestricted chordal extension.
(3) SXAC) has a clique of size |Lo1 —3.
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Proof. The equivalence of (1) and (2) was essentially stated by Meacham
(1983) and Buneman (1974) and follows from a characterization of chordal
graphs independently due to Buneman (1974), Gavril (1974) and Walter
(1972). This result states that a graph G is chordal precisely if there exists a
tree T having all its vertices labeled, and a collection v of the vertex sets of
certain subtrees of T, for which G is the intersection graph of v. Thus if C is
compatible there exists a binary phylogenetic tree T, consistent with C.
Assign new, distinct labels to all internal vertices of T. For each character
state A occuring in C let T4 denote the vertex set of the minimum subtree of T
(now fully labeled) connecting vertices labeled from A. The intersection
graph of the T# sets provides the required restricted chordal extension of
G(C). Conversely if G(C) has a restricted chordal extension there exists a
fully labeled tree T and a bijection H from the states of the characters to the
vertex sets of certain subtrees of T such that

() ifAB=#Jthen HA)NH{B)#D
(i) ifA,Be Xe Cthen HA)NH(B)=0Q.

Define a labelling function f from L¢ to the vertices of T as follows:
For y € L¢, let C(y) denote the set of states (of the characters) containing y.
ForA,A” € C(y), (i) implies H(A) N H(A) # . Now the vertex sets of a col-
lection of subtrees of a tree have the Helly property (see Golumbic 1980) so T
has a vertex v, in Nye c)H(A). Set f(y) = vy. Then T is consistent with C
under this labelling function, for if a,a” € A, b,b"€ B, A,Be X € C, then
since f(a) and f(a") liec in H(A), and f(b), f(b") lie in H(B), the path in T con-
necting @ and a” is disjoint from the path connecting b and b” by (ii). Thus
A | B for all states A,B € X € C, as required.

(1) = (3): If C is compatible, there exists a bmary phylogenetic tree T
on L¢ consistent with C. Consider the set S of the |L¢| — 3 nontrivial splits
induced by T upon deleting each internal edge of T. For {A,B} e § and
UVeXe Csupposc ANU,ANV,BNU,B NV are all nonempty. Select
one element from each set; say a, a’, b, b", respectively. Then
T\{aa'bb} =aa’Ibb’, so that U IpV does not hold, contradicting the
assumption that T € <C>. Thus § is a set of vertices of Q(C), and S is a
clique of Q(C) by Proposition 1(b) of Bandelt and Dress (1986).

(3) = (1): Suppose (C) has a clique ® of size |Lc! —3. Then by
Lemma 6 of Buneman (1971), there is a binary phylogenetic tree Ton L and a
bijection A from the internal edges of T to @ defined by letting A(e) be the
split induced by T upon deleting edge e. Suppose A,B € X € C, and that
AlrB does not hold. Then there exists a,a°e€ A, b,b € B,
T\{aabp} =abla’b’. Let e be an edge of T separating the path in T con-
necting a and b from the path connecting a” and b°. Then the states in h(e)
both have nonempty intersection with A and B, so h(e) ¢ ®, a contradiction.
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Thus A | B, and so T is consistent with C. e

The previous proof extends to give a bijection between the cliques of C(C) of
size |Lc| -3 and <C>. However even if Q(C) has a clique of size |L¢cl -3
a given vertex of Q(C) need not lie in any clique of this size (i.e., if C is com-
patible, a split which is pairwise compatible with all characters in C may not
be induced by any tree which is consistent with C). An example is provided
by C= ({{12},{34}}, {{1,3}.{45}}, {{1.4}.{56}}} and the split
{{2,6},{1,3,4,5}}.

3. Special Cases

There are a number of special cases and variations on the original prob-
lem for which polynomial-time algorithms exist, which we now describe.

(1) If C has just two characters, then C is compatible if and only if the charac-
ter state intersection graph G(C) is acyclic. This result, due to Estabrook and
McMorris (1977), follows from Proposition 3, since (i) an acyclic graph is
chordal, and (ii) conversely, if G(C) has a restricted chordal extension G*
then G is acyclic (otherwise G°, being chordal, would have a 3-cycle, which
is prohibited since G~ is bipartite), and so G(C) is acyclic. More generally if
IC| is bounded the compatibility of C can be decided in polynomial time
(McMorris, Warnow and Wimer 1990).

(2) If B consists of a resolution of every quartet of L (or of every quartet con-
taining a fixed label) then compatibility is easily decided (see for example
Proposition 2 of Bandelt and Dress 1986, or Theorem 2 of Colonius and
Schulze 1981). Furthermore there is at most one tree consistent with B and
this can readily be constructed if it exists.

(3) More generally, given a set B of resolutions of quartets from L, B can be
extended to a set B by applying various dyadic, triadic and higher order
rules, as described by Dekker (1986), which must always hold on a set of
compatible quartets (see also Bandelt and Dress 1986; Bandelt, von Haeseler,
Bolick and Schiitte 1990). There are precisely two dyadic rules;

(i) transitivity: ablcd and ablde = ab|ce,
(ii)  substitution: ablcd and ac!de = ablce, ab\de, bc | de.

Then B is constructed as the minimal set containing B which is closed under
these rules. Thus if B” contains two contradictory resolutions of the same
quartet, B is incompatible. The converse does not hold, at least for dyadic
and triadic rules, (Dekker 1986); indeed, if P # NP then incompatibility can-
not be always detected using r-adic rules for bounded r, by Theorem 1,
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below. However if B defines T this can sometimes be detected if B” has a
resolution of every quartet from L, as described above in case (2).

For a set S of partial binary characters, three analogous rules for
extending S have been proposed by Meacham (1983), who established their
validity in case S is compatible. Meacham suggested that perhaps repeated
application of these rules might suffice to identify when S is incompatible by
always, in that case, generating a pair of incompatible partial binary charac-
ters (such a pair can readily be recognized, see case (1) above).

However we note here that these rules, as well as the types specifically
considered by Dekker cannot achieve this. For consider a balanced incom-
plete block design consisting of 37 elements arranged into 111 blocks of size
4 (Hall 1967). There are 3'!! ways to resolve all the quartets in this design,
and some of these resolutions must be inconsistent, since 3!!! > b(37) by Pro-
position 1(1), and since <Q> N <@ "> = @ if Q # Q. Now, any two quartets
in this design have at most one element in common, and so two partial binary
characters {A,A"} and {B,B’} constructed from these quartets satisfy
HAUVA )N (B UB’)I <1. But any application of the Dekker/Meacham
rules requires a pair of partial binary characters for which
IAUA )N(BUB’)I 22. It follows that none of these rules can detect
any of the inconsistent instances which exist in this example.

(4) If C is a set of binary qualitative characters then compatibility can be
decided in polynomial time since C is compatible precisely if each pair in C
is compatible, and two binary characters are compatible precisely if they are
weakly compatible (see Definitions (3)). These results are essentially due to
Buneman (1971) (see also McMorris 1977, and Bandelt and Dress 1986). In
case C is compatible a consistent tree can be constructed in linear time by a
method such as ““TREE POPPING” (Meacham 1981), or by the method
described by Gusfield (1991). This result does not generalize to nonbinary
qualitative characters (Fitch 1975, McMorris 1975) or partial binary charac-
ters. For example, for 2<i<n—1set F; ={{1,i},{i + 1,n + 1}} and let
F,={{1,n},{2,n + 1}}. Then {F,,...,F,} is an incompatible set of n par-
tial binary characters, every subset of which is compatible.

(5) More generally if C is a set of qualitative characters, each having at most
four states, then compatibility can be determined in polynomial time and a
consistent tree constructed if one exists. A clever and intricate
O(IL12x 1C1) algorithm is described by Kannan and Warnow (1990). In
case each character has at most three states, a much simpler algorithm is pos-
sible (see also Dress and Steel 1991).

(6) As mentioned earlier, if each tree in some set S has all its vertices labeled,
then the question of whether there is a parent tree for which each tree in S is a

St
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subtree can be decided efficiently by determining whether the intersection
graph of S is chordal. This can be determined in linear time (see, for exam-
ple, Golumbic 1980); Gavril (1974) gives a polynomial-time algorithm which
also constructs a tree realization of the intersection graph of S when one
exists. The limitation of this useful result is that in applications to an existing
set of objects derived from some evolutionary process the identity and posi-
tion of particular ancestors has been lost. This is the problem of dealing with
““missing objects’’ referred to by Buneman (1974), and is the motivation
behind this present study.

(7) If additional tree-like refationships are imposed between the states in a
qualitative character to give a ‘‘cladistic character,”’ the corresponding com-
patibility problem can be decided in polynomial time. In this case the compa-
tibility question reduces to pairwise compatibility, which can readily be
checked (see Estabrook, Johnson and McMorris 1976; Estabrook and Meac-
ham 1979). Recently, Gusfield (1991) has given an improved algorithm for
this problem which is linear both in the number of cladistic characters and in
ILI.

(8) For two phylogenetic trees ¢,t” having a label (‘‘root’’) in common, an
efficient way of determining the compatibility of {¢,¢”} and constructing the
‘“‘strict consensus tree’’ (defined by Sokal and Rohlf 1981) for the set
<{t,t” }> has been given by Gordon (1986). Using a different approach a
general method for k£ 22 rooted trees is described below (see also Kant-
Antonescu and Sankoff 1991).

4. Complexity

We now show that deciding the compatibility of resolved quartets is
NP-complete. By a caterpillar we mean a binary phylogenetic tree having at
most two vertices which are each adjacent to two leaves, as in Figure 3. If
o, B label two leaves which are maximally far apart in a caterpillar tree T it is
convenient to call T an off-caterpiller. We write oy Ix2x3, ... ,%,_11x,p 10
identify the caterpillar in Figure 3. Note that if T is an of-caterpillar, and
o,B € S then T g is also an af}-caterpillar.

Lemma If a collection B of ofy-caterpillars is compatible, then B is con-
sistent with an of-caterpillar.

Proof. Define a relation < on L as follows: x < y precisely if for some ¢ € B,
ti{apxy} = Ox|yB. Suppose B is consistent with 7, x <y, and y <z. Then
T\(aBxy) =0xlyB, and Tgpy:) =0ylzp, so that z#x and
T \{a,pxyz) = 0x|ylzP. In particular x < z.
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Figure 3. The af-caterpillar tree ox; 1x3,...,X,_1 Ix,p.

Thus if B is consistent, < is transitive on L, and since x < x cannot
occur, it follows that L has no cycle x = x; <...<x, =x. Thus, by a well
known result there is a linear ordering <" of L such that x < y implies x <" y.
If x; <" x5 <" -+~ <"xz, in this ordering let T* denote the a-caterpillar
tree oxylxy - - lx;,B. Now if teB has label set Su {ap} and if
ti{apry) =O0xIyB, we have x<y, and hence x<'y so that

By} = 0x!yB. Thus since {#(qpxy}: %y € S} defines ¢ it follows that
1Su{ap) =& This holds for all trees ¢ in B, completing the proof. e

Consider then the following problem:

QUARTET COMPATIBILITY
INSTANCE: A set Q of resolved quartets on L.
QUESTION: Is Q compatible?

Theorem 1. Quartet compatibility is NP-complete.

Proof. Quartet compatibility is clearly in NP, for given a tree T consistent
with Q this consistency can be verified by checking each resolved quartet in
Q against 7. We now describe a transformation from the following problem,
“BETWEENNESS’’, which is NP-complete (Garey and Johnson 1979).

INSTANCE: Finite set A, collection C of ordered triples (a,b,c) of
distinct elements from A (we may assume that each element in A
occurs in at least one triple from C).

QUESTION: Is there a betweenness ordering f of A for C; that is a
one-to-one function f:A — {1,2,...,1Al} such that for each

(a,b,c) e C,either f(a) < f(b) < f(c) or f(c) < f(b) < f(a)?

Suppose an instance of BETWEENNESS is given. We construct for each
ordered triple &t = (a,b,c) in C the following set Q » of 6 resolved quartets:



L]

Tree Reconstruction ' 105

QOr = {pp’lab, palbc, pbicq, pclqq’, ap \p B, ag1q°B}

where p =pq,p" =P n 4 = qr, q" = q’ are four new labels chosen for each
n, while o, are two new labels fixed for all elements of C. Thus
OQ(C)=UrccQr is a collection of 6ICI| resolved quartets on
4I1C1 + 1A + 2 labels.

We claim that Q(C) is compatible if and only if A has a betweenness
ordering for C.

First suppose Q(C) is compatible. It can be checked that <Qr> =
{op|p’abcqlq’B, aglq cbap |p B}. Thus if T is consistent with Q(C) let T
denote the of-caterpillar in <Qn> which is T (o pp"q.q"a.b.c}- Since T is
consistent with {T.: © e C}, this set satisfies the hypotheses of the previous
lemma so there exists an of-caterpillar tree T;, also consistent with
{Trime C}. Let T  denote the of-caterpillar T;4, and define
frr:A->{1,2,...,1A1} by letting 1 + fr-(a) be the number of edges on the
path in T* joining the vertices a and o. Since T is consistent with Q, and
both trees in O have b ‘‘between’’ a and ¢ on the path connecting o and P, it
follows that fr(b) lies between fr-(a) and fr-(c). This holds for all x € C so
Jr is a betweenness ordering of A for C.

Conversely, suppose a betweenness ordering f exits. Let T denote the
unique of-caterpillar tree with fr = f, (where fr is defined as above for fr).
We construct a series T, . . . ,Tc) of af-caterpillars recursively from To =T
as follows: Index C and suppose T;_1, i > 0, has been defined. Twice subdi-
vide the edge of T;_, incident with vertex o and make the two new vertices
created by the subdivision adjacent to two new degree-one vertices v y,v "y by
introducing two new edges. Perform a similar subdivision on the edge
incident with vertex B to attach degree-one vertices vg,v ‘. We may suppose
Tig({oBve,V avp V) = welvigvpglvBp For m;=(abc) if
f(a) < f(b) < f(c) label v4,v'4,vp,v'g bY Prs P'ns Gns q'n» (reSPectively),
while if f(a) > f(b) > f(c), assign labels gn, ¢, P, P 7, (respectively). In
this way, T ¢, is consistent with Q(C), and in particular Q(C) is compatible,
which establishes the claim.

The proof of NP-completeness now follows, by the observation that the
construction of Q(C) from C can be carried out in polynomial time.

One consequence of this theorem and Proposition 3 is that the problem
of deciding whether a graph, which is k-partite on Vy, . . . ,V}, has a restricted
chordal extension is also NP-complete, even when |V;1 =2 for all i. A simi-
lar question of determining whether a graph can be transformed into a chordal
graph by adding < k edges has been shown to be NP-complete by Yannakakis
(1981).

The complexity of the compatibility question changes sharply if we
consider sets of phylogenetic trees which have at least one label in common.
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Figure 4. Pruning a leaf of a phylogenetic tree.

This is equivalent to considering sets of rooted phylogenetic trees (where the
distinguished root vertex has degree at least two), for there is a simple bijec-
tion between these two classes defined as follows: Given a phylogenetic tree
with a leaf labeled & delete this leaf and its incident edge to obtain a rooted
phylogenetic tree T™" as illustrated in Figure 4. Inversely, given a rooted
phylogenetic tree T on label set L, with T ¢ L, we let T™ denote the unique
phylogenetic tree on L U {rt} for which (T™) ™ =T.

Thus consider sets of rooted trees, which may have come directly from
a hierarchical classification, or may have been derived by the above pruning
process. The extension of earlier definitions is straightforward and if T is a
rooted phylogenetic tree on label set L o L” we let T ;- denote the induced
rooted phylogenetic tree on L°. For completeness we first provide the analo-
gue of Proposition 2(3), where rooted triples (written a | bc) replace resolved
quartets, the proof following immediately from this earlier result (by chosing
xe L, and for a set R of rooted triples applying Proposition 2(3) to
{t*:te R)).

Proposition 4. Let R be a set of rooted phylogenetic trees. Then there exists
a set r(R) of rooted triples such that <r(R)> = <R>, with

r®ISY T @O0)-2)

te Rv:o(v)>2

We now describe, and give two simple application of, a polynomial-
time algorithm for deciding the compatiblity of rooted trees, due to Aho et al.
(1981).

Definitions (4). For a rooted phylogenetic tree ¢ on L consider the partition of
L obtained by deleting the root of ¢, and for s € L let ¢(s) denote the set in this

ir
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partition containing s. Suppose R is a set of rooted phylogenetic trees on L.
Define a graph on L by making x,y € L ends of an edge precisely if there is a
tree t € R with #(x) = t(y). Let &[R,L) denote the components of this graph,
and let FR denote the minimal set of subsets of L satisfying:

(1): FRoeR,L)
(2): IfX e FR then FR 2 e(R x,X), where R |x = {tx:t € R)

Thus FX is obtained by first constructing &(R,L), and for each set X in &(R,L)
constructing the components of the graph (on vertex set X) induced by R x,
and so on, until no further sets are created.

Clearly the sets in FX are nested, in the sense that for A,B € F R we
have A "B e {J,A,B}. Thus FR represents a rooted phylogenetic tree by
the well-known ‘ ‘n-tree’’ representation of Margush and McMorris (1981) as
a collection of nested sets or clusters.

Theorem 2. (Aho et al. 1981)

(1) R is compatible if and only ifFRo {{x}x e L},

(2) ifFR o {{x}:x € L} then F® is consistent with R.

(3)  if R consists of rooted triples, FR can be constructed by an algo-
rithm having O(IR 12) running time.

Note that if R contains trees on more than 3 labels, one can apply the
construction used in the proof of Proposition 2(3) (in the context of Proposi-
tion 4) to efficiently construct a set R~ of rooted triples with
IR"l = O(IL1 x IR 1) which can then used in the above 0(IR’I2) algorithm.
Altematively, if IL| << IR it may be more efficient to carry out the con-
struction of FR directly without such a reduction.

Corollary 1. For each fixed k there is an algorithm of polynomial time in
IL| for deciding whether a sample of at most k phylogenetic trees on subsets
of L is compatible.

Proof. Select any label x in L (preferably one which occurs in a majority of
trees). For each tree ¢ in the sample P define a set S(¢f) of rooted trees as fol-
lows: S(t) = {t7*} if x is a label of ¢, otherwise S(¢) is the set of rooted phylo-
genetic trees which can be obtained from ¢ by subdividing an edge of ¢ (and
making the new vertex the root). Then P is compatible precisely if there is a
compatible set R of rooted trees, one from each set S(¢). The number of
choices for R is of order |L* and the result now follows from the theorem,
and the comment which follows it.
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The above theorem does not directly tell us whether a cluster in FR
occurs in every rooted phylogenetic tree consistent with R, or only in some.
More generally given any collection of rooted phylogenetic trees it is useful
to partition the clusters occuring in these trees into two types — universal
clusters which occur in all trees in the collection, and the remainder.

Universal clusters are nested and so form a phylogenetic tree under
inclusion (via the above ‘‘n-tree’’ representation) called the strict consensus
tree of the collection (Sokal and Rohlf 1981).

Gordon (1986) asks whether there is an efficient method to construct
this tree for the collection of all rooted phylogenetic trees (equivalenily, all
binary phylogenetic trees) which are consistent with R. Day (1985) has
described an algorithm for constructing the strict consensus of an arbitrary set
- of phylogenetic trees, and this is polynomial in the number of trees, however
it cannot be applied directly here as |<R>| can grow exponentially with
ILI. The following result has been independently derived by Kant-
Antonescu and Sankoff (1991).

Corollary 2. The strict consensus of all rooted phylogenetic trees consistent
with R can be constructed in polynomial time.

Proof. The following result is easily established: Suppose T is a phylogenetic
tree consistent with R, S is a non-singleton cluster of Tand x € S. Then Sisa
cluster of every phylogenetic tree consistent with R if and only if, for each
pair (a,b), aeS, a#x, beS, both R(ab)=RU{ablx} and
R(b,a) =R L {xbla} are incompatible. Thus to construct the strict con-
sensus tree, first construct FX to determine whether R is compatible. If so
each cluster in F is tested for universality by constructing FR@) pR®a)
(for each (a,b)) to test the compatibility of R(a,b), R(b,a). Since FR has at
most |L| —2 non-singleton clusters, the strict consensus of <R> can be con-
structed by an algorithm of running time O(IL1 3)) where A is the complexity
of calculating FR. The result now follows from the comments following
Theorem 2. o

Finally we mention a generalization of the compatibility question in the
case of rooted trees; namely the problem of determining when a parent rooted
binary tree T exists which disagrees with every tree in R (i.e., T s # ¢ for all
t € R on label set S). This problem might arise, for example, in statistical
approaches to taxonomy, in which trees which disagree with data
“signiﬁcantly” define a set of potential parent trees as those not containing
any ‘‘unacceptable’’ subtrees.

However, the problem of deciding whether such a tree exists is NP-
complete by a transformation from the NP-complete ‘‘Betweenness’’ problem

Yo
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Figure 5. A nearest neighbor interchange.

described in the proof of Theorem 1. Specifically, given a set C of ordered
triples from S, define two new labels, a,b, and a root leaf & and let

R =V jkbecC {njllk, nllk'jb, ﬁklll]b}
VU {nxlab, *blxa, nblxy: x,y € S},
R'={tT™.te R}

Then it can be checked that there exists a rooted binary tree on S which
induces none of the subtrees in R’, precisely if S has a betweenness ordering
forC.

5. Defining Trees by Subtrees

Finally we consider conditions for a sample of phylogenetic trees to
define a parent tree. In view of Proposition 2 we can, without loss of general-
ity, suppose that all the sample trees are resolved quartets. We first present a
necessary condition. For an internal edge e of a binary tree T let F(T,e)
denote the four rooted subtrees of T whose roots are adjacent to e, as in Fig-
ure 5. If {a,b,c,d} has one label in common with each tree in F(T,e) we say
the resolved quartet ab | cd distinguishes e. This definition extends to rooted
trees — if T is a rooted phylogenetic tree not labeled by =, the rooted triple
albe distinguishes an edge e of T if ar|bc distinguishes e on T™.

Proposition 6. If <Q> = {T} then for each internal edge e of T there exists a
resolved quartet in Q which distinguishes e. In particular the bounds given
in Propositions 2 and 4 are realized.

Proof. Suppose T has an edge e which is not distinguished by 0. Let T” be
either of the two binary trees obtained from T by interchanging two of the
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trees in F(T,e) whose roots are separated by e. This operation, called a
‘‘nearest neighbour interchange’’ across e (Waterman and Smith 1978), is
illustrated in Figure 5. Now for any resolved quartet ab | cd in Q, considering
the various ways these labels can be distributed among the trees in F(7,e) so
that at least one tree in F(T,e¢) does not receive a label (required since by
assumption no quartet in @ distinguishes e) it is clear that if
T\(apcd) =ablcd, thenT" (44 . 4y = ablcd. Thus T” is also consistent with
Q, and so <@> # (T}, as required. e

The converse of Proposition 6 (assuming consistency of Q) does not
hold; consider for example the two caterpillar trees 12134156, 14152136 which
are both consistent with the set {12136, 23i45, 14I156}. But this set has for
each edge of either tree a quartet distinguishing that edge.

This raises the question of recognizing precisely when a sample of
rooted or unrooted trees uniquely defines a tree. This question was posed in
concluding remarks by Colonius and Schulze (1981), who conjectured that a
simple characterization of such samples was unattainable. While this may be
the case for unrooted trees, we give a simple characterization for rooted trees.
In view of Proposition 4 we restrict attention to rooted triples.

Theorem 3. For a set of rooted triples R, <R> = (T} if and only if R is con-
sistent with T, and for each internal edge e of T there is a rooted triple in R
which distinguishes e.

Proof. The ‘“‘only if’’ part follows from Proposition 6. Conversely, we apply
induction on the height h(T) of T (the maximal number of vertices on any
path from the root of T to a leaf). For A(T) = 3 the result holds so suppose
h(T) =k > 3. Let T1,T, be the two rooted subtrees of 7, on label set L1,L,,
obtained by deleting the 10t of T For i=12, Ilet
R; ={ablc e R :a,b,c € L;}. Now R is consistent with T, and distinguishes
every internal edge of T, a fortiori R; (i = 1,2) is consistent with T;, and dis-
tinguishes 7; on every internal edge of T;. Thus since h(T;) < h(T) we may
apply the inductive hypothesis and deduce that R; defines T;. There are now
two cases to consider:

Case 1. IL(T)! > 1fori =1,2.
Case 2. IL(T)l =1fori=1o0r2.

In case 1, represent T as in Figure 6, where {A,A,}, {B1.B;} denote the
pairs of label sets for the two maximal subtrees of Ty and T,, respectively.
Suppose T~ is consistent with R, and let C'{,C, denote the labels on the two
rooted subtrees of T~ obtained by deleting the rootof T~ as in Figure 6.
We show that {C;,C2} = {A1 WA,, B UB,}, then since R; defines T;, it

£3
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Figure 6. Tree decompositions for the proof of Theorem 3.
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follows that T°=T. Now, since R; defines T; for i=1,2, any set
X € {A1,A,,B,B;} which has nonempty intersection with Cy is contained in
Ci. Now suppose A;, B; are both contained in Cj; without loss of generality
we assume i = j = k = 1. Since R resolves T on the two edges incident with
the root of T, a;a,|b and b b,la are both in R, where a; € A;, b; € B;,
ae AfUA,, be By UB,. The conditions a;a;lbe R and T"e <R>
implies T7| (4,4,,6) = @142 1b, and regardless of whether b € B, or B, the
condition that A; N C # & then implies A, N C; #$. Thus A,, and hence
AjUA,, is a subset of Cy. Then, by a similar argument, b,b,1a € R and
T e <R> implies that B, "C #< hence B, is a subset of C,, which
together with the assumption that C; o B, implies C, = J, a contradiction.
Thus, {C;,C3} = {A{ UA2, By UB,}, and so T =T. A similar, though
simpler argument in case 2 also gives T~ = T, completing the inductive step,
and so the proof. e

Since a rooted triple can resolve a rooted binary tree on at most one
internal edge, this theorem gives the following result.

Corollary. IfR is a set of rooted triples which defines a rooted binary phylo-
genetic tree T, having n leaves, then R has a subset of cardinality n — 2 which
also defines T. Thus all minimal tree-defining sets of rooted triples have the
same cardinality.

o

The analogous result for unrooted trees does not apply. For although each
binary phylogenetic tree having n leaves is defined by a set of n — 3 resolved
quartets (by Proposition 2(3)) there exist minimal defining sets of larger
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cardinality. For example the set QO = {57124, 15167, 12135, 47113, 34156}
defines the caterpillar tree 121345167, but deleting the i-th element in Q as
they are listed gives sets Q; which do not define this tree. Specifically,
121563147 € <Q >, 121346157 € <Q>>, 231145167 € <Q3>,
671531124 € <Q4>,351167124 € <Qs>.

6. Discussion

For a number of reasons, which we now list, it is often desirable to con-
struct phylogenies from small sub-phylogenies on overlapping subsets of
taxa.

(1) Recently there has been a desire to bring some degree of statistical
respectability to taxonomy (Felsenstein 1988) by basing tree reconstruction
methods on models of nucleotide mutation. This has led to methods based on
maximum likelihood, and more recently, invariants (see for example, Sankoff
1990; Cavender and Felsenstein 1987; Hendy 1989). One problem in apply-
ing these methods is that for more than 4 taxa the calculations can become
difficult, and in some cases the invariants are defined only on sets of 4 taxa.
Thus one approach is to build up a tree from sets of resolved quartets which
are, in some sense, *‘statistically significant.”

(2) Traditional tree reconstruction methods such as parsimony and *‘‘compati-
bility’’ rely on chosing an optimal tree, and such procedures are generally
NP-complete (see for example Foulds and Graham 1982; Day and Sankoff
1986). Furthermore there is no guarantee that an optimal tree is unique.
However with a set of rooted triples one can efficiently decide whether they
define a parent tree, and if so construct it.

(3) Subtree methods also provide an internal check on the consistency of the
data and the criterion used to build the tree. The requirement that a set of
resolved quartets be consistent places very stringent constraints on the ways
the quartets can be resolved. In practice, any tree-building method based on
resolved quartets will lead to inconsistency, however the degree of incon-
sistency can be measured in a variety of ways. For example, in one study
Bandelt, von Haeseler, Bolick and Schiitte (1990) used the number of viola-
tions to the transitivity rule (described above in Section 3(3)) as a test in this
direction. Alternatively one might consider the minimal number of quartets
which must be deleted to achieve consistency as a relevant, though not easily
computable, measure.

(4) Quartet methods may also be useful for uncovering previously unresolved
relationships between quartets. For example, applying the transitivity and
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substitution rules described Section 3(3) can resolve previously unresolved
quartets.

(5) In applications, quartet-based methods for tree reconstruction have been
found to perform well (Dress, von Haeseler and Krueger, 1986). Also, for
data in which there is a large degree of consistency amongst the quartets,
such methods should be robust, in the sense that minor perturbations in the
data should produce “‘similar’’ trees. This is because two trees which have a
large proportion of equivalently resolved quartets in common appear ‘‘simi-
lar’’; indeed it has been suggested that the appropriate metric for comparing
phylogenetic trees is one based on the proportion of quartets which are
equivalently resolved by the two trees (Estabrook, McMorris and Meacham
1985; Bandelt and Dress 1986; Day 1986).

These considerations motivate the question of determining when a set
of trees (or characters) are compatible. In general, Theorem 1 shows that this
question belongs to the class of NP-complete problems; as a consequence it is
unlikely that there is a simple combinatorial characterization of the notion of
compatibility. However a proof of NP-completeness is often regarded as the
starting point for the development of heuristic, and branch and bound algo-
rithms, and methods specific to the type of data given. For example, given a
large number of trees or characters, the methods described in section 3(3), or
based on the equivalence of (1) and (3) in Proposition 3 may work well. Con-
versely, if the data consists of just a few characters, a search for a restricted
chordal extension of the graph G(C) may be feasible (using the equivalence
of (1) and (2) in Proposition 3).

Some important open problems remain; for example, determining the
complexity of the compatibility question for qualitative characters when the
number of states in each character is bounded (recall that qualitative charac-
ters partition the entire label set). As described earlier, an efficient algorithm
has recently been obtained for characters having at most 4 states, a result
which is directly relevant to taxonomy based on nucleotide sequences. Kan-
nan and Wamow (1990) conjecture that an extension of their approach will
yield an O(r" "2 x IL12 x IC|) algorithm for the case where each character
has at most r states. If so it would also be useful to know if this order of com-
plexity, with respect to r, is best possible, since any algorithm with this com-
plexity will be inadequate for dealing with protein sequences, where r = 20.

An analogous question applies to the complexity of the compatibility
question for sets of trees when a bound is placed on size of the smallest sub-
set of labels L” so that each tree has at least one label in L°. In case this
bound is 1, the trees can be regarded as rooted on that label and an efficient
method has been described for recognizing compatible sets. A natural
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question is whether an efficient solution exists for trees in which the bound is
2. One might consider, for example sets of resolved quartets of the type
ox I xB, oy ly“y, Bz 127y, where x,x",y,y ",z,z" € L.

Finally, related to Buneman’s question raised in the introduction is a
possibly more tractable problem: Is there an efficient way of deciding, given a
binary tree T and a set C of consistent characters (or resolved quartets)
whether T is the only tree consistent with C?
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