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Abstract.—Measures of dissimilarity (metrics) for comparing trees are important tools in the
quantitative analysis of evolutionary trees, but many of their properties are incompletely known.
The present paper reports formulae for the distributions of three classes of tree comparison
metrics: the partition (or symmetric difference) metric, the quartet metric (which compares subsets
of four taxa), and a metric based on path-length differences between pairs of taxa. The properties
studied include the mean and variance for several underlying distributions of trees, the range,
the effect of the number of taxa, and methods of calculation. Three basic theorems and their
proofs are reported, one for each class of tree comparison metric. The partition metric generates
an asymptotic Poisson distribution for most distributions of trees (its mean is given for three
tree distributions). Exact expressions are derived for the variance of the quartet metric and the
mean square value of a metric based on path differences. Factors that affect the choice of a metric
for a particular study include the degree of similarity of the trees being compared and the type
of hypothesis being tested (e.g., whether the trees estimate the same underlying phylogeny or
are simply related in some, perhaps unknown, way). [Evolutionary trees; tree comparison metrics;

quartet metric; partition metric; path-length differences.]

In classification, it is useful to have a
metric (a measure of dissimilarity) for com-
paring the branching structure of phylo-
genetic trees. For example, such a metric
allows a quantitative assessment of the
similarity of trees reconstructed from dif-
ferent data sets. The distribution of the
metric then provides an indication as to
whether or not this measured similarity
could have come about by chance. Without
such an objective measure, one must rely
on intuitive notions of whether trees are
similar of not, and this has led to disagree-
ments and controversies (see, for example,
O’Grady et al., 1989, in reply to Cavalli-
Sforza et al., 1988). Partly, this is because
there is no “obvious” or “natural” way to
measure the distance between two trees,
unlike the comparison of two numbers
(where one subtracts the smaller number
from the larger) or points in space (where
Euclidean distance can be applied).

A number of tree comparison metrics
have been proposed (Swofford, 1991). Ex-
amples include the partition (or symmetric
difference) metric (Bourque, 1978; Robin-
son and Foulds, 1979), the quartet metric
(Estabrook et al., 1985; Day, 1986), the near-

est neighborhood interchange metric (Wa-
terman and Smith, 1978), and those metrics
based on differences in the lengths of paths
between pairs of taxa (Williams and Clif-
ford, 1971). To interpret the significance of

‘a measured value of one of these metrics

on a pair of phylogenetic trees, it is useful
to know the distribution of that metric on
pairs of trees generated by some random
process. We summarize a number of new
and known results, extending previous
studies such as those of Hendy et al. (1984),
Day (1983, 1986), and Steel (1988).

In particular, we determine properties of
the distribution of tree metrics that are in-
variant with respect to the underlying tree
distribution. As examples of this invari-
ance, we show that (under mild assump-
tions) the distribution of the partition met-
ric is always described asymptotically by a
Poisson distribution; we give its mean for
three tree distributions. For the quartet
metric, the mean of its distribution on pairs
of binary trees is independent of the un-
derlying distribution on tree topologies.
We give an exact expression for the vari-
ance of this metric when all binary trees
are equally probable. We also consider a
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third tree metric, which is based on the
differences in the lengths of paths joining
pairs of taxa, and derive an exact expres-
sion for its mean square value when all
binary trees are equally probable. We do
not consider the nearest neighbor inter-
change metric here, mainly because there
is no known efficient method for its cal-
culation but also because little is known
analytically about its distribution (al-
though Day [1983] obtained some limited
information by simulation).

These results, along with simulations, al-
low us to make some broad conclusions
about the distributions of these three met-
rics. Factors that affect the choice of a met-
ric for a particular study are discussed brief-
ly. These factors include the number of
taxa, the underlying distribution of trees,
whether the trees are highly similar or dis-
similar, the number of trees being com-
pared, whether the comparison of trees or
the relative positions of taxa are of primary
interest, and whether the trees are weight-
ed or unweighted.

The categories under which results, such
as those described here, fall are as follows.

1. Exact or explicit formulae.—These al-
low a direct calculation by substituting
any value of a variable, n, into an ex-
plicit formula.

2. Recursive formulae.—These allow an
indirect calculation by applying an al-
gorithm to a given starting value.

3. Asymptotic formulae.—These give the
limiting values as n becomes large. They
are thus approximations, which become
increasingly accurate as n grows.

4. Enumeration results.—These are found
by an exhaustive search. They are usu-
ally only feasible for small values of n
and so complement asymptotic formu-
lae.

5. Simulation results.—These are useful in
several ways, including how to estimate
how large a value of n is required before
an asymptotic formula is a good ap-
proximation.

For the three tree metrics discussed here,
it is possible to either consider the metric

directly or to normalize it by dividing by
an appropriate scaling factor, which de-
pends on the number of taxa. The most
natural scaling factor is the diameter of the
metric, i.e., the largest value the metric
takes when applied to all pairs of trees.
However, this factor is known only for the
partition metric, for which the diameter is
2n — 6, where n is the number of taxa. For
the quartet metric, the diameter is not
known in general, but a natural scaling
factor is the total number of quartets (so
that the range of the normalized distri-
bution always lies between 0 and some
number <1). For the path metric, the choice
of an appropriate normalizing factors is less
obvious; it should involve the number of
pairs of taxa, but it may also include a fur-
ther term relating to the length of the lon-
gest path possible in a tree. For all three
tree metrics, normalization leads to a fur-
ther distinction in the results presented
here, depending on whether they relate to
the metric or to its normalized value.

Basic TERMINOLOGY

Graph theoretical terminology is useful
for describing aspects of phylogenetic trees;
definitions are illustrated in Figure 1 (for
further graph theoretical terminology, see
Bondy and Murty, 1976). A graph consists
of vertices (or points, nodes) that are joined
by edges (or lines). A tree is a graph that
is connected but contains no cycles. The
degree of a vertex is the number of edges
that are incident with it; a leaf (pendent
vertex) is a vertex of degree one. Edges that
are not incident with a leaf are said to be
internal. Vertices in a tree may be either
labeled or unlabeled.

We consider trees that contain no un-
labeled vertices of degree one or two and
whose leaves are labeled in a one-to-one
fashion by the taxa, which we number 1,

., n. These trees are often called phylo-
genetic trees; here we simply call them
trees. If, in addition, each nonleaf vertex
has degree three, the tree is said to be bi-
nary, or fully resolved. Trees that are
equivalent except for the labeling of their
leaves are said to have the same topology,
which we designate by 7. An important
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2 I\ (labeled)
vertex
3 (unlabeled, 5
of degree 4)
(b) 1 | 6
N
neighboring
pair
4
2
3 4 5 7
FIGURE 1. (a) A (nonbinary) tree consisting of six

edges (one internal) and seven vertices, comprising
five leaves (vertices of degree one) labeled 1-5 and
two unlabeled vertices (of degree three and four). (b)
A (binary) caterpillar tree with seven labeled leaves
and two neighboring pairs (1 and 2, 6 and 7).

aspect of 7 is the number of neighboring
pairs it contains; these are leaves adjacent
to a common vertex. A binary tree with
just two neighboring pairs (as in Fig. 1b)
is called a caterpillar tree. ,

Let b(n) and p(n) be the number of binary
trees and all trees, respectively, with 7 la-
beled leaves. Both these numbers, in a dif-
ferent context, were studied during the last
century (Schroder, 1870), although Caval-
li-Sforza and Edwards (1967) indepen-
dently derived and popularized among
taxonomists the following well-known ex-
pression for b(n):

b(n) = (2n — 5)!
=(2n —5) x 2n — 7)
X «++ X 5 X 3.

No simple closed formula for p(n) is known,
although values can be calculated recur-
sively (Felsenstein, 1978) by keeping track
of the number p(n, f) of trees with n leaves
and with exactly f internal edges. These
numbers are determined by p(3, 0) = 1,
p(3, f) = 0 for f > 0 and by the recursion

pn,)=m+f—-2)pn—1,f-1)
+ (f+ Dpn — 1, f).

The value for p(n) can then be obtained by
summing p(n, f) over all values of f for

which p(n, f) # 0, namely f=0,...,n —
3. Foulds and Robinson (1984) provided a
simple asymptotic estimate of p(n), and an
expression for p(n) as a sum of terms, with
alternating signs, that involved Stirling
numbers was given by Steel (1990).

Distributions

The distribution of a metric for pairs of
(unrooted) trees presupposes and depends
upon an underlying probability distribu-
tion of the trees themselves. We denote
any such distribution by D, and the prob-
ability of a tree T arising under D is written
P,(T). We consider four distributions. The
first three can be realized by Markovian
processes in which a tree is built up ran-
domly by attaching one new leaf at a time,
although the details differ for each distri-
bution. .

D,,,.—Each binary tree has equal prob-
ability;

1 . . .
Po(T) = b(n)’ if T is a binary tree

0, otherwise.

This model applies, for example, if a tree
is randomly built up by starting with a
subtree with just three leaves and recur-
sively selecting a random edge of the cur-
rent subtree and making the next leaf ad-
jacent to the midpoint of that edge. The
resulting distribution is the same whether
random labeling or a predetermined la-
beling (for example, 1,2, 3, .. .) of the first
three and subsequently added leaves is
used. An alternative way to obtain this dis-
tribution is to randomly generate numbers
between 1 and b(n) and apply a one-to-one
correspondence between binary trees and
the numbers 1, ..., b(n), such as that de-
scribed by Rohlf (1983). This model leads
asymptotically to an average of 50% of
leaves belonging to a member of a neigh-
boring pair.

D,,,.—This model was described by Har-
ding (1971) and used by Simberloff (1987)
and Slowinski (1990) to stochastically gen-
erate rooted binary trees. We can then re-
gard these as unrooted binary trees by sup-
pressing the root. This model also applies
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if we follow the same procedure described
for D,,, but restrict our choice for the place-
ment of a new leaf to those edges that are
already incident with a leaf, using a ran-
dom labeling at each step (the distribution
differs from D,,, if a predetermined label-
ing scheme is used). This model tends to
favor “bushy” trees over “linear” trees
more than does D,,; e.g., the asymptotic
average proportion of leaves that belong
to a neighboring pair under D,;, is 66.7%.

D,;.—Each tree (binary or nonbinary) has
equal probability;

1

Py(T)=—,
| o1) =
for each tree T. This model arises from a
random recursive procedure, similar to that
of the previous two models, by allowing
for the attachment of a new leaf to a non-
leaf vertex. Some care is required however
to ensure that the resulting distribution is
of the type claimed because the possible
trees at any stage of a recursive construc-
tion have different numbers of places
where a new leaf can be attached. This
problem was solved by Oden and Shao
(1984), who described an efficient algo-
rithm to randomly generate trees accord-
ing to D,. This model is compared with
the previous two by illustrating a method
for generation of these distributions (Fig.
2).

Dy.—This distribution of trees arises from
the application of some tree reconstruction
procedure to genetic sequence data that
have been randomized within each col-
umn. Such randomized data represent a
“big bang” null hypothesis against which
an evolutionary hypothesis can be tested
(Thompson, 1975). The distribution Dy
arises when one wishes to test whether
trees constructed from different data sets
are significantly more similar than if the
tree reconstruction procedure was not ex-
tracting any hierarchical information from
the sequences (see Penny et al., 1982, for
such a study). In general, D; will differ
from a uniform distribution on binary trees,
D, because most tree reconstruction pro-
cedures applied to randomized data prob-

~
-
Ll

j (). i

i (© t j (d) 1

FIGURE 2. The models D, and D,,, arise from add-

ing new leaves to randomly chosen edges of a tree
(a). For D,,, leaves may be added to any edge, as in
(b) and (c), whereas for D,,,, leaves are added only to
noninternal edges (b). The model D,,, which assigns
equal probability to each (phylogenetic) tree, can also
be generated by a similar process but by allowing for
the attachment of leaves to unlabeled vertices (d).

ably will favor certain topologies over oth-
ers.

Dy and the other three distributions all
share the desirable property of being in-
variant under every permutation ¢ of the
taxal, ..., n:

Py(T) = P(T"), )

where T7 is the tree obtained from T by
replacing the leaf labeled i by that labeled
o(i). Thus P,(T) depends only on the to-
pology of T and not on its particular la-
beling. A distribution that satisfies Equa-
tion 1 is label invariant, and only these
distributions will be considered here. Sim-
ilarly, any metric comparing two trees
should not distinguish the labels, i.e., for
any permutation ¢ of the taxa,

d(T,, T,) = d(T\", T°), 2

which holds for all the tree metrics under
consideration. Figure 3 illustrates the
properties described by Equations 1 and 2.

A tree distribution D naturally induces
a distribution on the set of distances (under
some given metric) between pairs of trees.
Specifically, let Pp[d = k] be the probability
that two trees randomly selected (with re-
placement) according to D are distance k
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d,(T,T,)=2
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1

FIGURE 3. Desirable properties of a distribution on
trees and of a tree comparison metric. P5(T,) = Pp(T,),
the probability of selecting a tree, is independent
of the permutation of the labels (taxa) (Equation 1).
d(T,, T,) = d(T,, T,), the distance between a pair of
trees, is constant under a permutation of the labels,
in this case (1, 2, 3, 4, 5, 6) to (6, 5, 2, 4, 1, 3) (Equa-
tion 2).

apart. Thus Pp[d = k] is the sum of
P,(T)P,(T') over all pairs {T, T'} that are
distance k apart. We can simplify this sum-
mation by invoking Equations 1 and 2. Spe-
cifically, for a particular topology, 7, let p(7)
be the sum of P(T) over all trees with this
given topology, and let T, denote any la-
beled tree with this topology. Then,

Pold=kl=2p) 2% Po(T). (3)

{T":d(T:,T")=k}

The mean and variance of this distribution,
which are denoted by u,(d) and ¢,%(d), re-
spectively, and the range of the distribu-
tion are also of interest.

To state our results, some standard math-
ematical terms are used throughout. The
symmetric difference of two sets is the set
consisting of all those elements that are
in one set but not in the other. Both the
partition metric and the quartet metric
are examples of symmetric difference met-
rics. Recall that f(n) ~ g(n) means that f(n)
and g(n) are asymptotically equal, i.e.,

lim f () =1; nd< ) denotes the binomial
n—w (1)
coefficient, ———, which is the number

if(n — i)t
of ways of selectmg a subset of i taxa from
a set of n taxa.
We now consider three metrics and pre-

d.(T,T,)=2
1 4 3
(e) ‘—-=<
T
2 z 5
d(T)=3 » %(T)=4
a,(1,T,)= V6
FIGURE 4. (a) The partition metric, d,, measures the

number of splits in one tree but not the other. (b) The
quartet metric, d,, measures the number of quartets
that induce different subtrees. (c) The path-length
metric, d,, measures the sum of the squares of the
dxfferences in the lengths of paths between pairs of
taxa.

sent new results for each, including two
results that apply to any label-invariant
distribution D. Figure 4 illustrates calcu-
lations of these three metrics.

PARTITION METRIC (d,)

When an edge of a tree is deleted, the
taxa are partitioned into two sets. This par-
tition is usually called a split or bipartition,
and the partition metric, d,, measures how
many splits are in one tree but not the
other. More formally, d(T,, T,) is the size
of the symmetric difference of the sets of
splits induced by two trees T, and T..
Equivalently,

d(T,, T,) = i(Ty) + i(Ty) — 20(Ty, To), (4)

where i(T) denotes the number of edges of
T that are internal (i.e., not incident with
a leaf) and v,(T;, T,) denotes the number
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of pairs of identical splits of the taxon set
induced by deleting an internal edge from
each of T, and T,. Equation 4 illustrates that
d.is an example of a valuation metric, which
has been studied by Monjardet (1981).

The partition metric was proposed by
Bourque (1978) (see also Robinson and
Foulds, 1981), and an extension to weight-
ed trees was described by Robinson and
Foulds (1979). This metric is easy to cal-
culate, and Day (1985) described a linear-
time algorithm. Also, the range of this met-
ric is well known; the maximum value of
d, across all pairs of trees with n leaves is
2n — 6. Furthermore, the distribution of
this metric for up to 16 taxa, and asymp-
totically, for D,,, is known (Hendy et al.,
1984, 1988; Steel, 1988). Here, we extend
this analysis to other tree distributions.

In view of Equation 4, the distribution
of d, is determined by the distribution of
v(T,, T,) and i(T), but i(T) is trivial if dis-
tributions on just binary trees are being
considered. Let uy(I) and up(v,) denote the
expected value of i(T) and v,(T,, T,), re-
spectively. Then, for any label-invariant
distribution D,

po(d;) = 2[up(I) — up(v,)]
and

Ho(v) = 2 (’j) x PR, (5)

i=2

where P(i) is the probability that a tree
randomly generated by D has the split
{1, ..., i, i+ 1,...,n}}.

For example, if D = D,,, the uniform
distribution on binary trees, then

<\ (i + Dp(n — i+ 1
”D(”s)=§<?> B

_on(n—1)
"~ 21(2n — 5)
nn — 1)(n — 2)
3!1(2n — 5)*(2n — 7)?

1
- -, - 00, 6
5 as n (6)

Similarly, if D = D,,, then replacing b(j)
by p(j) and using the asymptotic formula
for p(j) from Foulds and Robinson (1984)
gives
[2 log.(2) —1F

2

Moreover, for any label-invariant distri-
bution D satisfying a simple technical con-
dition (described later), the induced dis-
tribution on v, is asymptotically Poisson.
This condition has already been estab-
lished for the particular distribution D =
D, (Steel, 1988). Here, using a quite dif-
ferent approach, we first show that as the
number of taxa grows it becomes increas-
ingly certain that the only splits shared by
two randomly generated trees consist of a
neighboring pair and its complement. By
concentrating on these splits, one can then
show that under only mild restrictions the
number of shared splits is asymptotically
Poisson. Finally, the normalized mean, in
which d, is divided by (2n — 6), always
approaches its maximum value, namely 1,
for any label-invariant distribution on bi-
nary trees. The proof of this and later the-
orems and the corollary that follows The-
orem 1 are contained in the Appendix.

To state the theorem, we make one fur-
ther definition. Let uy," and o, denote the
mean and standard deviation for the num-
ber of neighboring pairs of a tree randomly
generated by D.

up(v,) ~ =~ 0.0746. (7)

Theorem 1

(a) As n - oo, the probability tends to
0 that two trees, randomly generated by a
label-invariant tree distribution, have an
equivalent split in which the smaller set
in the split has three or more labels.

(b) For any label-invariant distribution
D, up(v,) is bounded, and its limit, as n -
00, is at most 2. Thus, for any label-in-
variant distribution D on binary trees, the

mo(d)

normalized mean ——— tends to 1.
2n — 6

(c) Provided MTD - u (for some p) and

o ’

- - 0 as n —» oo, then P,[v, = k] is as-
n
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TaBLE 1. Rate of convergence to asymptotic values under the partition metric, d,. To evaluate the rate of
convergence of the asymptotic equations, pairs of trees were randomly generated for two distributions of
trees, D,,, and D,, (see F1g 2), and the distance between pairs of trees was measured by the partition metric.
Each entry of this table is from at least 100,000 simulations. The mean and variance are normalized by the
number of internal edges on the trees. For each distribution of trees, the expected frequency of observing
two trees the maximum, maximum — 1, and maximum — 2 distance apart are shown. For D,,,, exact values
are known for n < 16 (Hendy et al., 1984). Under D,,,, the convergence is quite rapid, but even with D, with
n =11 taxa, at least 95% of the pairs of trees are expected to have no more than one edge in common. The
asymptotic formulae described here (Equation 8), together with the A values (Equations 6 and 9), will thus

provide useful approximations for n > 30.

Probability of two trees
being a given distance apart

Normalized Normalized

" mean variance Dyin Diip
(taxa) Dpin Dyip Dyin Dtip Max Max — 1 Max — 2 Max Max — 1 Max — 2
7 0915 0901 0.0241 0.0288 0.7258 0.2169 0.0477 0.6935 0.2346 0.0568
8 0.940 0.926 0.0136 0.0172 0.7549 0.2001 0.0375 0.7082 0.2289 0.0500
9 0.956 0.942 0.00822 0.01089 0.7774 0.1858 0.0314 0.7179 0.2258 0.0465
10 0.965 0.952 0.00549 0.00759 0.7918 0.1769 0.0268 0.7277 0.2211 0.0422
11 0.972 0.960 0.00383 0.00545 0.8030 0.1703 0.0234 0.7347 02172 0.0414
12 0.977 0.965 0.00275 0.00420 0.8155 0.1616 0.0203 0.7392 0.2154 0.0387
13 0.980 0.969 0.00208 0.00329 0.8246 0.1550 0.0186 0.7416 0.2147 0.0378
15 0985 0.975 0.00133 0.00216 0.8334 0.1497 0.01551 0.7501 0.2104 0.0345
20 0.990 0.983 0.000578  0.00102 0.8506 0.1363 0.0122 0.7564 0.2076 0.0319
25 0.993 0.987 0.000324 0.000585 0.8572 0.1315 0.0105 0.7618 0.2046 0.0301
30 0.995 0.990 0.000206  0.000380 0.8631 0.1263 0.0100 0.7625 0.2052 0.0293
co 1.000 1.000 0.000 0.000 0.8825 0.1103  0.0069 0.8007 0.1779 0.0132

ymptotically a Poisson distribution w1th
mean A = 2u%

ly branched trees) is also %, then it can be
checked (by using Theorem 1 and consid-
ering moment generating functions) that

—A\k
P,[v, = k] ~ e\ (8) v, is not asymptotically Poisson. Clearly,
k! for this contrived distribution the required
Corollary condition on 2 fails.
n

If D is one of the three distributions D,,,,,
D,,, and D,,, then Py[v, = k] is asymptoti-
cally Poisson with mean A. For D, and
D,,, the corresponding values of A (given
by Equations 6 and 7) are % and
[2log.(2) — 1P

2
the distribution D,;,

, respectively, whereas for

The results presented here for the par-
tition metric are asymptotic and do not
specify how large values of n need to be
for the formulae to give useful approxi-
mations. We have used simulations for D,,,
and D,, to estimate the rate of convergence
(see Table 1). These results show that con-
vergence to the asymptotic values is rela-

\ = 2 9 tively fast. By n = 20, the values are already
T 9 ®)  within a few percent of their limiting val-
, ue, and convergence is faster with D,,, than

The condition lim 22 = 0 is essential With Di,. The .large number of binary trees,
noco even for relatively small values of n, prob-

for the theorem. For example, if D is label
invariant and chosen so that the sum of
P,(T) over all binary trees T with just two
neighboring pairs (linear or caterpillar
trees) is % and the sum of P,(T) over all
binary trees with 7% neighboring pairs (ful-

ably aids this rapid convergence.

QUARTET METRIC (d,)

Given a tree T, a subset S of the taxon
set defines in a natural way a subtree of T,
namely the minimal subtree of T, with all
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min
N shared Max{q}

4 0

5 0 5
6 1 14
7 4 31
8 9 61
9 18 108
10 34 176

Example for n =10

6
| 5 ?
8 4
2 10 3 7
6 4
1 7 3 10

FIGURE 5. The diameter of the quartet metric. Min shared = the fewest possible number of quartets shared
by two trees for n = 4-10 taxa, with an example of such a pair for n = 10. For n = 11 and 12, a great deluge
search (Dueck, 1991) found pairs for which min shared = 56 and 89, respectively.

vertices of degree two removed, which
connects the leaves of the tree whose labels
lie in S. For a subset of four taxa (a quartet),
there are four subtrees possible, three of
which are binary and one is degenerate.
Denote by dy(T,, T,) the size of the sym-
metric difference of the two sets of subtrees

of T, and T, obtained by selecting all (Z)

quartets of taxa. Because d, is always an
even integer, we define the quartet metric
d, as Yadg.

Variations on the quartet metric were
introduced by Estabrook et al. (1985), and
some properties of the metric were studied
by Bandelt and Dress (1986) (whose defi-
nition is equivalent to d,) and Day (1986)
(where d, would be written as “D + R”).
d, is a metric rather than just a pseudom-
etric because every tree is characterized by
its quartet subtrees (see Bandelt and Dress,
1986).

The calculation of d, is more time con-
suming than that of the partition metric;
explicitly listing and comparing the quar-
tets shared by two trees requires order
ntlog(n) time. Doucette (unpubl.) devel-
oped a faster, implicit method for calcu-
lating d, that requires order »* time. By

restricting attention to just those (order n®)
quartets containing a fixed taxon, one also
obtains a metric, but it has the undesirable
property of violating Equation 2.

Less is known about the distribution of
the quartet metric than about that of the
partition metric. For example, no formula
is known for the maximum possible dis-
tance between two trees. Figure 5 gives
these values for up to 10 taxa and shows a
representative pair of trees that realizes this
value for n = 10 (these data extend an ear-
lier table from Bandelt and Dress [1986],
which considered only pairs of caterpillar
trees, i.e., those possessing just two neigh-
boring pairs, as in Fig. 1b). An interesting
feature of Figure 5 is that pairs of trees that
are furthest apart under the quartet metric
cannot both be caterpillar trees for 8 < n
< 10. At the other end of the distribution,
the minimal possible value of d, on two
distinct trees with n taxa is n — 3 (this may
be shown by a simple inductive argument).

Bandelt and Dress (1986) showed that
the maximal value of d, when normalized
by dividing by the total number of quartets

n\ . . . .
for n taxa, 4 |- is monotone increasing with

n. They conjectured that the limiting value
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of this ratio is precisely %, which is the
normalized mean value of d, on binary trees
under the uniform distribution, D,

For any tree distribution, this normal-
ized mean is also easily found. By a slight
modification of the argument given in Day
(1986),

#oldy) _ %Xf + 2X,(1 — X,),

Y

where X, is the probability that for a tree
randomly generated by D, a pregiven quar-
tet, say {1, 2, 3, 4}, is resolved (i.e., has an
internal edge). In particular, if D is any
label-invariant distribution on binary trees
(i.e., if P5(T) = 0 for nonbinary trees T),

poldy) _ 2

o

In the case D = D,,, the uniform distri-
bution on all trees, we must know the be-
havior of X,, a question raised by Day
(1986). In this case (Steel, 1990),

oS = 3\l 2pn — i = 1)
! ’“2( i ) 2(n)

o\ [210g. — 1]
4n ’

Thus, a tree chosen with uniform proba-
bility is increasingly likely to resolve any
particular quartet as the number of taxa
grows. It therefore follows from Equation
10 that the normalized mean of the quartet
metric on such trees approaches %, the same
value as for binary trees.

The following result for the variance of
d, implies that the normalized value of d,
is increasingly certain to lie within any
interval of the form % =+ ¢, as n grows, for
any label-invariant tree distribution on bi-
nary trees. We also calculate the variance
exactly for the uniform distribution on bi-
nary trees, Dy;,.

(10)

(11)

Theorem 2

(a) For any label-invariant distribution
D on binary trees, the variance of the nor-

’ d
malized quartet metric, —-, tends to zero

(5

~ yn7?,

as n — o0, In fact,

o 4o

(5

where v is a constant dependent on D.
(b) 1If D = D,,, then

Op

1
opX(d,) = §(anZ +bn+c) X (2),

192~ =32 de= 18
1225 245" "¢ T 1225°

In general the calculation of the variance
depends on the probability that a tree, ran-
domly generated by D, induces the
branched binary topology rather than the
caterpillar topology for a given subset of
six taxa. The proportion of branched to cat-
erpillar topologies for a subset of six taxa
is 1:6 for D, and 1:4 for D,,. A more de-
tailed analysis of the calculation of vy than
that given in the Appendix (in which the
cases leading to these two topologies are
distinguished) reveals that D,, gives a
higher value for ¢,%(d,) than does D,;,. This
result is consistent with the results of sim-
ulations carried out for n < 30, where the
normalized variance under D,, is higher
than that for D, for 7 < n < 30.

where a =

PATH DIFFERENCE METRIC (d,)
Let d,(T) denote the number of edges in

T in the path joining the leaves labeled i
and j, and let d(T) be the associated vector
obtained by a fixed ordering of the pairs
{i,j}. We denote by d,(T;, T,) the Euclidean
distance between the two vectors d(T,) and

d(T,):

d(T,, T,) = |d(T,) — d(T5)|..
Equivalently, d,(T,, T,) is the square root
of the sum of the squares of the differences

d(T,) — d(T,). Williams and Clifford (1971)
defined a similar dissimilarity measure on
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trees, except using an L'-norm rather than
an L2-norm. For both measures to form a
metric rather than simply a pseudometric,
the classical theorem, first stated by Zaret-
skii (1965), is required; the vector d(T)
characterizes T.

The metric d, differs fundamentally from
the previous two metrics in that it is not
the symmetric difference of sets generated
by the two trees being compared. Also, un-
like the quartet metric, the mean of d, for
a distribution on binary trees depends sig-
nificantly on the tree distribution, as might
be expected given the wide variation in
maximum path lengths between different
topologies. ’

The complexity of calculating d, lies be-
tween that of the other two metrics; it can
be calculated in O(n?) steps. Of all metrics
considered here, d, generalizes most nat-
urally to a metric on weighted trees; one

mply lets d;(T) be the sum of the weights
of the edges in T on the path joining the
leaves labeled i and j. However, d, has the
least natural choice of a normalizing factor
of the three metrics. Division of d,(T;, T,)

/[n
by \/ 2 is one possibility, which is

equivalent to evaluating the root mean
square value of the components of d(T,) —
d(T,). However, the range of this normal-
ized metric will continue to grow with the
number of taxa. Division of d (T, T,) by

(;) gives a metric that always lies in a

bounded range ([0, 2], for example); how-
‘ever, by Theorem 3(b) the mean value of
this normalized metric tends to 0 as n grows.
We now present an exact result describ-
ing the distribution of d, under the uni-
form distribution on binary trees, D = D,,.
Let u(n) denote the mean value of d,> under
this model. This value is closely related to
the mean and variance of d;(T) (the num-
ber of edges between a pair of taxa, i and
j) on a binary tree chosen with uniform
probability. We denote this mean and vari-
ance by E[d;] and Var[d,], respectively.

Theorem 3

~ V7n.

2n

2n
n
(@) E[d;] = a(n)
Varld;] = 4n — 6 — a(n) — o*(n).

Let a(n + 2) =

® A v

n
Y
~ 2[(4 — m)n — \V7n).

We do not have an exact expression for
w(n) under D,,, but results have been sim-
ulated for 7 < n < 30. As expected from
the lower proportion of caterpillar trees,
the values of both the mean and variance
of d, increase more slowly than do those
for D,;,. The diameter of d,, normalized by

dividing by \/@ can also be estimated

by a great deluge search (Dueck, 1991). Ex-
amples of the resulting lower bounds on
the diameter are 9.2 (n = 7), 21.7 (n = 10),
and 32.6 (n = 12).

Figure 6 illustrates the distributions of
the three tree metrics d,, d,, and d, for n =
12 under the model D,,,.

DIsCUsSION

We do not advocate the use of any par-
ticular tree metric; instead we provide in-
formation about the distributions so that
an investigator can make a more informed
choice for a particular study.

The partition metric, d,, is the fastest to
calculate, and more is known of its distri-
bution. The Poisson limit results in a very
skewed distribution so that the metric is
only of use when the trees being compared
are very similar. We have found this metric
useful when comparing trees from differ-
ent data sets and when studying how fast
a tree reconstruction method is converging
as longer sequences are used (Penny et al.,
1982; Hendy et al., 1988). In this applica-
tion, the smooth distribution at the tail is
particularly useful. It has intermediate sen-
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(a)

Partition metric ds

(b)

Quartet metric dq

(c)

Path difference metric dp

12 3 4 5 6 7 8 9 10

FIGURE 6. Comparison of the normalized distri-
bution of the three tree metrics d, (a), d, (b), and d,
(c), for n = 12, obtained from a simulation involving
100,000 pairs of binary trees (D,,,). Each metric is nor-
malized by its range in the simulation, which has then
been subdivided into 10 equal intervals.

sitivity to the underlying distributions of
trees, D,;, and D,;,. In case of doubt, it may
be safest to assume the worst distribution.

The quartet metric, d,, has many useful
features for a general tree comparison met-
ric. It has a much larger range and so is
more discriminating than the partition
metric; also its mean is independent of the
distribution on binary trees, and for larger
n, the mean is essentially the same as that
for D,,. Its variance also has only a rela-
tively low sensitivity to the tree distribu-
tion. Although its calculation is more time
consuming than that of the partition met-
ric, Doucette’s (unpubl.) algorithm has been
used to calculate distances between trees
with 95 leaves in less than 17 sec on a Vax
11/780 computer (W. H. E. Day, pers.
comm.). An alternative approach for com-
paring trees with a large number of leaves
would be to evaluate a random subset of,
for example, 1,000 quartets. The behavior
of the quartet metric at the tails of its dis-
tribution is poorly known, and this metric
probably should not yet be used in cases
where this knowledge is important. A fur-
ther desirable feature of the quartet metric
is that quartets have a natural place in some
approaches to tree reconstruction (see Ei-
gen and Winkler-Oswatitsch, 1981; Dress
et al., 1986).

The path difference metric, d,, has sev-
eral interesting features that suggest that
it merits more study and consideration for
use when studying evolutionary trees. It
is fast to calculate and generates a wide
range of values over which to compare
trees. These features will make it particu-
larly attractive when studying large trees.
It is sensitive to the tree distribution, and
the largest values are found with caterpil-
lar trees (those with two neighboring pairs).
Itis worth studying the effect of modifying
the path difference metric by dividing by
the lengths of the longest paths through
the trees, as this would reduce the effect
of the tree distribution. Another useful ap-
plication of d, is when the topic of interest
is the relative position of subsets of taxa
(Penny and Hendy, 1985) rather than the
comparison of trees themselves. The d,
metric may be the method of choice when

)
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trees are more dissimilar than expected by
chance.

It is also necessary to decide which tree
distribution is appropriate for a particular
study. For example, the tip distribution
seems particularly suitable for a simulation
study where the tree was generated ran-
domly during the simulation. However, in
cases where a subset of taxa has been se-
lected by the investigator, the D, distri-
bution seems preferable. This is because
such a deliberate selection of taxa usually
includes a higher proportion from less nu-
merous groups than would be expected if
the taxa were picked at random. Penny et
al. (1991) demonstrated that a random sub-
set of mammalian species would be com-
posed almost entirely of rodents and bats!
Systematists who select (nonrandom) sub-
sets of taxa for study will generally select
fewer bushy trees than if random subsets
were selected under the D,, model, there-
fore in this case D,,, seems more appropri-
ate.

Thus, there is no one “best” metric; the
choice depends on the application, and the
use of more than one metric may often be
desirable. Tree comparison metrics are an
important aid in the study of evolution and
should make the study of trees more ob-
jective, informative, and useful to biolo-
gists.
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APPENDIX
PrROOFSs OF THEOREMS 1-3
Proof of Theorem 1

To simplify notation, we will drop the letter D from
probabilities that depend on the tree distribution. Also,
a split in which the two sets have size k and n — k is
a split of type (k, n — k).

(a) First consider the conditional probability, de-
noted P(k | 7), that a tree T has the split {{1,..., k},
{k +1,...,n}}, given that T has a given topology .
By the label-invariance condition of Equation 1,
P(k | 7) is just the proportion of trees in 7 that have
this property. The number of trees in 7 is

n!
IS’
where 5(r) is the symmetry group of 7 (see Hendy et
al., 1984). By considering the symmetry groups of the

(A1)

n
(at most -’;) rooted subtrees of 7 that have k leaves and

applying Equation Al,

k

from which the probability that two trees have a split
of the type described in the theorem is at most

n 2 n -1
26w

which tends to 0 as n — 00, thereby establishing part
(a).
(b) Clearly, P(i) from Equation 5 is at most
max,P(i | 7), where P(i | 7) is defined as in the proof

Pk | 7) =< % x <”> , (A2)

of (a), and because P(i | 7) < E X (:’) from Equation
i

A2, we have from Equation 5

o2l 1
< —_— - - —
(v = ;Z i2<i> 2 asn —» 00, (A4)
and the second claim in (b) then follows immediately.

(c) From part (a), P[v, = k] asymptotically equals
the probability that two trees have exactly k splits of
type (2, n — 2). To calculate this probability, which
we denote by P'[v, = k], we make the following ob-
servation. Let P(S | j) denote the conditional proba-
bility that a tree, T, randomly generated by D, has
among its splits of type (2, n — 2) a fixed collection
S, given that T has j neighboring pairs. Then, by the
label-invariance condition (Equation 1), P(S | j) is just
the proportion of ways of selecting and pairing 2j
labels from a set of n labels, for which the pairings
include the set S:

<n —2|5|>
2j — 25| L i - 218))

n ne)
2
)

where I1(2j) = P is the number of ways of pairing
j!

2j objects. The (unconditional) probability that any
two trees, randomly generated by D, agree, at least
on any given r-tuple S of splits of type (2, n — 2), is

2 P(S | HP(S | KPIIPIK], (A6)

PGS |j= (A5)

where P[i] is the probability that a tree has exactly i
neighboring pairs. We denote the probability de-
scribed in Equation A6 as P;. Let

N=2 P, (A7)

S:|S|=r

where the summation is taken over all collections, S,
consisting of r splits of type (2, n — 2). Now P, is 0 if
S contains two splits for which the two corresponding
sets of size two have nonempty intersection. Other-
wise, applying label invariance, P, takes a value, de-
noted by P,, that depends only on r and n. By com-
bining these two observations, we deduce that

5
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n
N, = ( 2r> (2r)P,. (A8)

By‘ combining these equations and letting »n tend
to infinity for r fixed in Equation A8, we obtain

2r jr 2
N ~= Lrij).

If »(T) denotes the number of neighboring pairs of
T, then Chebychev’s inequality (applied to the hy-

(A9)

pothesis regarding U—D-) implies that the probability
n

|

T
V—('-t—) lies between 0 and 1, it follows that the bracketed

»(T)
T .

> e] tends to 0 as n — ©0o. Because

term in Equation A9 tends to u’ as n - . Thus, N,

2wy

r!

principle of inclusion and exclusion applied to the
cumulative moments described by Equation A7, that
P'[v, = k] converges to a Poisson distribution with
mean 2u?

Proof of corollary.—For D,,, this result was estab-
lished by Steel (1988) using a different approach. The
results for both D, and D,, follow from the theorem

—

as n — oo, It can then be checked, using the

. s S
if one checks the conditions on Bo and 2. This may
n n

be achieved by considering the exponential gener-
ating function

> Lot s

 on! Y

where T,, is the number of leaf-rooted (planted) bi-
nary trees (respectively, edge-rooted and leaf-rooted
phylogenetic trees, as in Foulds and Robinson, 1984)
with n nonroot leaves and k neighboring pairs. If
these generating functions are denoted by B(x, y) and
P(x, y), respectively,

1 x?
B(x, y) = EB(x, Y2+ E(y - 1) +x

2
P(r,y) =¥ — 1= Plx, 1) + 5/~ D) + x,

’

from which one can show that Bo converges and
n

1
Op
— > 0asn - oo,
n

Regarding D,,, let p(n, k) denote the probability that
a tree with n leaves generated under the model D,
has exactly k neighboring pairs. We then have the
recursion

2”_—1&‘_1)] p(n,k - 1).

p(n+1,k) = 2—:p(n,k) +[

Thus, if we let P,(x) = E p(n, k)x*, we have
k

P, (x)=xP,(x) + E(1 - x)—a—P,,(x).
n ox

If «(n) denotes the expected number of neighboring
pairs in a tree with n leaves generated by the model
D,,, then because

a
dm) = -P,(x)

’

x=1

the previous recursion gives

en+1)=1+ e(n)(l - %)

’

n 1
From this, e(n) ~ 3 and so 22 gas n - co. Similarly,
n
applying second derivatives to the above recursion

for P,(x) gives XN Oasn — o0,
n

Proof of Theorem 2

Given quartets g,, ..., 4, let w(q,, ..., q) denote
the probability that a pair of binary trees with n leaves
agree, at least on ¢, ..., g.. Let

N(x) = D) N.x,
=0

where N, = 1, and for i > 0, N, is the sum of (g,

.., q;) over all unordered i-tuples of distinct quartets
{q,, ..., q}. Then, by the principle of inclusion and
exclusion, E(x) = N(x — 1) is the generating function
for the probability that pairs of binary trees with n
leaves agree on a given number (marked by the ex-
ponent of x) of quartets. Thus g,%(d,) = E"(1) + E'(1)
— E’(1)2, where ' denotes differentiation with respect
to x. Because E'(1) is just u(d,), given in Equation 11,
E"(1) = 2N, remains to be determined. By definition,
2N, is the sum of (q,, q,) over all ordered pairs (q,, 4,)
of distinct quartets. Because w(g,, 4,) depends only on
the size of g, N g,, we must distinguish four cases,
depending on whether this intersection has cardi-
nality 0, 1, 2, or 3. The number of ordered pairs of
quartets that give rise to these cardinalities is, re-
spectively,

() (595G (57,
o(5) < (1 )onas(0) = (1)

To calculate m(q,, g,) for these cases, by definition
G ..., q)= 2 Wt 1), (ALO)

tpeti

where the summation is over all of the 3’ possible
choices of binary trees t,, ..., t, for which ¢ is a
resolution of the quartet g, and u(t,, ..., t) is the
probability that a randomly generated tree hast,, .. .,
t, as subtrees. We can rewrite Equation A10 as

=2 [2 V(T)]z,

where the second summation is over all binary trees,
T, that have leaf set Ug, and that have t,, ..., ¢, as
subtrees. By symmetry arguments based on the label

Gy . .. (Al1)
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TUT

d”(T) =r

FIGURE7. The path decomposition of a binary tree.
By considering the path joining leaves i and j, T can
be regarded as an ordered forest of leaf-rooted (plant-
ed) subtrees.

invariance described by Equation 1, for any label-
invariant tree distribution Equation All gives

1
= if |9, N g =0o0r1

(91 42) =

sy if |[g, N gqa] = 3.

3
In case |g, N g,| =3, »(T) = 5 for three choices of
1
(t,, t,) and = for six choices of (t,, t,).

1+« .
If |9, N g,| = 2, write 7(q;, 4,) as~9— (we calculate

this shortly for D,,) and writ 33 1+8 where
r ite =—,

is shortly for D,,) and w' {15y 5

8

g = 25" Then, applying the combinatorial identity
3 —_—
S0 ()-0)-
S \4—i i 4

we deduce

R )

and so

oni(d,) =%[2 + 6a<" ; 4> + 46(" | 4)} x <Z> (A12)

so that

which proves part (a).

For part (b), we must determine =(q,, 4,) when
|4, N g.] = 2. For this, we may suppose that g, = {1,
2,3, 4} and ¢, = {1, 2, 5, 6}. From Equation Al1, »(T)

1
= 105 (because |g, U g,| = 6, b(6) = 105). By consid-

ering the nine possible choices for the pair (t,, t,) for
Equation All, 17 trees T arise in the one case where
t,and t, both have {1, 2} as a neighboring pair, where-
as 9 trees arise in four other cases, and 13 trees arise
in another four cases. Thus, Equation All gives

172 92 132
w(q, 9) =1 X ﬁ+ 4 x 1052+4 X 105
so that
64
o= 1’2?

The claimed expression for o,%(d,) then follows from
Equation Al12 with a = 3¢, b = —27a + 48, and ¢ =
60a — 1683 + 2.

Proof of Theorem 3

Fors=1,2, let E; denote, respectively, the expected
value of d,(T) and d,(T)[d(T) — 1] under D,,. Thus,

E[d,] =E,

Var[d,]=E, + E, — E2 (A13)

(a) Every binary tree T having n labeled leaves and
for which d,(T) = r has a unique representation as in
Figure 7, where the trees t,, ..., t,_, are binary trees
with a distinguished (root) leaf. This representation
provides a bijection between the set of trees T with
d,(T) = r and the collection of ordered forests con-
sisting of r — 1 planted (i.e., leaf-rooted) binary trees
with a total of n — 2 nonroot labeled leaves.

Let B(x) = 3 b(LnT—D
n>0 .
generating function for the number of planted binary
trees, b(n + 1), with n labeled nonroot leaves. By the
standard decomposition for planted binary trees,

x", which is the exponential

B(x) = %B(x)2 + x,

and so
B(x)=1- V1 — 2x.
Because
1
= ———— — ]
(1 - yB(x)]

is the exponential generating function for the number
of ordered forests consisting of a given number of
rooted trees (marked by y) and a given number of
leaves (marked by x), by applying the above bijection,
we have

F(x, y) = yB(x) + y*B(x)* + ...

=2 9
v L P
=2 9
E,= b00) x [x ]ayzyF(x, 2] Py
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where [x*]f(x) denotes the coefficient of x* in f(x). Us-  Expanding the squared terms in this sum and then
ing the above equation for B(x) to simplify these two inverting the order of summation, noting that
expressions, E, = a(n), whereas E, = dn — 6 — 2a(n), > d,(T) is the same for all i, j, gives

and part (a) now follows by substituting these values T

into Equation A13. _ n Ty a, MY
{b) By definition, M=z <2> g [Z b(n) (2 b(")) ]

% E E [d.(T) — d,(T")} from which the result follows immediately.
i i :

1
wm = gy &~



