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¢

Abstract. A significant problem in phylogeny is to reconstruct a semilabelled bi-
nary tree from few valid quartet splits of it. It is well-known that every semilabelled
binary tree is determined by its set of all valid quartet splits. Here we strengthen
this result by showing that its local (i.e. small diameter) quartet splits infer by a
dyadic inference rule all valid quartet splits, and hence determine the tree. The
results of the paper also present a polynomial time algorithm to recover the tree.

Keywords: semilabelled binary trees, subtrees, phylogeny, quartets.

1 INTRODUCTION

We first provide a summary of notations used throughout this paper. T he set [n]
denotes {1,2,...,n} and for any set S, (¥) denotes the collection of subsets of S
of size k.

A sem:labelled binary tree T is a tree whose leaves (vertices of degree 1) are
labelled by the number 1,2,...,n, and whose remaining internal vertices are un-
labelled and of degree three. Let B(S) denote the set of semilabelled binary trees
on leaf set S, and let B(n) = B([n]). For T € B(n) and S C [n], there is a unique
minimal subtree of T" which contains all the elements of S. We call this tree the
subtree of T induced by S, and denote it by T|s5. We obtain the binary subtree of T
induced by S, denoted by Tl*s, if we substitute edges for all maximal paths of T}g
in which every internal vertex has degree two. Thus, Ty e B(S). If |S| = k, then
we refer to T’*S as a binary k-subtree.

Given a semilabelled binary tree T with leaf set S, deleting an edge e of T dis-
connects T into two components, and thereby induces a bipartition of S consisting
of the leaves of the two components. This bipartition is called a split of T induced
by the edge e; the split is called non-trivial if both components contain at least 2
leaves. Buneman [3] showed that each semilabelled binary tree T is uniquely defined
by its non-trivial splits.
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For a semilabelled binary tree T € B(n), and for a quartet of leaves, ¢ =
{a.b,c,d} € (1), we say that t, = abled is a valid quartet split of T, if abled is a
split of TI’; It is easy to see that

if abled is a valid quartet split of T, then so are baled and cd|ab, (1)

and we understand these three splits as identical. If (1) holds, then aclbd and ad|bc
are not valid quartet splits of T', and we say that any of them contradicts (1).

2 TREE RECONSTRUCTION FROM AN INCOMPLETE SET OF
VALID QUARTET SPLITS

Let Q(T) = {tq 1q € ([Z])} denote the set of valid quartet splits of T. It is a

classical result that Q(T') determines T (Colonius and Schulze [4], also Bandelt
and Dress [1]); indeed for each ¢ € [n], {t, : i € ¢} determines T, and T can be
computed in polynomial time. For example, a simple algorithm for reconstructing
T from Q(T') is simply to build up T recursively from the tree with leaf set 1,2,3
by attaching (in any order) the remaining elements from [n] as new leaves to the
tree so far constructed. In this way, one uses @(7") to determine the unique edge
of each partial tree to which the new leaf must be attached by bisecting the edge
and making the recently created vertex adjacent to the new leaf.

An extension of Colonius and Schultze’s result [4] is that for any T' € B(n),
a carefully chosen subset of Q(T) of cardinality n — 3 determines T (Steel [9]).
Another extension is that an unknown semilabelled binary tree T° with n- leaves
can be constructed by asking at most O(nlogn) queries of the form: “what is t,?”
for a choice of ¢ that depends on the answers to the queries so far asked (Pearl and
Tarsi 7], Kannan, Lawler, and Warnow [6]).

It would be useful to tell from a set of quartet splits if they are valid quartet
splits of any semilabelled binary tree. Unfortunately, this problem is NP-complete
(Steel [9]). It also would be useful to know which subsets of Q(T) determine T and
which subsets would allow for a polynomial time procedure to reconstruct 7. A
natural step in this direction is to define inference: a set of quartet splits A infers
a quartet split ¢, if whenever A C Q(T') for a semilabelled binary tree T, then
ty € Q(T) as well.

Setting a complete list of inference rules seems hopeless (P;ryant and Steel [2]).
However, having just some valid quartet splits of T, it is often possible to infer
additional valid quartet splits of T, for example (see [1], [2] or [5]):

if abled and aclde are valid quartet splits of T,
then so are ab|ce, ab|de, and bclde; (2)
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if abled and ab|ce are valid quartet splits of T, then so is ablde; (3)
if abled, ablef and ce|df are valid quartet splits of T', then so is abldf.  (4)

In (2) and (3) we infer a valid quartet split from two other quartet splits. These
rules are called second order or dyadic rules. In (4) we see a third order rule. These
rules are due to Dekker [5]. A set of quartet splits A dyadically infers a quartet
split ¢, if ¢ can be derived from A by repeated applications of rules (1), (2) and (3).

It is worth mentioning that for every integer r there are inference rules of order
r that cannot be inferred by repeated application of lower-order inference rules.
(See Dekker [5] and Bryant and Steel [2].)

We say that a set of quartet splits A semidyadically infers a quartet split ¢, if ¢
can be derived from A by repeated applications of rules (1) and (2). Quartet splits
(semi)dyadically inferred by a set of quartet splits can be computed in polynomial
time, and quartet splits (semi)dyadically inferred by a set of valid quartet splits
of a tree are valid. We denote by c¢l3(A) the set of all quartet splits semidyadi-
cally inferred by the set A of quartet splits. We say that a set of quartet splits A
(semi)dyadically determine T if they (semi)dyadically infer all valid quartet splits
of T, ie. Q(T); in other words, @ fully determines the tree T

3 TREE RECONSTRUCTION FROM LOCAL QUARTETS

For a semilabelled binary tree T € B(n), and a quartet of leaves, ¢ € ({Z}), let
Lr(q,e) denote the length (the number of edges) of the path P, of T}, which turned
into the edge e of T]f] We will abuse the notation somewhat and let L1(g) denote
the length of the longest path of T}, which is turned into an edge of T, ie.
Lr(q) = max.Lp(g,e). In [10] Steel et al. proved the following extension of the
classical result of Colonius and Shultze:

Theorem 1. For a semilabelled binary tree T on [n} (n > 4), let

D(T)={qe€ <[Z]> : Lr(q) £ 18logn}.

Then S(T') = {t, valid quartet split of T : ¢ € D(T)} semidyadically determines
T. In particular, T can be reconstructed from S(7') in polynomial time.

The interesting point in this proposition is that the local quartets fully determine
the underlying binary tree. Based on this fact we built a reconstruction method for
Cavender—Farris trees (see [10]). Our main goal is to strengthen Theorem 1. We
need some more definitions.

- The depth of an edge e in a semilabelled binary tree T is the number of edges on
the path from e to the nearest leaf. The depth of T, d(T'), is the maximum depth
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of any edge e in T. For example, the depth of a complete semilabelled binary tree
on n leaves is [log, n]. By contrast, a caterpillar on n leaves (the tree defined by
a path p = vy,vs,...,vn_9 in which v; and v,_> each has two adjacent leaves and
the neighbor of each remaining nodes on p is a leaf) has depth 1.

A cherry in a binary tree is a pair of leaves sharing a common neighbor, i.e. a pair
of leaves at distance two in the tree.

The following theorem is the main result of this paper:

Theorem 2. For a semilabelled binary tree T on [n], let
D(T) = {q € <[Z]> :Lr(q) <2d(T)+ 1 and Lr(q,e) =1,
where e is the internal edge of TI’;} .

Then p(T) := {Tf; : ¢ € D(T)} semidyadically determines T In particular, T' can
be reconstructed from p(7') in polynomial time.

Proof. We use induction on n. The result holds for n = 4, so we suppose n > 4.
We distinguish two cases:

{(a) Every leaf of T is in a cherry, i.e. the leaves of T can be matched ({1,12),...,
(ln—1,1n), such that every pair (l3;,_1,ls;) forms a cherry.

(b) There is a leaf I not covered by any cherry, i.e. [ is separated from any other
leaf by at least three edges.

In Case (a), let A; be the common neighbour of the leaves lp;,—; and Iy;. The
deletion of all leaves of T results in a subtree T', whose leaves are just the A;’s.
Note that if E denotes the set of the T-leaves, E = {l3; : 1 =1,...,n/2}, then T"
is isomorphic to Tig. It is clear that d(T") = d(T') — 1.

During the proof we assign to quartet splits of T certain quartet splits of 7', and
call this operation eztension. (The point of definition is to extend a valid quartet
split into valid quartet splits.)

For a quartet of T'-leaves, ¢’ € Q(T"), where ty = A As|AcAq, we define the
standard general extension of ty by the quartet split t; = laolos|laclaq € Q(T). Now
for any quartet of T'-leaves ¢’ € D(T"), we have

Lr(g) < Lp(d)+1<2d—-1)+1]+1<2d+1,

and, if e is the internal edge of Ty, then Lr(g,e) = L1:(¢’ye) = 1. Thus the
standard general extension t, of the valid quartet split t,, € p(T") belongs to p(T').
We define the non-standard general extensions of the valid quartet split ¢, similarly,
but we allow the substitution of one or more ly; with ly;_;. It is clear that every



222 P. L. Erdés, M. A. Steel, L. A. Székely T. J. Warnow

non-standard general extension belongs to p(T') as well. Therefore if p'(T) is the
set of all general extensions of t, € p(T”), then p'(T) is a subset of p(T).

For each leaf A; of T, let X;,Y; denote the leaf sets of the two other rooted sub-
trees of T” incident with the unique neighbour of /5 in 7”7, v;. Since p(7”) determines
1", there is a quartet ¢} in D(T") containing /\j,)\ . and Ay, where A;, € X; and
Ay, € Y;. We define the standard special extension oft . by t =y 1l2J]l2z lay,-

It is easy to see that
Lr(q;) < LT/(q;) +1<2d-1)+1]+1<2d+1.

In addition, if e denotes the internal edge of T* then Lr(gj,e) = 1. Thus t,, €

p(T) holds. We define the non-standard speczal extensions of the previous Vahd
quartet split ¢, 7 similarly, but l,,, may be substituted by ly;, 1 and/or ly,; may

be substituted by l5,,_1. All the non-standard special extensions belong to p(T')
as well. Let p*(T) denote the set of all special extensions of tq: for every j =

1,2,...,n/2. Then p*(T) C p(T). Therefore
cly (P (T) U p™(T)) C cla(p(T)). (5)

To finish the proof in Case (a), we now show that the left-hand side of (5) equals
Q(T), so that clo(p(T)) = Q(T), as claimed. For this purpose, let ¢, = I lp)llq
denote an arbitrary valid quartet split in T Let Ay, Ay, Ac and Ay be the neighbours
of these T-leaves, respectively. If these four T'-leaves are pairwise distinct, then
ty = AaAs|AcAq 18 a valid split; and since (by hypothesis) clo(p(T")) = Q(T7), there
is a sequence of inferences in T” yielding ty € Q(T") from p(T"), using rules (1)
and (2). Repeating the same sequence of inferences with the general extensions of
these quartet splits (and working in Q(T'}), we infer ¢, as well.

If \a = X = A; (where j is an integer between 1 and n/2), then for every
Ac € X; the valid quartet split ly;lo;_1]lcl2y, belongs to the left-hand side of (5).
If the nelghbour of I. happens to be A;,, then this is true by the definition of
the special extension. So we may assume that A. # A;,. By the preceding part
of this case analysis, the valid quartet split loz,lc|l2y, 12] belongs to the left-hand
side of (5) (the neighbours of the four leaves are pairwise distinct). Using rule (1)
for the special extension ¢,;, we infer Iy, Iy, |l2;l2;—1. The application of the third
consequence in rule (2) infers l.lzy, |l; A;-1. Finally, a second application of rule (1)
gives the required valid quartet split.

Similarly, the valid quartet split I3;Ag;_1|lcl2s; (again, Ac # A;;) belongs to the
left hand side of (5), as it is shown by the application of the same second order
inference rule for Iy, lc|l2y,l2; and for the “opposite” of the valid quartet split ¢ ;.

If we change the role of A;; and A, we obtain analogous inferences. (Namely,
we can infer the quartet splits ly;l2;_1|lcl2y,, where A % Ay;.) Furthermore, since
in the use of inference rules A;; and A, do not play any special role, changing the
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role of Iy, (or ly,;) with an arbitrary leaf [; € X; (or € Y}, respectively), then we
obtain analogous inferences. Therefore the only remaining case is A. = Aq. Without
loss of generality we may assume that A, € X;. Due to the previous argument, we
have already inferred lz;la;_1]lay,lc and ly;lyy,|l.la. The application of the second
consequence of the inference rule (2) infers ly;l5;_1 |l.l4, which finishes the proof of
Case (a).

In Case (b), we use the following notations: let | denote a leaf not covered by any
cherry, let A be the neighbour of I, and let A and I" be the other two neighbours
of A (by the choice of [, these vertices exist and are of degree three). Let the two
subtrees attached to A and disjoint from A be denoted A and B, and assume that
the number of leaves in A is at most the number of leaves in B. Similarly, let the
two subtrees attached to I be C and D, and assume that the leaves in C is at most
the number of leaves in D.

Let the semilabelled binary trees Tr and T4 be defined in the following way:
let Tr be the semilabelled binary tree generated by A, B, and the leaves [ and I
The semilabelled binary tree T4 is generated by C, D, and the leaves [ and A.

By induction, cla(p(T3)) = Q(T;) hold for i = A, I'. Let the leaf ¢ € C be the
closest leaf to I' from C, and let the leaf a € A be the closest leaf to A from A.
Let R, be obtained from p(Tr) by omitting the quartet splits of the form I'zlyz,
where = # [, and substituting valid quartet splits Iljyz € p(Tr) with quartet
splits cllyz € Q(T'). Similarly, let R, be obtained from p(T4) by omitting quartet
splits Az|yz for x # [ and substituting quartet splits Allyz with allyz € Q(T).
We define the lft-up of valid quartet splits from p(Ta) U p(Tr) considering them
being quartets from Q(T), substituting I" by ¢ and A by a whenever necessary, i.e.
whenever I" or A belong to the quartets. Therefore, the quartets in R, and R, are
lift-ups from some quartet splits of the subtrees Th and Tr, respectively. We now
show that R, U R, is a subset of p(T). For this purpose, let t,, be the lift-up of
the valid quartet split t;; € p(T'4) and similarly, let t, be the lift-up of the valid
quartet split t,; € p(TTr).

It is easy to see that L1(q.) = Lr,(q),) except for some quartet splits of the
form ¢,, = la|yé. Similarly, L1(q.) = L1,(q.) except for some quartet splits of
the form t,, = cl|af. What remains is to show that Lr(la|y6) < 2d(T) + 1 and
Lr(cllaB) < 2d(T) + 1. Due to symmetry it is sufficient to prove the first claim
only. We will use the notation t, = cl|af.

For the pendant edge e of T}} incident with either a and 3, we have Lr(g,e) £
2d(T) + 1 since
Lr(g,e) = Lrr(q,e) < L1.(g) < 2d(Tr) +1 < 2d(T) + L.

For the edges e = (A, ) and e = (X,1) we have Lr(q,e) = 1. Thus, it remains to
establish that
Lr(g,e) <2d(T) +1 (6)
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for the edge e of T incident with c. If |C] = 1, then we have nothing to prove since
Lr(g,e) =2<2d(T) + 1.

Now for |C| > 1 suppose on contrary to (6) that Lr(g,e) > 2d(T') + 1. Then
dr(A,¢) > 2d(T) + 1 (where dr(z,y) denotes the distance of x and y in the tree T,
that is the length of the path from x to y). Since ¢ is the closest leaf in C to A, all
leaves in C are at distance > 2d(T") + 1 from A. Let e* = (x,y) be an edge of C for
which dp(I,z) = d — 1 and dp{I,y) = d. By the definition of d(T), the depth of
e” is at most d(T'), therefore there must be a leaf I* of T at distance at most d(7T')
from e*. On the one hand I* cannot belong to C since all leaves of C' must be at
distance > d(T') + 1 from e* (by the assumption Lr(q,e) > 2d + 1). On the other
hand {* # [ since the distance dr(l,x) = d + 1. Finally, for every leaf I* € D, the
distance dr(l*,z) > d because the path from z to [* uses at least two edges of D
since D has at least two leaves. This contradiction proves that Lr(q,e) < 2d(T)+1
and therefore R. C p(T), and a similar argument shows that R, C p(T). Therefore
we have

cla(Rq UR,) C cls(p(T)). (7

To finish the proof in Case (b}, we are going to show that the left-hand side of (7)
equals Q(T), so that cly(p(T)) = Q(T), as claimed. For this purpose, let b denote
the B-leaf in T, which is closest to A. Similarly, let d denote the closest leaf to
I' from D in T. We note that the distance dr(b, A) < 2d(T") + 2 because we can
repeat the proof of formula (6) except that A can be of cardinality one. Therefore
d(b, Ay < 2d(T) + 1. A similar condition holds for the leaf d € D which is the
closest one to I'. From know on, the letters a, b, c and d always refer to these fixed
leaves.

At first we show that the valid quartet split cz|yz € Q(T'), which is the lift-up of
the quartet split I'z|yz € p(Tr), belongs to the LHS of (7). Because I'z|yz € p(Tr),
therefore if z belongs to A, then y, z € B, and they are on different subtrees of the
neighbour @ of A. Furthermore, without loss of generality we may assume that b
is on the same subtree of ¢ as z.)

We know that d(z, A) < 2d(T) + 1, since I'z|yz € p(Tr). We just show that
d(b, A) < 2d + 1. Therefore the valid quartet split lc|zb belongs to R.. Similarly,
lz|yb € R, also holds. Applying the first consequence of inference rule (2), we have
lelzy € cla(R.). Putting this together with lz|yz € R. (which follows from the
fact that d(I', A) = d(l, A)) and applying again rule (2), consequence 3, we proved
that cz|yz € clo(R.). The symmetric claim aulvw € cla(R,) holds for the lift-up of
Aufvw € p(Ta). Thus, we have proved:

the lift-up version of any element of p(7'a) or p(Tr) (®)
belongs to cla(R,) or cla(R,).

Let a and B denote two leaves in AUB. Since a8|II" € Q(Tr), therefore, due to (8),
there is a “lifted up” inference sequence for af)lc by semidyadic inference rules.
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For v,6 € C U D we have a similar result. Thus, we have proved:

for leaves 7,6 € C U D al|yé € cla(R,), (9)
for leaves a, 8 € AU B af|lc € cla(R,). (10)

From now on, o, 3,v and é§ always refer to leaves like above, but they are not fixed
leaves.

Assume that @ # « (if this is not true, then exchange the names « and 3).
Similarly, we may assume that ¢ # 6. Applying the choice 3 = a, for property (10)
we have aa|lc € cla(R,). Similarly, for v = c and § = d in (9) we have allcd €
clz(R,). The application of the first consequence of rule (2) gives:

L]

aa)ld € cla(R, U R,). (11)

The substitution § = d in (9) gives al|yd € clo(R.). This, together with (11),
through the application of the third consequence of (2) gives:

allyd € ely(R, U R.). (12)
(10) together with (12) (where v = ¢) gives (through rule (2), first consequence)
aplld € cla(R, U R,). (13)

Applying the symmetry rule (1) for (12) and (13) and using again the semidyadical
rule (2) with its third consequence and taking again its symmetric form, we have

aB|lv € cly(Rq U Re). (14)

Since v was not involved in the proof of (14) (except that v € R,UR,), the following
symmetric claim can also be inferred through similar reasoning:

ally6 € cly(Ra U R.). (15)
Properties (14) and (15) together with our inductive hypothesis give:
for any ¢; € Q(T) such that I € q,q; € clo(R, U R.). (16)
Furthermore (14) and (15) and the application of (2), first consequence, proves:
aplyé € cla(Ra UR,). . (17)
Finally, let 2,y and z be leaves of AU B, Let :c be on a subtree of A, where y and

z are not. By (14) (and with symmetry) we have ly|zy € cla(R, U R.). Moreover,
lz|yz € R, due to our inductive hypothesis. These two together, through rule (2),
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third consequence, give zv|yz € cla(R, U R.). By symmetry, we also know the
analogous result with subtrees T4 and Tr exchanged; therefore we have proved:

if a quartet ¢ € <[Z]> contains three leaves from T, one leaf (18)

from T, or vice versa, but I ¢ ¢, then t, € clo(R, U R.).

Now, for the quartet ¢ = {s,u,v,w} such that every leaf € A U B U {l}, it is easy
to see that ¢ € Q(Tr); therefore t, € clo(p(Tr)), and the “lifted up” version of
this proof ensures that ¢, € clo(R.). This fact (and its analogues for the other
half-graph) together with properties (16), (17) and (18) finish the proof of Case
(b), and we are done. =i

It is worth noting that Theorem 2 strengthens Theorem 1, as it is shown by the
following result:

Lemma 3. For any semilabelled binary tree T on [n],d(T) <log,n — 1.

Proof. Suppose edge e of T has maximal depth d = d(7T'). Then there is a set
V. of at least 2¢ vertices at distance d — 1 from e, and none of these can be a
leaf of T. For v € V, let S(v) be set of leaves of T that become separated from
¢ upon deletion of v. Since S(v) N S(v') = O for v # ¢/, and |S(v)| > 2, we have
n=|Usev, S(v)] > 2|V.| > 2 x 2% = 29%! | a5 claimed. o
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The objective of this Fifth International Conference on the Application of High-Performan-
ce Computing in Engineering is to bring together scientists and engineers working on the
application of high-performance computers to solve complex engineering problems.

The application of supercomputing to numerical intensive problems brings several new
issues that do not appear in standard computing. New algorithms and codes are required
in order to exploit effectively the use of these novel computer architectures, as programs
suitable for conventional computers are likely to achieve very modest improvement of
performance on high-performance computers.

The field of high-performance computing is continuously changing. Although there are still
changes being made in the hardware of high-performance computers, it is evident that the
future of high-performance computing in engineering and science is in massively parallel
computing. Therefore, engineers and scientists need to parallelise their numerical com-
puter codes to be able to take advantage of the changes in high-performance computers.
In that regard, the possible antagonism between algorithm and hardware, showing that
there is a chance of spending too much time on programming different computer topolo-
gies versus think time, i.e. the time spent on the mathematical physics of the problem and
numerical analysis in designing algorithms. Often a more natural mathematical algorithm
founded on physical principles can lead to a better parallel computing formulation.
Conference topics: algorithms for parallelisation e distributed computer systems and
networking e massively parallel systems e software tools and environments e performance
and benchmarking e applications of neural computing e parallel finite and boundary
elements e visualisation and graphics e applications in fluid flow e applications in struc-
tural mechanics ® applications in applied science e transputer applications e distributed
scheduling e industrial applications.
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Southampton, SO40 TAA
United Kingdom
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