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Maximum parsimony and the
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multistate characters
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9.1 Introduction

In this chapter we investigate some of the statist-
ical issues that surround the maximum parsimony
(MP) method. Such issues have long been of
interest, since the pioneering work of Farris (1973)
and Felsenstein (1978). The latter was particularly
interested in the question of statistical consistency:
would MP select a correct tree under a simple
finite-state Markov model, as the number of char-
acters became large? Although much more is now
known about the (necessary and sufficient) condi-
tions for this to occur there is still a lot that isn't.
More recently, there has also been interest in other
types of statistical questions. For example, when
will MP and maximum likelihood (ML) select the
same tree on any given data, and under what sort
of model(s) is MP an ML method?

This chapter considers this last question, and
describes some new sufficient conditions for such
an equivalence. We are particularly interested here
in settings that involve a large state space. Tra-
ditionally most of the biological studies involving
MP have involved a state space that is small
(typically 2 or 4 or 20) and fixed (independent of
the number of taxa). Indeed much standard soft-
ware for parsimony (including PAUP*) appears to

have problems dealing with a state space that has

size of more than (say) 64. However increasingly
there is interest in genomic characters such as
gene order where the underlying state space may
be very large (Rokas and Holland 2000; Moret et al.
2001, 2002; Gallut and Barriel 2002). For example,
the order of k genes in a signed circular genome

can take any of 25(k —1)! values. In these models
whenever there is a change of state—for example
a re-shuffling of genes by a random inversion (of
a consecutive subsequence of genes)—it is likely
that the resulting state (gene arrangement) is a
unique evolutionary event, arising for the first
time in the evolution of the genes under study. At
this point the reader may object that the observed
number of states in such a situation can never
exceed the number 7 of extant species and so this
is the only bound that matters. However when we
come to investigate the stochastic properties of MP
under simple models of state transition, it is the
potential rather than the observed number of
states that is important. Having a large state space
allows for a low level of predicted homoplasy,
leading to one of the links we report below
between MP and ML.

A related central question we consider in this
chapter is how many characters are needed to
unambiguously recover a phylogenetic tree? We
consider this both for random models of state
transition, and in the deterministic setting. We also
consider the question of when, on a fixed tree, we
can expect the most-parsimonious reconstruction
of a character to correspond exactly with its actual
evolution.

This chapter is organized so the first three
sections are largely ‘model-free’ (beyond
the assumption of evolution on a tree), and the
remaining three sections are based on simple
Markov models of character evolution. We begin
by recalling some background and definitions that
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are required to state our results, and by reviewing
some basic combinatorial properties of MP.

9.2 Preliminaries

Throughout this chapter, X will denote a set of n
extant species or individuals. A character (on X, over
a set R of character states) is any function y from X
into some finite set R. Throughout this chapter, we
let r denote the size of R. Suppose we have a tree
T=(V,E). We say that T is a tree on X if X is a
subset of V, and all vertices of T of degree 1 or 2
are contained in X. If, in addition, X is precisely
the set of leaves of T we say that T is a phylogenetic
X-tree, and if, furthermore, every vertex of T has
degree 3 we say that T is fully resolved. Two phylo-
genetic X-trees are regarded as equivalent if the
identity mapping from X to X induces a graph
isomorphism between the two trees. Further
background and mathematical details concerning
phylogenetic trees can be found in Semple and
Steel (2003).

The MP method for reconstructing a tree on X
from a collection of characters on X can be
described as follows.

Suppose we have a tree T=(V,E) on X, and a
character y: X — R. A function ¥ : V — R is said to
be an extension of y since it describes an assignment
of states to all the vertices of T that agrees with the
states that y stipulates at the leaves.

Letch(z, T) := [{e = {u,v}€E : 3(u) # 3(v)}|. Given
a character y:X— R, the parsimony score of y on T,
is defined by

I, T) == mi h(z, T
L M

where 7|X denotes the restriction of y to X. A map
% that extends y and which minimizes ch(y, T) is
called a minimal extension (or most-parsimonious
extension) of y on T. Let

h(x, T) =13, T) — |2(X)] +1

be the homoplasy of x on T. By necessity, h(y, T) >0
and when h(y, T) =0 we say that y is homoplasy-free
on T. This condition is exactly equivalent to a
statement that, informally, says the following:
regardless of where T is rooted, one can evolve

states down the tree (from the root to the leaves) in
such a way that (1) the leaf states are specified by
and (2) there is no convergent or reverse evolution
(for a more formal rendition of this equivalence,
see Semple and Steel 2002).

Suppose we are given a sequence C = (x, ..., xx)
of characters on X. The parsimony score of C on T,
denoted I(C, T), is defined by

k
1C,T) ==Y 1T
i=1

Any tree T on X that minimizes I(C, T) is said to be a
maximum parsimony (MP) tree for C, and the cor-
responding I-value is the parsimony or MP score of
C, denoted I(C). Similarly, we may define

k
WCT) == h(T)
i=1

the total homoplasy of C on T, and the tree(s) on X
that minimize h are precisely the MP trees (since
h(C,T) = I(C,T) + constant, where the constant
depends on C and not T). This minimal value of
we write as h(C).

As is well known, the problem of finding an MP
tree for C is computationally intractable (NP-hard),
as shown by Foulds and Graham (1982). One might
therefore ask for a more reasonable goal. For
example, is it possible to determine splits that are
shared by all (or some) MP trees? One sufficient
condition that allows for the identification of such
splits was described recently by David Bryant, and
can be stated as follows (from Bryant 2003,
Lemma B6). Recall that two binary characters are
compatible if there exists a tree T on which they are
both homoplasy-free (this is equivalent to the con-
dition that at most three (of the four possible) pairs
of states are assigned by these two characters).

Proposition 9.2.1. Suppose C = (y1,...,x) is any
sequence of binary characters on X. Let y be
any nontrivial binary character that is compatible
with all the characters in C. Then there exists an
MP tree T for C that contains the X-split defined by
x. Furthermore, if y is one of the characters in C
then every MP tree for C contains the X-split
defined by y.
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9.2.1 Bounds on the MP score of data

For a single character y : X — R it is easily shown
that

min{i(z, D)} = [x(X)| - 1 (1
and that
m;xx{l(x, D} =X —-m V)

where m is the largest number of species in X
that are assigned the same state (formally
m=max{ |y '(@|:2eR}). In (1) and (2) T ranges
over all phylogenetic X-trees (or, -equivalently,
over all fully resolved phylogenetic X-trees).

For a collection C of characters it is also useful to
determine lower bounds on I(C). We first recall an
easily computed lower bound. Form a graph by
taking X as the set of vertices, and placing an edge
between each pair of vertices (this produces the
‘complete graph on X’). Weight each edge {x,y}
by the number of characters f in C for which
f)#f(y), then construct a minimum-length-
spanning tree for this graph. This last task can
be accomplished using one of the well-known
polynomial-time techniques, such as Kruskal's
algorithm or Prim’s algorithm. Let L(C) denote the
sum of the weights of the edges in this tree. Then,
I(C) > 1L(C). Furthermore, the factor of } is
(asymptotically) optimal for a lower bound based
on this approach due to Foulds (1984); however by
adopting a more complex polynomial-time
approach a slightly better approximation to I(C) is
possible (see Promel and Steger 2000). Here we
describe a quite different type of lower bound,
which has the advantage of coinciding with I(C)
when the homoplasy 1(C) is zero (in contrast to the
minimum-length-spanning tree bound, which does
not have this property in general).

Let F be a family of subsets of {1, ..., k} with the
property that each number 1, 2,..., k appears in
the same number of sets from F. In this case we
say that F is unmiformly covering. Let w(F), or
more briefly v, denote this number of sets from
F that each number appears in (formally,
v(F)=|{SeF : jeS}| for each je(l,..., k}). One
natural example of such a family is the collection
FP of all subsets of {1,...,k} of fixed size

p lie. FP:={SC {1,...,k}: |S| =p}), for which
V(FP) = kj). A second class of examples is where
F is a partition of {1,..., k} into nonoverlapping
subsets in which case v(F) = 1.

Given a sequence C = (yy,...,x) of characters
on X, and a set SC {1,---,k}, let Cs =(X; 1 jeS)
and et

W= Zh(Cs)

SeF

The following result extends the “partition theorem’
of Hendy et al. (1980).

Proposition 9.2.2. Let 7 be a uniformly covering
family F of subsets of {1, ..., k}, let C be a sequence
of characters. Then,

1 7
hC) > ;(F)h

Proof. Let Ty denote an MP tree for C, and
let  H():=h(y,To). For SC{l,... .k}, let
H(Cs): = 37 sh'(j). Thus, H(Cs) > h(Cs) and so

d 1 1
WO =S Wi =——=Y HC)>—=> h
© ; Q) "ms; (€ 2 5 D HCs)

SeF
_ 1 5
WF)

where the second equality is justified by the
identity:

k
DHCI=D Y= > K

SeF SeF jes j=1 SijeS

k
=Y K G

j=1

For applications one would construct a family F
of (small) subsets of X that cover each element of X
the same number of times, and compute #(Cs) for
each small subset. As a special case, if we take
F =F? (so that v=k—1) and note that () > 1
whenever Cs is incompatible, then we obtain the
following bound for any collection C = (xy, ..., x)
of characters:

n(C)

k
C) >3 (I =D+
i=1
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where In(C) is the number of pairs of characters in
C that are incompatible. The ‘partition theorem’
from Hendy et al. (1980), which states that if 7 is a
partition of {1,...,k} then I(C) > 3 ¢ I(Cs), also
follows directly from Proposition 9.2.2.

Note that the requirement of Proposition 9.2.2
that F covers each element of X the same number
of times can be weakened by adopting a linear
programming approach. That is, if we let h be
the minimal value of Zi;, x; subject to the linear
inequality constraints, x;>0 for all i=1,...,k
and Zjésx,v > h(Cs) for all SeF, then clearly
10) > 35 (0] — D + .

9.3 How phylogenetically informative
is a single r-state character?

In this section we consider the question of to how
to quantify the phylogenetic information a single
r-state character carries (a priori, without regard to
other characters, or to the character’s fit on an
existing tree). Let y: X —R be a character. One
measure of the phylogenetic information content
of x, based on compatibility, is the following:

I(x) = —log (p(x)) 3)

where p(y) is the proportion of fully resolved
phylogenetic X-trees for which y is homoplasy-
free. For example, if y assigns the same state to all
species in X or, at the other extreme, a separate
state to each species in X then I(y) =0, as we
should expect, since every such character is
homoplasy-free on all trees.

A measure of phylogenetic content is only useful
if it can be readily computed. For the measure [
described in (3) it might seem tempting to
approximate this quantity by simulation: simply
generate fully resolved trees at random and count
what proportion of them allow y to be homoplasy-
free. However this turns out to be generally
impractical once X becomes large, for the obvious
reason: even if you simulate a huge number of
large trees at random, it is likely that few if any
of them will provide a homoplasy-free fit for y.
Fortunately it turns out that I can be easily
computed by a simple exact formula, and without

recourse to simulations. That such a formula exists
is truly remarkable, and is due to a little-known
but nontrivial result from Carter et al. (1980).
Using straightforward algebra one can easily
derive the following result from Theorem 2 of that

paper.
Proposition 9.3.1. Suppose that a character yx
partitions a set of n species into classes of size

ai, a4y, ..., a4, Then
n—r+1
I = > 1-b)logj-3)
=3

where b= [{i: a;>j}].

For example, consider a character y that partitions
20 species into classes of size 6, 4, 4, 3, 2, and 1.
Then

I(y) = —3log (3) — 21log (5) + log (11) + log (13)
+ -+ +log (27)

In this example, b3=4 (giving rise to the
—3(=1-b3) multiplier for log(3)), bs=3,
bs=bs=1, and b;=0 for j > 6.

Proposition 9.3.1 may be useful for deciding how
to construct and select between possible character
codings, for example for genomic data. Ideally we
would like I(y) to be as large as possible, and
achieving this may assist in tuning certain coding
procedures. Further aspects of this information
measure have also been explored recently using
simulations by Dezulian and Steel (2004). At this
point we will simply note an interesting con-
sequence of Proposition 9.3.1. Firstly, if we fix r,
the number of classes that X is partitioned into,
then I(y) is largest when all of the classes have
(approximately) the same size. Let I;,,.(1, ) be this
largest value of I(x) over all characters y that par-
tition a set of size n into r non-empty sets. We may
ask how this quantity varies as a function of r.
Clearly if r=1 or r=n then I,,(n,1)=0. Con-
sequently, there is some intermediate value,
between r=1 and r=n, where I;,,.(n,r) is largest.
A plot of I115,(120, 7) is shown in Fig. 9.1. Under the
I measure, the most informative character for
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Figure 9.1 Distribution of —log of the number of fully resolved
phylogenetic trees on 120 species for a homoplasy-free character that
partitions the species into r equally sized sets.

n=120 is one that partitions the taxa into 24
groups, each of size 5.

Other measures of the informativeness of a
character are possible and have been proposed; for
example, following Farris (1989), one can consider
the difference

80 = max{Iy, T)} - min{l(x, T)}

where the terms on the right-hand side of this last
equation are given by (1) and (2). Note that if, as
above, we fix r, the number of classes that X is
partitioned into by yx, then d(y) is largest when all
of the classes have (approximately) the same size.
Let dmax(n,7) be this largest value of é(y) over all
characters y that partition a set of size n into r non-
empty sets. We may ask how this quantity varies
as a function of r. Clearly if r=1 or r=n then, as
with the measure based on I, we have 0.1, 7) =0.
Note that if r divides n, then applying (1) and (2)
gives

Omax(n, 1) = n(1 —%) —r+1

Maximizing this expression for r we find the
maximal value of this expression as r varies (over
the real numbers) occurs precisely when r = /n.
For the example discussed above with n =120 the
character that maximizes ¢ partitions the taxa into
fewer groups (namely 10 or 12) than the 24-fold
partition that maximizes I.

9.3.1 Coding gene order as multistate
character data

It is instructive to consider the types of genomic
data for which we may expect, simultaneously,
both low homoplasy due to a large state space, and
yet phylogenetically informative characters.

For gene-order data, one approach (that has been
called “maximum parsimony on multistate encod-
ings”) was proposed by Bryant (2000) and tested by
Wang et al. (2002). Suppose one has n genomes. We
will take these to be circular, and consider the genes
as signed (oriented) and we will suppose that the
genomes have been edited so that each of them
contains the set of N genes, which we can label 1, 2,
..., N. A circular gene ordering then can be regar-
ded as a signed circular permutation, for example (1,
—4, —3, —2) (whichis equivalentto (-4, —3, —2,
1) or to 4, —1, 2, 3), etc.). The coding procedure
considered by Bryant (2000) and Wang et al. (2002) is
based on the observation that each gene order
induces a sequence of length 2N by considering the
gene that immediately follows each given gene in
either direction. Given a collection of genomes, this
allows one to define a sequence of characters y;, . ..,
12~ (on a state space of size 2N) as follows. For each i
between 1 and N, set y,(j) = £k if £k immediately
follows gene i in genome j; and for each i between
N+1 and 2N, x{j) = £k if £k immediately follows
gene — in genome j. For example, forj=(1, —4, -3,
—2) the sequence (3;():i =1,2, ...,8)is (—4,3,4,
-1,2,1, -2, -3).

The method of Gallut and Barriel (2002) has a
similar flavor. In their approach each gene is
associated with the (unordered) pair of genes that
appedr on either side of it. Thus if there are
n genomes, each consisting of N genes, then this
coding method produces N characters that have a
state space of size (}).

Other methods of coding are also possible, and
these are currently being investigated (Dezulian
and Steel, unpublished work).

9.4 The smallest number of multistate
characters required for tree
reconstruction

In this section we consider two related questions:
given a fully resolved phylogenetic tree T with
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n leaves, what is the smallest possible number of
characters for which (1) T is the unique MP phyl-
ogenetic tree for these characters, and (2) T is the
unique phylogenetic tree for which the characters
have no homoplasy? If we call these two numbers,
respectively, n1(T) and nx(T) it is clear that
m(T) < np(T). It might be expected that both these
quantities would grow with the size of the tree, yet
it has recently been shown that this is not so,
provided no bound is placed on the size of the
state space. More precisely, we have the following
result, from Huber et al. (2002).

Theorem 9.4.1. For any fully resolved phylogen-
etic tree T, on any number of species, the quantities
n1(T) and n,(T) are at most 4.

When a bound is placed on the size of the state
space, then an elementary counting argument
shows that both 1;(T) and n,(T) cannot be bounded
by any fixed number that is independent of the
number 1 of leaves of T. This begs the question:
how fast must ny(T) and n(T) grow with n? In the
case of binary characters it is well known that

n(T) =n-3

since every one of the n—3 interior edges of the
fully resolved tree T must be distinguished by at
least one of the binary characters. Furthermore, for
r-state characters, it was shown by Semple and
Steel (2002) that

r—1

and it seems that this bound is fairly close to the
true value. The behavior of n;(T) has received less
investigation, and consequently little is known
about how large n;(T) might be. However the
following result shows that n,(T) must grow at
least logarithmically with # (at least for some trees).

Proposition 9.4.2. For any given state space size
7, there is a positive constant ¢ such that for each n
there exists a fully resolved phylogenetic tree T
with # leaves, for which n1(T) >c- log(n).

Proof. Suppose that to each fully resolved phylo-
genetic X-tree T we can associate a sequences Cr of
k characters on X for which T is the unique MP
phylogenetic tree. Then the number B(n) of fully

resolved phylogenetic trees on a set of size n must
be less or equal to the number of sequences of k
characters on a set of n species. This latter number
is #* where n=|X|, which we may rewrite as
e™ 16" Now B(n) = []/.,(2i —5) and it can be
shown (using Stirling’s approximation for n!) that
for a constant >0 we have B(n)>e"o8™

Thus B(n) < * implies that k>clogn where c=

B/log(r). This completes the proof.

It seems plausible that this lower bound on #,(T)
is not too far from the true value, even for binary
characters, and so we offer the following.

Conjecture 9.4.3. There exists a constant ¢ > 0 such
that, for any fully resolved phylogenetic tree T,
there exists a sequence of at most |c-log(n)]
binary characters on X for which T is the unique
MP phylogenetic tree, where n denotes as usual
the number of leaves of T.

Proposition 9.2.1 places interesting constraints on
the sorts of sequences of characters that this last
conjecture requires. Namely, any split that is not in
T must be incompatible with at least one of the (at
most) ¢ - log(n) characters in the collection promised
by the conjecture. Can such a small set of binary
characters be incompatible with virtually all
other binary characters? We end this section by
describing a result that shows that this is indeed
possible. The proof is given in Appendix 9.1.

Proposition 9.4.4. There exists a set C of logy(n)
binary characters on a set X of size n( = 2*) with the
following property: any binary character on X that
is compatible with every character in C is a trivial
character.

A further interesting feature of the type of data sets
that would be required to verify Conjecture 9.4.3
is that many of the characters would need to
have large homoplasy values on the tree T. The
effectiveness of such data sets in recovering trees is
in line with recent observations by Kéllersjo et al.
(1999).

9.4.1 Reconstructing ancestral states

In the previous section we considered the question
of defining a tree using parsimony. Now we
will consider the analogous question for the
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‘small parsimony’ (i.e. fixed-tree) problem. Given a
phylogenetic tree X-tree, T, and a character
¥ : X— R that has evolved on T, when are the
states that were present at the ancestral vertices of
the tree identical to the most-parsimonious recon-
struction? We will present a sufficient condition
(on the evolution of the character) that guarantees
the historical accuracy of the ancestral-state
reconstructions. Essentially this sufficient condition
is that substitutions that occur are ‘well-separated’
in the tree (that is, they do not occur too close to
each other in the tree). Apart from its intrinsic
interest, this result will also be useful later in pro-
viding a limiting Poisson distribution for the par-
simony score of a tree, under low substitution rates.

Theorem 9.4.5. Suppose that T is a phylogenetic
X-tree, and consider the assignment of states
% : V(I) - R corresponding to the evolution of
some character on T. Let y = 7|X be the observed
states on the extant set of species (leaves of T).
Suppose furthermore that the evolution of the
character is such that any two edges of T on which
a net transition occurs are separated by at least
three other edges of T. Then ¥ is a minimal
extension of y on T; moreover it is the only min-
imal extension of y on T.

Proof. Suppose that T is a phylogenetic X-tree, and
7 : V(T) — R. Suppose furthermore that for any
two edges {1, v} and {1/, v’} for which 7(u) # 7(v)
and 7(1') # 7(v') there are at least three other edges
separating {u, v} and {u’, v'}. Let y = 7|X. Then we
claim that ¥ is the unique minimal extension of y
on T. To establish this claim, let ¥ be a minimal
extension of y on T, we will show that for each
vertex v of T we have ¥'(v) = 3(v).

Let us root tree T on vertex v and direct all the
edges of T away from v. For any vertex u in this
rooted tree, let S(u) denote the set of states
assigned to u by applying the first pass of the
Fitch-Hartigan algorithm (Fitch 1971; Hartigan
1973) to the pair (T, y). We will establish the fol-
lowing. Claim: suppose that u is an internal vertex
of T and that vy, vy, ... are the vertices of T that
are immediate descendents of u. Then

if k =2 and ¥(vq) # 7(v2)
otherwise

| {70, 7))},
800 = {{z(w},

The proof of this claim is by induction on the
height h of u (i.e. k is the number of edges separ-
ating u from a most distant descendant leaf). When
h=1 the claim holds, since the assumption on ¥
implies that all but at most one (of the two or
more) descendant leaves of u has the same state
under . Suppose the claim holds for all internal
vertices of height  and that u has height 1+ 1.
By the assumption on 7 one of the following
two cases applies: (i) 7(v;) = 7(u) forallie {1,... k};
(i) ¥(v;) = x(u) for all but at most one i.

In case (i), we may apply the induction
hypothesis to the vertices vy, . .. v which each have
height at most k. It follows that ¥(u) € S(v;) for all i.
Furthermore there is at most one vertex v; for
which S(v;) # {7(w)} since if there were two such
vertices, then we would obtain two edges on
which ¥ changes state, yet which are separated
by only two edges in T. Consequently, by the
Fitch-Hartigan  recursion we deduce that
S = {xw)}.

Consider now case (ii). We may suppose that
7(v1) # (). Consider first the case where k>2.
Applying the induction hypothesis to v, ..., and
invoking the assumption on ¥ we have that
S() = {71}, and for all i>1 we have
S5w;) = {xw)}. It now follows by the Fitch—
Hartigan recursion (remembering that k>2) that
Sw) = {3(w)}. Thus we have established the
second part of the claim. It remains to consider the
other possibility for case (ii), namely k=2. Again
we apply the induction hypothesis on v;, v,
and invoke the assumption on ¥ to deduce
that S(vq) = {7(v1)} and S(v,) = {¥(vp)}; hence
Sw) = {3(v1), %(v2)}, as required to justify the
claim.

Now let us take u=wv, the vertex we have
selected as our putative root for T. Since T is a
phylogenetic tree, v has degree at least three, so by
the claim we have S(v) = {7(v)}. However, since v
is the root of the tree for the recursion, 5(v) is
precisely the set of states that can occur at v across
all possible minimal extensions of y on T (Hartigan
1973). Thus we have shown that all such minimal
extensions (in particular ¥') assign vertex v the
state as that specified by . Since we can repeat this
argument for any vertex v in T the theorem now
follows.
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0

Figure 9.2 Example showing that two-edge separation does not
suffice for Theorem 9.4.5.

Note that Theorem 9.4.5 is no longer true if we
weaken the edge-separation requirement from
three edges to two. For example, consider the tree
and character y shown in Fig. 9.2. Then the
extension 7 of x defined by making substitutions
precisely on the five (bold) edges incident with
leaves in state 0 as indicated in Fig. 9.2 is not a
minimal extension of x, even though each pair of
bold edges is separated by at least two other edges.
For this example, the minimal extension
is provided by assigning state 0 to all the interior
vertices of the tree. Note also that an ancestral-
state reconstruction satisfying the requirements
of Theorem 9.4.5 is not necessarily the ‘true’
reconstruction, it is merely the unique most-
parsimonious reconstruction. Nevertheless, as we
will see in the next section (Proposition 9.5.1),
certain stochastic models of character evolution
imply that this unique most-parsimonious recon-
struction is also likely to be historically accurate,
provided the substitution probabilities are uni-
formly small.

9.5 The Poisson model

In this section and the next we consider the sim-
plest tree-based model for the evolution of char-
acters with state space R, which we will refer to
here simply as the Poisson model on R (with para-
meters (T, p)). In this model, we have a tree T on X,
select any element x€ X as a reference vertex, and
direct all edges of T away from x,. We will regard
the value from R assigned to vertex xy as being
given (it would make little difference to the argu-

ments below if we allowed the state at x; to
be random). The model assigns states from
R recursively to the remaining vertices of the tree
according to the following scheme: if e = {u, v} is an
edge of T directed from u to v and u has been
assigned state a, then, with probability 1 — p(e) we
assign v state «, otherwise, with probability p(e) we
select uniformly at random one of the other r—1
states (different to «) and assign this state to v. The
assignments are made independently across edges,
and the value pl(e) is called the substitution prob-
ability associated with edge e. It is natural to con-
strain p(e) to lie in the interval [0, =1]; the reason
for the upper bound is that, if we realise this
model by a continuous-time Markov process, the
probability of a net substitution over any period of
time is always less than =1. We will say that the
mapping e — ple) is admissible if the p(e) values all
lie within this allowed interval.

When r =4, this model is essentially the same as
what is often referred to as the Jukes-Cantor
model. For general values of r, this model was
investigated in 1970 by Jerzy Neyman (1971), and
has more recently been studied by Paul Lewis
(2001) as a starting framework for likelihood ana-
lysis for certain morphological characters. This
model has been christened in the bioinformatics
literature under a variety of titles, including
the Neyman r-state model and the r-state
Jukes—Cantor model.

Given the pair (T, p) where T=(V, E) is a tree on
X, and p is an admissible assignment of transition
probabilities, and given a map 7:V — R, let
Pr(¥|T, p) denote the probability that the vertices in
T take values specified by 7 under the Poisson
model on R with parameters (T, p). More formally,
Pr(7|T, p) = Pr(Myev_ix} {n(®@) = %(v)}), where 5(v)
is the random variable state assigned to v under the
model. By the assumptions of the model, we have

)

Pr(7|T,p) = (1—ple)

(4,0} B Z050 | L o) e E=z)

@)
For any character y: X — R, let
Pr(x|T,p) = ) Pr(z|T,p)

zec(n)

where c(y) = {7:V - R: %X = ¢}
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9.5.1 Distribution of the parsimony score

Theorem 9.4.5 has the following consequence for
the (limiting) distribution of the parsimony score
of a character under the Poisson model.

Proposition 9.5.1. Consider a process on a fully
resolved phylogenetic tree T with # leaves, and let

h = max{p(e) : eeE}/n

and

p=>Y_ pl

ecE(D)

Generate a character y by this process on T and let ¥
denote the states at all the vertices of T. Then,
for small values of h, the most-parsimonious
reconstruction of y is likely to be both unique and
historically accurate, and the parsimony score
L =1(x, T) of a character y generated by this process
on T is closely approximated by a Poisson dis-
tribution with mean u. More precisely, for any value
of h we have (i) Pr% is the unique MP reconstruction
of x on T >1— 2812, (ii) |[Pr(£ = k) — e & | < 32K2,
and (i) 22,|Pr(L = k) — e# & | < 60K2.

To illustrate this result, suppose that a fully
resolved phylogenetic X-tree has n=10000 leaves,
and the substitution probability p(e) on each edge
is (say) 2x10"% In this case we can take
h=2x10"2% and so we may approximate [
closely by a Poisson distribution with mean 4.

Notice that, in Proposition 9.5.1, a small value of
h does not necessarily imply a small value for u if
the number of leaves in the tree T is large.

Proof of Proposition 9.5.1

Let A be the event that substitutions occur on some
pair of edges that are separated by two or fewer
edges. The number of ordered pairs of edges that
are separated by two or fewer edges is at most
(2n—3) - (4+8+16) since (2n —3) is the number
of edges of T and since (4+8+16) bounds
the number of edges of T that are separated by 0, 1
or 2 other edges from any given edge of T.
Thus the number of unordered pairs of edges
that are separated by two or fewer edges is at

most - (2n—3) - (4+8+16) <28n, and so, by the
Bonferroni inequality,

2

Pr(A) < 28n - (%) < 28K? )
which, together with Theorem 9.4.5 establishes
part ().

Let £* denote the random number of edges of T
on which there is a substitution. Thus £ < £*, and
L* has a limiting Poisson distribution since it is the
sum of an increasing (with n) number of inde-
pendent 0/1 random variables, where the
probability that each variable takes the value 1
converges to O (with n). Moreover, Le Cam’s
inequality (Le Cam 1960) gives

00 k
S IPr(L =h) - e %' <23 pley? 6)
k=0 ’ e

By the law of total probability,

Pr(£ = k) =Pr(L = k|A°)Pr(A°)

@)
+ Pr(£ = k|A)Pr(A)

and

Pr(L* = k) =Pr(L" = k|A°)Pr(A°)

+ Pr(L* = k|A)Pr(A) ®

where A° is the complementary event of A.

Now, conditional on the event A°, Theorem 9.4.5
guarantees that £ = £* (with probability 1); that is,
Pr(L = kJA°) = Pr(L” = k|A"). Applying this iden-
tity to (7) and (8) gives

|Pr(£ = k) — Pr(L* = k)| = [Pr(L = k|A)
— Pr(£* = k|A)|Pr(A) < Pr(A) < 28K?

where the last inequality is from (5). Furthermore,
(6) implies that
i
[Pr(L* = k) — e'“-le < 4h?

Combining these last two inequalities gives

k
[Pr(C = k) — e E | < 3012
K
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which establishes part (ii). Similarly,

> IPr(L = k) = Pr(L" = k)|

k=0

< Y IPr(L = k|A) — Pr(L" = k|A)|Pr(A)
k=0
< 2Pr(A) < 56k

from which part (iii) now follows.

9.6 Links between MP and ML

Given a sequence C = (yy,..., ) of characters on

X, we put

k
Pr(C|T,p) = [ [ Pr(iIT, p),

i=1

L(T|C) = sup (Pr(C|T, p)),
P

k
Pr(C|T, Pmp = [ [ max (Pr(zi|T, p)[7; € c())
i=1

Linp(T|C) = sup (Pr(C|T, Pmp)
P

where the supremum is taken over all admissible
choices of p and c(7) = c(y;) is the set of extensions
of y; to V. Note that Pr(C|T, p) is the probability of
generating the k characters by independent and
identical evolution under a Poisson model with
parameters (T, p).

Similarly one has analogous definitions for the
‘no common mechanism’ Poisson model, in which
each character evolves independently under a
Poisson model on R but where p in the parameter
pair (T, p) for this model takes admissible values
that are permitted to vary freely between the
characters. Specifically, let

k
Pr(CIT, (b1, ..., p)) = | [ Pr(ulT, pi)
i=1
and

Loem(T|C) = sup PrC|T,(p,..
Pr1y-s pi0)

s pk)))

where the supremum is taken over all k-tuples
(py1,- . .,px) where each p; is admissible.

Recall that L(T|C) and L, are referred to as the
maximum (average) likelihood or ML score, and
Linp(T|C) as the most-parsimonious likelihood or MPL
score, of T given C (cf. Barry and Hartigan 1987;
Steel and Penny 2000).

The distinction between these two forms of
likelihood is as follows: the ML score of T is the
largest probability (over all admissible choices of
substitition probabilities p) of generating the
observed sequence of characters at the leaves of T
but without specifying or conditioning on any
particular assignment of sequences of characters
at the interior vertices of the tree (these are
effectively ‘averaged over’). In contrast the MPL
score of T is the largest probability (over all
admissible choices of substitution probabilities p)
of generating any particular assignment of
sequence of characters to all the vertices of the
tree, so that the sequences assigned to the tips are
the observed sequences.

A tree T on X is said to be an ML tree or
an MPL tree for C if L(T|C) > L(T’|C) or Lyp(T|C) >
Lp(T'|C), respectively, holds for all other trees T’
on X. The problem of finding an MPL tree given
only C was recently shown to be NP-hard by
Addario-Berry et al. (2004) (where the method is
referred to as “ancestral maximum likelihood”,).
Finding an MP tree from C is also NP-hard (Foulds
and Graham 1982); most likely so too is the prob-
lem of finding an ML tree for C.

We say that an MP, ML, or MPL tree for C is
irreducible if we cannot collapse any edge of T to
obtain another such tree for C.

We now describe three links between two tree
reconstruction methods, one of which (ML) is
based explicitly on an underlying Markov model
for the evolution of characters on a tree (the
Poisson model), while the other method—MP—is
based solely on a minimality principle.

9.6.1 Link 1: no common mechanism and an
extension

MP is an ML estimator for phylogenetic trees under
the no common mechanism’ model described
above. In particular, a tree T maximizes Lnem(T|C)
precisely if T is an MP tree for C. This result, estab-
lished in Tuffley and Steel (1997), extended the result
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for r=2 that was described by Penny et al. (1994).
Here we describe a further slight extension of this
result where we allow the size of the state space of
the Poisson model to vary from character to char-
acter. In this case it can be shown that a weighted
form of MP is an ML estimator for a phylogenetic
tree under the ‘no common mechanism’ model.
First recall that character-weighted parsimony is
directly analogous to standard MP; given a
sequence (y1, ..., y) of characters and a weighting
function w: {1, ..., k} — R =° we simply replace
KC,T) by its weighted version [,(C,T)=
=k w(@l(y;, T). We then have the following result.

Theorem 9.6.1. Suppose C = (xl,'..., xx) are
characters on X. Consider the model in which all
characters evolve independently on a phylogenetic
tree T and that each character y; evolves according
to some Poisson model on a state space of size t;
according to admissible edge parameters that are
free to vary from character to character. Then the
(average) ML method ranks phylogenetic trees on
X in exactly the same order as the weighted MP
method provided that each character y; is assigned
weight log(r;).

Proof. The proof relies on a key result from Tuffley
and Steel (1997): for any character x: X — R, and
any phylogenetic X-tree T’ we have

sup Pr(y|T, p) = r "% ™) 9
p/

where the supremum is over all admissible p’.
Consequently,

k
Loem(T'|C) = T 7™
i=1 .

k
=exp (- Z log (r)l(y;, T'))
i=1
=exp (—L,(C,T")

where w is the character weight function defined
by w(i) =log(r;). Consequently the tree(s) T’ that
maximize Lym(T'|C) are precisely the tree(s) that
minimize [,,(C, T), as claimed.

Note that if the size (r;) of the state space for
character y; is unknown for some or all values of i,
then in an ML framework we might optimize these

variables (r;) subject to the obvious constraint
that 7;> | x£X) | . In that case Theorem 9.6.1 holds if
we replace the character weight log(r) by
log(| (X ).

9.6.2 Link 2: large state space

In this section, we describe a quite different link
between MP and ML. In contrast to the afore-
mentioned link we consider here the ‘common
mechanism’ setting for which the two methods are
in general quite different, since they may select
different trees (Felsenstein 1973). However when
the number of states is sufficiently large, then once
again ML trees are always MP trees. As we will see
this may be relevant to the use of certain genomic
data (such as gene order) for inferring phylo-
genies, as in this case the underlying state space
may be very large. The proof of the following
result—which also relies on the identity (9)—can
be found in Steel and Penny (2004).

Theorem 9.6.2. Suppose C = (yy,%,...,x) is a
sequence of k characters on X over a state space R
of size r > 4™ Under the model in which the
characters evolve independently according to the
same Poisson model on R, any ML tree for C is an
MP tree for C.

9.6.3 Link 3: dense sampling of sequences

Let §={S4, Sy, ...,5,} be a collection of aligned
sequences of length k on r > 2 states. Equivalently,
we may view S as a sequence Cs=(y1, ..., X
where , y; is an r-state character on X. If we
write S; as S, ... Si(k), then S;() = y(i) for
all ief{l,...,n} and Ilefl,...,k}. Let dy denote
the Hamming metric on S, defined by setting
du(S;, 5p = [{I: S{) #S{D}|. We will suppose that
the sequences in S are distinct: that is, dy(S;, 5;) >0
for all i#j. Let Gs be the graph with vertex set S
and with an edge connecting any two sequences
that differ in exactly one coordinate. Equivalently,
Gs=(S, E) where

E={(S;,5) :du(S;,5) =1}

In the context of molecular genetics, Gs is the
‘haplotype graph’ described, for example, in
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Excoffier and Smouse (1994). We say that S is
ample if Gs is connected. It is easily shown that if S
is an ample collection of sequences then the set of
spanning trees of Gs (i.e. the trees in G5 on vertex
set §) is precisely the set of irreducible MP trees for
Cs. Consequently, Cs has MP score n — 1.

Theorem 9.6.3 below implies that when S is
ample, then any spanning tree for Cs is also an
MPL tree for Cs under this model. That is, we
cannot improve the MPL score by introducing
additional ‘Steiner points’ (hypothetical ancestral
sequences). As an aside, this result provides
another case where a particular instance of an
NP-hard problem (namely that described
by Addario-Berry et al. 2004) has a simple,
polynomial-time solution. We note also that the
Buneman complex (Buneman 1971) or, equival-
ently, the median network Bandelt et al. (1995) of a
collection of X-splits provides natural examples of
ample sets of sequences. The proof of the following
result can be found in Steel and Penny (2004).

Theorem 9.6.3. Suppose that S is ample. Then,
under the model in which the characters evolve
independently under the same Poisson model on
R, the MP trees and the MPL trees for Cs coincide.
Furthermore, the MPL value is given by
[ 1]t
me(T|CS) = m(l - E)
where k is the length of the sequences, and 7 is the
size of the state space.

9.7 More general models; the probability
of homoplasy-free evolution

In this section we investigate a more general class
of Markov processes than the simple Poisson
model. For these models we ask the question of
how likely it is that a character has evolved with-
out homoplasy. This question has been invest-
igated for the two-state Poisson model (and pairs of
taxa) by Chang and Kim (1996). Here we consider
more general processes on a larger state space, and
for many taxa. Consequently we obtain bounds
rather than the exact expressions that are possible
in the simpler setting of Chang and Kim (1996).

To introduce the more general class of Markov
processes, we note that many processes involving
simple reversible models of change can be mod-
eled by a random walk on a regular graph. To
explain this connection, suppose there are certain
‘elementary moves’ that can transform each state
into some ‘neighboring’ states. In this way we can

construct a graph from the state space, by placing

an edge between state o and state f§ precisely if it is
possible to go from either state to the other in one
elementary move. The graph so obtained is said to
be regular, or more specifically d-regular if each
state is adjacent to the same number d of neigh-
boring states.

For example, aligned sequences of length N
under the r-state Poisson model can be regarded as
a random walk on the set of all sequences of length
N over R; here an elementary move involves
changing the state at any one position to some
other state (chosen uniformly at random from the
remaining r — 1 states). Thus the associated graph
has rV vertices and it is N(r — 1)-regular.

As another example, consider a simple model of
(unsigned) genome rearrangement where the state
space consists of all permutations of length N
(corresponding to the order of genes 1, ..., N) and
an elementary move consists of an inversion of the
order of the elements of the permutation between
positions i and j, where this pair is chosen uni-
formly at random from all such pairs between
{1,...,N}. In this case the state space has size N!
and the graph is d-regular for d = (§).

Both of the graphs we have just described have
more structure than mere d-regularity. To describe
this we recall the concept of a Cayley graph.
Suppose we have a (non-abelian or abelian)
group § together with a subset S of elements of G,
with the properties that 1 ¢Sandse S = s'eS.
Then the Cayley graph associated with the pair
(G,S) has vertex set G and an edge connecting g
and g’ whenever there exists some element se S for
which g=g’- s. To recover the above graph on
aligned sequences of length N over an r-letter
alphabet, we may take G as the (abelian) group
(Z)N and the set S of all N-tuples that are the
identity element of Z, except on one coordinate. To
recover the graph described above for unsigned
genome rearrangements we may take G to be the
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(non-abelian) symmetric group on N letters and S
to be the elements corresponding to inversions.
The demonstration that such graphs are Cayley
graphs has an important consequence: it implies
that they also have the following property. A graph
G is said to be vertex-transitive if, for any two ver-
tices # and v there is an automorphism of G that
maps u to v. Informally, a graph is vertex-transitive
if it “looks the same, regardless of which vertex
one is standing at” Clearly a (finite) vertex-
transitive graph must be d-regular for some d, and it
is an easy and standard exercise to show that every
Cayley graph is vertex-transitive (however not
every vettex-transitive graph is a Cayley graph, and
not every regular graph is vertex-transitive). Thus,
there are three properly nested classes of graphs:

Cayley graphs C vertex-transitive graphs
C regular graphs

Given a connected graph G a (simple) random
walk on a graph is a walk on the vertices of G that,
from any given position, selects as its next state
one of the neighboring vertices (selected uniformly
at random). This random process forms a revers-
ible Markov chain. The proof of the following
result is given in Appendix 9.1.

Lemma 9.7.1. Suppose W, Wi, ...is a random
walk on a d-regular graph G. Then, for any two
distinct vertices u, v, and any n > 0,

Pr(W, =v|Wy = u) < }i (10)

Furthermore, if G is vertex-transitive then
Pr(W, = u|{Wy =u) =Pr(W, =v|Wy =v) (11)

Consider now a continuous-time Markov process
(X;;t>0) on a finite state space R, and with rate
matrix Q. Thus, for any two distinct states a, 8, Qs
is the instantaneous rate at which state « changes
to state . Suppose that for some fixed positive
integer 4 and some fixed positive real number g4 we
have the following property: for each state « € R
there is some neighborhood N(2) C R —{«} of size
d for which, for all § # « we have

Oup = {g, if e N(x)

otherwise (12)

Associated with any such process there is a
corresponding graph with vertex set R and where
the edge set E is defined by E={{a,f}: Qup#0,
a# B}. Note that this graph is d-regular, and sub-
stitution events under a model satisfying (12) cor-
responds to a random walk on the associated
graph. Accordingly we will call any continuous-
time Markov process that satisfies (12) a d-regular
walk process. The equilibrium distribution of any
such process is uniform.

Lemma 9.7.2. Let (X; t>0) be a d-regular walk
process. Then, for any two distinct states a, §, and
any values s, t >0,

PrXis = fI1X: = o) < %
Proof. For this Markov process, consider the asso-
ciated graph (R, E). Let M denote the random
number of transitions between states, during
the interval between time t and ¢+s. Then
Pr (X;,:=p| X;=0a) can be written as

> Pr(Xpis = BIM =m, X; = )

m>0

x Pr(M = m|X; = «). (13)

Now, Pr(X;;s=p|M=m, X;=a) is precisely the
probability that for a random walk W, on the
graph (R, E) we have W,,=pf conditional on
Wo=a, and by Lemma 9.7.1 this is at most L.
Applying this to the expression for
Pr(X;1s=p|Xi=a) given by (13) completes the
proof.

The following result shows that for such a
Markov process if d is much larger than 2n* (the
number ‘of species) then any character generated
on a tree with n species will almost certainly be
homoplasy-free on that tree.

Proposition 9.7.3. Suppose characters evolve on a
phylogenetic tree T according to a d-regular walk
process. Let p(T) denote the probability that the
resulting randomly generated character y is
homoplasy-free on T. Then

@n—-3)n-1

T >1- 7

where n= | X|.
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Proof. Consider a general Markov process on T
with state space R. Suppose that for each arc (4, v)
of T and each pair a, f§ of distinct states in R, the
conditional probability that state f occurs at v
given that o occurs at u is at most p. Then, from
Proposition 7.1 of Semple and Steel (2003) we have
p(T) >1—(2n—3)(n —1p. By Lemma 9.7.2 we may
take p = 1. The result now follows.

As an example to illustrate Propostion 9.7.3
consider the simple model for random inversions
of (unsigned) gene orders mentioned above. If we
have L genes then d = (}) and so if we have (say)
n =10 genomes each consisting of the same set of
L=100 (unsigned) genes that have evolved on
a phylogenetic tree, the probability that this char-
acter is homoplasy-free on that tree is at least 0.97.

9.8 Results for infinite and large
state spaces

Finally, we turn to the question of how many
characters we need to reconstruct a large tree if the
characters evolve under a Markov model on a
large state space.

Markov models for genome rearrangement such
as the (generalized) Nadeau-Taylor model
(Nadeau and Taylor 1984; Moret et al. 2002) confer
a high probability that any given character gener-
ated is homoplasy-free on the underlying tree,
provided the number of genes is sufficiently large
relative to |X| (Semple and Steel 2002). In this
setting the appropriate limiting model is to assume
that every time a substitution occurs a completely
new and unique state arises: such a model may be
viewed as the phylogenetic analogue of what is
known in population genetics as the ‘infinite
alleles model’ of Kimura and Crow (1964).

Mossel and Steel (2004a) recently investigated
such a ‘random cluster’ model on a phylogenetic
tree T, which operates as follows. For each edge ¢
let us independently either cut this edge—with
probability p(e)—or leave it intact. The resulting
disconnected graph (forest) G partitions the vertex
set V(T) of T into non-empty sets according to the
equivalence relation that u ~v if u and v are in the
same component of G. This model thus generates
random partitions of V(T), and thereby of X by
connectivity, and we will refer to these partitions

as ¥ and y, respectively. For an element xe X we
will let y(x) denote the equivalence class contain-
ing x. We call the resulting probability distribution
on partitions of X the random cluster model with
parameters (T, p) where p is the map ¢ — ple).
A central result from Mossel and Steel (2004d) was
that the number of characters required to correctly

.reconstruct a fully resolved phylogenetic tree with

n leaves grows (with 7) at the rate log(n) provided
upper and lower limits to p are specified (and the
upper limit is less than 0.5). More precisely, let us
suppose for the rest of this section that each value
ple) lies between a value ppin and value pp,ax Where
0 < Pmin < Pmax <0.5.

For this model Mossel and Steel (2004d) estab-
lished the following result: if one independently
generates at least

2 n
~log| — (14)
B8 (xﬁ)
characters under this model, where
1- 2pmax) N
= Pmin (15)
b P < 1 — Pmax

then with probability at least 1-—¢, T is the only
phylogenetic tree on which the characters are
homoplasy-free; furthermore T can be recon-
structed from the characters in polynomial time
(simulations conducted by Dezulian and Steel
(2004) show that even fewer characters may suffice
for accurate tree reconstruction than (14) requires,
although a logarithmic dependence on n is still
provably necessary).

We now provide a similar result for certain
regular walk processes on a finite state space. We
will show that for a subclass of d-regular walk
processes, and provided d grows at least as fast as
nzlog(n) (where n is the number of leaves of T),
then we can generate enough homoplasy-free
characters to reconstruct T correctly.

First we describe a subclass of regular walk pro-
cesses. Suppose that R is a group, and for some
subset S (closed under inverses and not containing
the identity element of R) we have Q,5=4 if and
only if there exists some element s € S for which
p=uo-s, otherwise for any distinct pair a, f we
have Q,5=0. Such a process we will call a group
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walk process (on the generating set S). Clearly a group
walk process is a regular process, and the graph
(R, E) associated with the regular walk process is
the Cayley graph for the pair (R, S). Random walk
processes have a further useful property on trees:
for each arc e=(u,v) of T=(V,E) consider the
event A(e) that the state that occurs at v is different
from the state that occurs at u (i.e. there has been a
net transition across the edge). By Lemma 9.7.1
(and the fact that the Cayley graph for (R,S) is
vertex transitive), it follows that the events (A(e),
ecE) are independent. Let p'y;=min{Pr(A(e)):
ecE}, p‘;nax =max{Pr (A(e)): e € E}, and for any ¢ >0
let ’

1+ log(L
Ce:_?_ﬂ)
fe

where ' = p;mn<

(16)

1—%,)4
IPhax )

We are now ready to state a result for certain
Markov processes on large (but finite!) state
spaces, which brings together several ideas pre-
sented above. Informally, Theorem 9.8.1 states
that, for a group walk process, a growth of around
n*log(n) in the size of the generating set is suffi-
cient (with all else held constant) for producing a
sequence of homoplasy-free characters that
define T.

Theorem 9.8.1. Suppose characters evolve inde-
pendently on a fully resolved phylogenetic tree T
according to a group walk process on a generating
set of size d, where

d > ¢, -n*log(n)

with ¢, given by (16) and with p_ . < 1. Then with
probability at least 1 —2¢ we can correctly recon-
struct the topology of T by generating %log(ﬁ-)]
characters and applying a method such as MP or
maximum compatibility.

As an example, consider the group walk process
for (unsigned) gene-order reversal mentioned
earlier. In this case, for L genes, we have d = (g).
Theorem 9.8.1 shows that provided L grows at the
rate (with n) at least some constant times 7,/log ()
then one can hope to recover fully resolved phylo-
genetic trees with 11 leaves from a (logarithmic with n)
number of such independent gene-order characters.

Outline of the proof of Theorem 9.8.1. A detailed
proof of Theorem 9.8.1 can be found in Mossel and
Steel (2004b). Here we simply outline the argu-
ment and indicate how it depends on earlier
results.

Generate k= "% log(%] characters under a
group walk process satisfying condition (12) on a
rooted phylogenetic tree. Consider the event H that
all of these characters are homoplasy-free on T.
Since a group walk process is a regular walk pro-
cess, satisfying (12), using Proposition 9.7.3 it can
be shown that P[H] >1—e Furthermore the
probability that T will be correctly reconstructed
(using MP or maximum compatibility) from k
characters produced by a coupled random cluster
model (with = f’) is at least 1—¢ by (14) (recalling
that pmax < %). Now, the original k characters
induce the same partitions as the coupled random
cluster characters whenever event H holds, and
PIH] > 1 —e. Consequently, by the Bonferroni
inequality, the joint probability that event H holds
and that the k characters produced by the coupled
process recover T is at least 1 — 2¢. Thus the
probability that the original k characters recover
T is at least this joint probability, and so at least
1 - 2¢, as claimed.

We end this section by noting that a related
result—namely the statistical consistency of MP
for certain Markov processes on a sufficiently
large state space—was established in Steel and
Penny (2000). The main difference between that
result and Theorem 9.8.1 is that statistical con-
sistency is a limiting statement; it says that as the
number of characters becomes large, the prob-
ability- of recovering the correct tree converges to
1. Theorem 9.8.1 meanwhile provides an explicit
bound on the probability of correctly recon-
structing the correct tree from a certain given
number of characters.

9.9 Concluding comments

MP has continued to provide mathematicians
with a rich variety of problems for study. Often
these problems have led to elegant and surprising
solutions, including the bichromatic binary tree
theorem (Carter et al. 1990; Erdos and Székely
1993; Steel 1993), the min-max theorem of Erdos
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and Székely (1992), and the guaranteed embed-
ding of MP trees in median networks due to
Bandelt et al. (1995). In this chapter we have
considered further problems, particularly those
concerning the statistical aspects of applying MP
to character data on a large state space, and for
which some solutions have been proposed.
However the reader would be wrong to conclude
that MP for even two-state character data is
completely understood. Indeed the following
problem is still open: under the two-state Poisson
process is there a value p>0 so that MP is sta-
tistically consistent for all fully resolved trees
(having any number of leaves) under the con-
straint p(e) =p for all edges of the tree? The fact
that such a basic question is still open suggests
there still await challenges for investigators in
future.
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Appendix 9.1 Proof of
Proposition 9.4.4, and Lemma 9.7.1

Proof of Proposition 9.4.4. Let X = {0,1}* and let
C={AiBi,i=1,...k} where A;:={xeX:x; =1}
and B;=X — A;. We claim that C has the property
described. To this end, suppose that A|B is an
X-split that is compatible with every character in C.
Let1=(1, 1,..., 1) € X. Without loss of generality
(by interchanging A and B, as well as A; and B; if
necessary) we may suppose that 1 € A and, for
each 7, 1 € A;. Note that, by definition, | A;| =2*"1;
also we have A; N A # 0 for all i. Thus the
compatibility of A|B with A;| B, ensures that

for each i eitherA; CAorACA;orB;CA (17)

We then consider two cases:

(i) |A] < 2K
i) |A]> 251

In case (i) condition (17) and the equality
[A;] =21 ensures A C A; for all i. But this

.means that A={(1,1,...,1)} and so A|B is a trivial

character. In case (ii) condition (17) and the
equality |A;] =2""" ensures that for each i either
A; C AorB; C A;in the first case we will let y; =0
and in the second case we will let y; =1. Let
y=W1, ..., y). Then A=X—{y} and so again A|B
is a trivial character.

Proof of Lemma 9.7.1. We prove the first claim by
induction on 7. The result trivially holds for n =0,
and for n=1 we have Pr(W; = v|W, = u)e{0, 1}
since the graph is d-regular, and so (10) holds.
Suppose (10) holds for n=k. Then by the element-
ary theory of Markov chains,

Pr(Wi1 = v|Wo = u)
=Y Pr(W = w|Wp = W)Pr(Wy = 0| Wy = w)
w

(18)

Letting N(u) denote the set of vertices that neigh-
bor u the right-hand term in (18) is

1
y > Pr(Wy = v|Wp = w)
weN(u)
1
=7 Z Pr(Wy = w|Wy = v)
we N(u)
(19)

where the equality in (19) arises since the
chain-transition matrix is symmetric and so
Pr Wy=v| Wy=w) =Pr(Wy=w| Wy=10). Combin-
ing (18) and (19) we have

Pr(Wii, = v|Wo = u)

_1 > Pr(Wi=w/Wo=w) <
weN(u)

£l =

so that (10) holds for n = k+1, establishing the
induction step and thereby the lemma.

The proof of (11) in Lemma 9.7.1 is similar but
easier.



