












145

Recall that s(o; T,pj) = ~{C£E(T): p(C)=o}p ICI(I-p) IECT) I-I CI =

(I-p) IECT) I~k:::W(O,T) I{C£E(T): p(C) = 0,1 C 1= k} IEk, where E = PI(I-P)' so

that O<E<1.

Regard s(o) = s(o; T,pj) as a polynomial in E, ordered in increasing powers

of E. Then although W(Ol,T»W(02.T), (so that S(Ol) begins with higher

powers of Ethan S(02)), if the first nonzero coefficients of S(Ol) are

relatively mucrl larger than those of S(02) then we may still have

s(o,»S(02) for suitable E (though clearly for T fixed, as E tends to zero, we

will force S(Ol)<S(02))'

Thus w(Ol,T»w(02.T) and S(Ol.T»S(02.T) suggests many more ways to fit

01 to T with::::: W(Ol.T) edge changes than to fit 02 to T with the same or a

lesser number of edge changes. For example, take ° 1,°2 and T = J 2n+2k as

in the previous theorem, and consider just the first non-zero coefficients

klo k2 of S(Ol), S(02), respectively. For i=1.2 choose Cj£E(T) so that p(C;) =

° i' (where p is defined in 5.2). Then it is easi Iy checked that C2 has no

weakly-connecting trees and so by theorem 5.9, C2 is strictly minimal, so

that k2=1.

Now the weakly-connecting trees of C1 consist of the n+k-2 pairs of

adjacent internal vertices of T which are both adjacent to pendant vertices

of the same colour. Thus the weakly-connecting forests of T consist of

all co Ilect ions of weak ly-connect ing trees, no two of wh ich are adjacent

to a common vertex. Since the n+k-2 weakly-connecting trees are arranged

in a line, the number of weakly-connecting forests is precisely the number

of ways of selecting a subset of n+k-2 ordered objects so that no two are

consecutive.



146

But this is enumerated in example 2.2.23 of Goulden and Jackson [1983,

p.431. in terms of {O,l} sequences, as the (n+k-I)-th Fibonacc i number,

Fn+k- j . Thus, by theorem 5.9 (3), k, = Fn+k- j , (compared with k2=1) so that as

n grows the first nonzero coeff icient of s(o ,) great Iy exceeds the

corresponding coefficient of S(02)' §

7.40 Conjecture

Wagner parsimony is consistent on B(A) for A sufficiently small.

Hendy and Penny [1988] give an example is of a tree (a T1(2)) with edge

weights arbitrarily small and subject to a molecular clock for which
Wagner parsimony and compatibility are inconsistent. The authors observe
that for this to happen one edge length must be asymptotically
proportional to the square of the length of another edge, as both edge
lengths tend to zero. To find a "best possible" condition under which we
might hope for parsimony and compatibility to be consistent under a
molecular clock we might try and rule this out.

In fact we will see that even assuming a molecular clock, inconsistency
can occur even in the "best possible" condition that does not in itself
constrain the set of possible trees. Specifically suppose the Cavender
model is subject to a molecular clock. The first attempt at a "best
possible constraint" on the edge lengths might be to assume that they are
all equal. However unlike the clock-free case, this assumption constrains
the tree topology and a fortiori constrains the number of taxa to be a
power of two.

Similar topological constraints follow from supposing that the edge length
ratios are bounded above by a constant which is independent of the number
of taxa. On the other hand. if the ratio of the edge. lengths of rooted trees
with n pendant vertices is bounded above by some function K(n), there are
no constraints on the possible trees, precisely if K(n) ~ n-1. This suggests
the following definition.
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7.41 Definition

Call a rooted binary tree with n pendant vertices balanced if

(1): it has additive edge lengths--Le. the length of all the paths from the

root to pendant vertices are the same (this is the height of the tree).

(2): the ratio of the edge lengths is bounded above by n-1.

Let BE(A) be the set of balanced (rooted) trees, with edge lengths bounded

above by A, and let BH(A) be the set of balanced (rooted) trees of height A.

Then for the counterexample by Hendy and Penny [1988], if the tree T1(2) is

balanced, consistency is regained for sufficiently small edge lengths. or
sufficiently small height. We now show that for any given bound on the
edge lengths or the height there are always trees for which both types of
parsimony fail to be consistent.

7.42 Theorem

(1): For all A, Wagner parsimony and compatibility are inconsistent on some

trees in BE(A).

(2): For all A, Wagner parsimony and compatibility are inconsistent on some

trees in BH(A).

Proof: Let RT,(k,A) be the tree obtained by rooting TI(k) (definition 7.27)

at the midpoint of its central edge. and assigning~ (as in 6.4 (4)) 'A to

all the edges except the two pendant edges incident with the central edge

which are assigned length 'A(k+l). Then since RT 1(k,'A) has 2k+1+2 pendant

vertices, RT,(k,'A) is balanced for all k~1.

(1): Regarding the tree as unrooted, and using the notation of theorem 7.28,

we have for Wagner parsimony,

4E[Z(k)1 = (03((01 2+(02 2)(S2(k)+02(k)) - 2(01(02(S2(k)-02(k)) +

2(0 3( (0 22- (012)S(k )O(k).
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As in the proof of corollary 7.29 it suffices to show

Iimk_>ooE[Z(k)]> 0 since then E[Z(ko)]> 0 for some integer ko.

Now W =e- 2:A W =e-4 :A W = e- 2:A(k+1) so that lim J.\ =01 ,3 ,2 ' k->ooUJ 2 .

Thus, letting s = I imk_>ooS(k), d = I imk_>ooD(k),

limk_>oo4E[Z(k)] = 2W13(S2+d2-2wlSd) >2W13(S-d)2~O, and the result follows

by theorem 7.28.'

For compatibility, again using the notation of theorems 7.28, and 7.26

limk->oo 4E[Z*(k)]/Q2(k) = 2w13(1+r2-2w(t') > (1-r)2 ~ 0, and the result

follows by theorem 7.28.

(2): We have U kRT 1(k,:A/(k+2)) C SH(:A). For TERT,(k,:A/(k+2))'

WI =e- 2:A/(k+2), W3 =e- 4 :A/(k+2), W2= e- 2:A(k+l)/(k+2).

Thus I imk->ooWl = I imk->oow3 = 1, I imk->oow2 =e- 2:A

For Wagner parsimony we have

I imk_>oo4E[Z(k)] = (1 +e -4:A )(s2+d2) - 2e-4:A(S2_d2) + 2sd(e -4:A_ l)

= (S-d)2 + (3d2+2sd-s 2)e- 4 :A.

Now if the second term in this sum is strictly positive we have

I imk_>ooE[Z(k)]>O, as required. If the second term is ~O we have

4E[Z(k)] ~ (s-d)2 + (3d 2+2sd-s2) =4d 2 >0, by theorem 7.22, as required.

For compatibility, limk->oo4E[Z*(k)]/Q2(k) = (1-r)2 + (3r2+2r-l)e- 4 :A which

by a similar argument is strictly positive, sint:e r>O by theorem 7.26. §

7.43 Remarks
(1): The previous theorem shows that imposing a molecular clock in no way
restores consistency for parsimony-based methods. Indeed comparing
theorems 7.42 and 7.34, a molecular clock is more problematic for the
consistency of compatibility than the assumption of equal edge weights.
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(2): From example 7.35, compatibility can be consistent under conditions
which lead to the inconsistency of Wagner parsimony. It is not known
whether the converse can occur, or whether compatibility is consistent for
sets of edge lengths of greater Lebesgue measure than Wagner parsimony.
It is worth noting that because compatibility uses fewer partitions to
evaluate each tree than Wagner parsimony, the former method may be less
robust (Le. more sensitive to errors) when applied to relatively short
sequences.

(3): The above results hold an important message for taxonomists -- while
compatibility may be consistent for a particular set of taxa, the method is
not necessarily consistent on a subset of those taxa. Equivalently,
although compatibility may fail to be consistent for a collection of taxa, if
that set is expanded to a larger set of taxa, consistency may be regained,
so that if compatibility selects tree T, the phylogeny of the original set 8
of taxa can be consistently recovered as T[8]. This approach would succeed
if the larger set of taxa is chosen so that all edges of the underlying tree
have (approximately) equal (and small) edge weights. though knowing
which additional taxa to choose to achieve this goal is clearly a problem.
We illustrate this relativity of consistency by the following example.

7,44 Example

Consider the rooted binary tree T(k+2) E RWT(2k+2) with edge lengths of A

on each edge, except for the two edges incident with the root, whjch are

assigned edge Iength A /2' as illustrated on the following page in fig. 7.8(a)

(where the shaded sUbtrees are copies of T(k)). Thus the edge lengths of

T(k+2) are sUbject to a molecular clock, while if T*(k+2) denotes the

weighted binary tree obtained from T(k+2) by suppressing the root, T*(k+2)

has equa I edge Iengths of A on each edge.

Select a subset S = {Sl.S2.S3.S3,SS.S6} of {1, .... 2k +2} of size 6 as indicated in

fig 7.8(a). Then the tree T*(k+I)[SJ has induced edge lengths as indicated in

fig.7.8(b). In the notation of definition 7.27, T*(k+2)[SJ is a T 1(1,P) where

P = (PI,P2.P3.P4), PI = P3 = O.5(1-w), P2 = O.5(I-w k+1). P4 = O.5(1-w k), with

w = e- 2A . Then in the notation of theorem 7.28, pel) = P4 2=O.25(1-w k)2,

and 0(1) = (1-P4)2=O.25(1+w k)2, Wl=w3=W, W2=w k+1.
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Thus, by theorem 7.28, the condition for compatibility to be consistent on

TI(I,p) is: f(k,U)) =U)(U)2+U)2k+2)«I-U)k)4+(1+U)k)4) -2U)k+2«1+U)k)4-(1-U)k)4) +

2U)(U)2k+2_U)2)(1-U)k)2(1+U)k)2 >0.

Letting y = U)2k, we have f(k,U)) = 4U)2y.(5U)-4-y(4-2U)-U)y)).

Since limk_>ooU)k =0, we see that if U»0.8, (that is if PI =0.5(1-e- 2A ) < 0.1)

we can choose k so that f(k,U))>O, implying that compatibility will be

inconsistent for the taxa set S. But this range for U) contains the range for

which we have estabished that compatibility will be consistent on the

weighted parent tree (TW(k+2), pd).

iii
56 5,

iii

(8)

kA kA

T*(k+2){S]

(b)

6, 53 6, 53

X52 54
P P

52 54

(c)
(d)

Figure 7.8
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In particular taking k :: 7, and /-.=0.05 (so that w::::0.9048) we have:

(a): p<O.l (so that compatibility is consistent on T*(k+2),pd) and

(b): f(7,w»0 (so that compatibil ity is not consistent on on the weighted

subtree induced by 5).

Thus for sequence data derived under Cavender's model from the tree T(9)

on 512 endpoints (!) with an expected number of 0.1 state changes on each

edge, compatibility will consistently recover the original phylogeny of the

512 taxa, but consistency fails with some of the subsets of the taxa.

Examples of this phenomena using considerably less taxa are possible if

edge lengths on the parent tree are not required to satisfy a molecular

clock. Indeed for the caterpillar tree J 12 on 12 taxa, with weight p on each

edge, and 5 :: {Sl,S2,S3,S4} as shown in fig. 7.8(c), the weighted subtree T[S]

induced by 5 has edge weights as shown in fig. 7.8(d), where

p* = 0.5(1-(1-2p)5). Then by Felsenstein's criterion (refer to example 7.15),

compatibility will fail to be consistent on T[S] if (p*)2>p(1-p). Taking p =0.1

(so that compatibility is consistent on T) this condition is satisfied. §

7.45 Summary In this section we have derived some necessary and
sufficient conditions for selection procedures to be consistent under
Cavender's model. Necessary conditions have been given both for general
classes of procedures (theorem 7.9) and for parsimony and compatibility
(theorems 7.28 and 7.42). We see that for both methods consistency can
fail in conditions that might be expected to be most favourable for
consistency (i.e. equal edge weights or a molecular clock). Basically both
methods fail because they undercount the true amount of change which is
likely to occur on the tree. Regarding sufficient conditions, we showed
that (without assuming a molecular clock) phylogenies can be consistently
recovered from dissimilarities (theorem 7.12). Perhaps most importantly
nontrivial sufficient conditions for the consistency of compatibility have
been established (theorem 7.34). The problems involved in extending this
approach to parsimony have been discussed, and clearly there is an
interesting and important open problem in settling conjecture 7.40.



''The question of how to obtain confidence intervals and carry out

statistical tests is in a relatively primitive state ... but is of greater

practical importance to the molecular evolutionist," J. Felsenstein 1988.

8.1 Introduction

Consistency is certainly a desirable property for a selection procedure, but
by itself, under finite sampling, it is essentially useless for putting
confidence intervals on the trees so constructed. In this section we
consider three questions related to the construction of trees:
(1): Among selection procedures, what sort of confidence intervals, which
converge to the true tree (as c-+oo) are possible, independent of the
underlying tree (To'p)?

(2): Can these con'fidence intervals be described efficiently, that is in
polynomial time?
(3): How fast must the data grow as a function of the number of taxa in
order to retain a given level of accuracy in reconstructing the underlying
tree To?

The construction of confidence intervals in the case of parsimony with
four taxa has been solved by Cavender [1978] and Felsenstein [1985]. In
general however there are problems with these and other methods which
have been proposed for constructing confidence intervals from sequence
data or dissimilarities, as detailed in Felsenstein [1988]. Constructing
confidence intervals using maximum likelihood ratios is also theoretically
difficult for two reasons, as is frequently pointed out by J. Felsenstein
(see for example Felsenstein [1988]). These difficulties are that the
hypotheses being decided between are not nested within each other, and
that likelihood ratio results are asymptotic (in the length of the
sequences).

We begin by answering the first question and show that under Cavender's
model only selection procedures that build (arbitrarily large) sets of trees
can have pre-set confidence intervals, and describe such a procedure. The
desire to always select a single "best tree" is thus incompatible with the
desire to be confident that one has always selected the correct tree,
amongst those chosen.
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8.2 Definition

A family of selection procedures, <P a' aE(O,1) has convergent confidence

intervals (CCI) if for all a:

(a): <Pa,(X)£<Pa(X) if as a'.

(b): P(TE<Pa(X); T,p) ~ 1 - a, for all (T,p) EWBT(n), pE(O,O.5)2n-3.

(c): <Pa converges (as defined in 7.4).

8.3 Lemma

If {<Pa : aE(O,1)} is a family of CCI selection procedures, then <Pa is

consistent for each aE(O, 1).

fr.Q.Q1: From property (c), there exists a number Co

(dependent on T,P.E and ex):

by lemma 6.2 (I), and property (b). Since this holds for all E: 0<E/3<ex (for

appropriate choice of co). limc_>ooP(<Pex(X) ;:{T}; T,p) =1, as required. 3

While condition (b) succeeds in replacing the asymptotic nature of
consistency by actual probabilities, condition (c) does not give any control
over the size of <P(X) for finite values of c. The reason, as shown next, is
that no such control is possible -- in particular there can be no CCI
procedure that always selects exactly one tree.



Indeed even if we were only to apply the procedure if the data was in some
sense "good" enough we still cannot have control on l<PeX)I. This last
consideration amounts to considering conditional probabilities, and

motivates the following definition, (where P(A I B) is the conditional
probability of A given B).

8.4 Definition

A family <P a' aE(O,1) of selection procedures has bounded confidence

intervals (BCI) if

(a): <Pa,(X)f.<Pa(X) if a ~ a'.

(b): P( TE<Pa(X); & l<Pa(X)1 <k IE; T,p) ~ h(a,n,k),

for all (T,p) EWBT(n), pE(O,O.5)2n-3, and some event E (possibly dependent

on n,k,a), and some function h with lim a-+Oh(a,n,k) = 1 for at least one

positive integer k<b(n).

8.5 Remark: This definition is intended to generalize the particular

example of a BCI procedure satisfying condition (a) and

P(TE<Pa(X) II<Pa(X)1 =1) ~ 1- a. Here E is the event l<Pa(X)! =1. As another

example we might let E be the event that for T1EBPT(n), Xo ~ 0 iff OEQ(T1).

Proof: Reversing the order of summation.
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L XE x2:{A: XEAf.X.IAI~k}F(A) =

L{A: Af.X.IAI~k}IA IF(A) ~ 2:{A: Af.X,IAI~k}k.F(A).§
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8.7 Theorem

(1): CCI selection procedures exist.

(2): BCI selection procedures do not exist.

frQ.Qt: (1): Define a select ion procedure ~ 0< as follows:

Let s be any function from 2BPT(n) to BPT(n) such that s(P)cP for all

P,£BPT(n). For eac h tree TEBPT(n), Ie t

E(T,X) =mintllXIc-sCT,p)ll: pE[O,O.5J2n- 3} and let

(T: ECT,X) ~I/ !(co<)}; if this set is ;Z:q>

~o«X) =
s({T: ECT,X) = min{E(T',X): T'EBPT(n)}), otherwise.

We show ~o< is a CCI. Condition (a) is clearly satisfied.

For (b), if T a,Po is the underlying tree, Po E (O,O.5)2n-3,

E[IIXIc-s(T a,Po)11 2] = c- 2E[ Z::o(Xo-cs(o; Ta,Po)2] =

c- 2Z:: o E[(X o -cs(o; T a.Po)2] = c- 2Z:: o var[X o J. Now since X has a

multinomial distribution, by lemma 6.2 (3)(a), Var[XoJ =cS(O)(l-s(O)), so

(*)

Now PCTaE~o«X)) ~ P(ECT a,X) ~11 !(co<))

~ P(II X I c -seT a,Po)112~1I co<) = 1- P(II X I c -seT a,Po)11 2> 1I co<) ? 1 - 0<, by Markov's

inequality (lemma 6.2 (2)) establishing condition (b).

For (c). let S =min{lIsCT,p)-sCT a,Po)11 : PE[O,O.5]2n-3,T;z:Ta}. Then S>O by

lemma 6.13 (4). By Markov's inequality (lemma 6.2 (2)) and (*) we have,

P(II X I c -seT a,Po)11 ?S I 2) ~ 41 S2 C Now if for ..QIlli tree T;z:T o. T E<P o«X), then

for some P, II XI c-s(T,p)1I ~11 !Ceo<) and for c>4/S20<' the triangle inequality

gives \IX I c -seT a.Po)11 ~ SI 2' Thus I imc _>ooP(3T;z:T a:T E<P o«X)) = O. It thus

remains to show that I imc_>ooP(T aE<P o«X)) =1.
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In view of the definition of <Po< we need only check that

I imc_>oop(ECT o,X) < min{ECT,X):T:z:T o}) =1.

Now limc_>oop(j!XI c-sCT a,Po)" <8 I 2) =1, wt"lile if "XI c-sCT,p)11 :::; 812, for any

T:z:T°and some p, the triangle inequality, together with the definition of 8

gives "X I c -seT o,Po)11 ~8 12, an event wh ich has probabi I ity tending to zero

as c->oo, as required. §

(2): Suppose a BCI procedure exists. Given TEBPT(n), let T(c)EWBT(n) have

edge weight E on all internal edges and O.5-E on all pendant edges. We first

note from lemma 6.13 (5) that for any event E, peE; T(e)):z:O, so that we may

form all conditional probabilites.

Let ECL::.2(n,c), E:z:¢. Then for any TEBPT(n), lemma 6.13 (6), and the

continuity of pea; T,p) as a function of P imply that limE_>OP(E; T(e)) is

positive and independent of T. Thus for any tree TOEBPT(n), any event E and

any 8>0 we can choose E>O so that I peE; T(E))-P(E; TO(e)) 1<8.

Now l:T EBPT(nl(T E<P o«X) & I<P o«X)1 ~k&E; TeE)) ~

LTEBPT(n)P(TE<Po«X) & l<Po«X)! :::;k&E; Ta(E)) +b(n)8 =

l:TEBPT(n)LA:TEA, I A ISkP(<Po< -l(A)&E; Ta(E)) +b(n)8 :::;

kLA:IAI~kP(<Po< -'(A)&E; TO(E))+b(n)8, by lemma 8.6.

= kP( I<Po«X) I:::;k&E; TO(E)) + b(n)8. Now if <Po< has BCI, we have

PCT E<P o«X) & I<P o«X)! <k&E; T(e)) ? h(o<,n,k)P(E; T(E))

~ h(o<,n,k)P( I<P o«X)! <k&E; T(e))
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Thus 2: TEBPT(n)P(T E<Po«X) & I<P o«X)1 <k&E: T(t)) ?

h(o<,n,k)2: TEBPT(n)P( 1<Po«X)1 <k&E; T(t))

? h(o<,n,k)b(n)(P( I<P o«X) I~k&E; TO(t))-8). Combining this with the previous

calculation we have, letting ~ = P( I <P o«X) I~k&E; TO(E)),

k~ + b(n)8 ? h(o<,n,k)b(n)(~-8), giving h(o<,n,k)~ (k~+b(n)8)/b(n)(~_8)' Let 8

->0 (choosing E=E(8»0 as 8->0). Then since ~ does not tend to zero by

lemma 6.13 (5), we have h(o<,n,k) ~ k/b(n) for all 0<, so that <P is not BCI. §

We now address the question, raised in the construction of a CCI procedure

in the previous theorem, of how to locate the closest point in s-space.

Suppose the edge weights are assumed to be small, so that the product of

any two edge probabilities can be neglected. One way to encapsulate this

notion formally is to regard the edge weights Pi as indeterminants and

work with the algebra A over R generated by {pili, subject to the formal

identities PiPj == 0 for all i,j.

Then for any tree T we can solve exactly for the closest point in s-space,

and the "best fit tree" is given by a combinatorial condition similar to that

for compatibility. After presenting this result we show that such

procedures are basically unsound for the following reason: even on four

taxa, no matter how small the edge weights really are, inconsistency can

still arise using this method.



8.8 Lemma

In the algebra A,

s(o; T,p)
{

Pe' if edge,e induces 0

1- 2.eEE(T)Pe' If 0=00

0. otherwise.
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fr.Q.Q1: The lemma (allows immediatel~ (rom

8.9 Theorem

Assume that X satisfies max{Xo:0;%0 o} ~ C(n-2)/2(n_1)'

(1): For any tree, T, the edge weights p that minimize the distance

IIX/c-S(T,P)1I in s-space under A (Le. with s(o) replaced by its value in A)

are given by:

Pe = Cll(T)/c(2n_2) + XO(e)/c'

where o(e) is the partition induced by deletion of e.

(2): The trees in BPT(n) which minimize (over BPT(n)) the minimum

distances given in (1) are precisely those trees T which minimize the

sum Cll(T)2/(2n_2) + Cl2(T) over BPT(n).

(By comparison recall that compatibility choses that tree minimizing Cll(T)

over BPT(n)).
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fr.Q.Q.[: (I): By lemma 8,8, in A,

8/8PellX/c-sll2 = -2(Xo (e)-CPe) + 2(Xoo- C(I-l:eEE(T)Pe))' where 0(12) is the

partition corresponding to deletion of the edge e.

The 1inear system, 811XIc-sll
2
18Pe = 0 for all eEE(T), can be written

(I+J)p = c-1(X#-(Xoo-c)j). where X# is the vector [Xo (e)leEE (T)' and J is the

square matrix having 1 in each position. Since (l+J)-1 = I - (2n-2)-l J . the

solution to this I inear system is:

Pe = (c-Xoo+(2n-2)Xo (e)-l:eEE(T)X o (e))1c(2n-2)'

But c = LeEE(T)Xo(e) + XOo +O<I(T). Thus Pe = 0<1(T)1c(2n-2) + Xo(e)1 C'

In particu Iar Pe>O, and since O<l(T)<C, Pe«2n-2)-1 + (1-(n~l)-l)12 S 0.5, as

required for a feasib Ie so lution.

Now 8
2

IIX/c-sll2/8Pe8Pe' = 4c if e=e'; 2c if e:z:e', so that the Jacobian of

IIXIc-sll2 is 2c(J+l) which is positive definite. so the solution for p

minimizes IIXIc-sll2, completing the proof of (I).

(2): The minimum distance in A is LOEQ(n)-Q(T)X o 2 +

2:eEE(T)(Xo(e)-CPe)2+ (Xoo - C(1-2:eEE(T)Pe))2 , which from part (I) IS

l:oEQ(n)-Q(T)X0 2 + (2n-3)0<1(T)2 I (2n-2)2 +0<2(T)I (2n-2)2. giving (2). §

8.10 Corollary

Let <P A be the procedure which selects that tree which has an edge weight

minimizing the Euclidean distance from s to XIc' under A. Then <PAis not

consistent, even on four taxa, no matter how small the edge weights might

be. Thus <P A differs from another linearized procedure, "closest tree"

described by Hendy [1988].
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fm.2f: In view of the previous theorem, we see that ~A is a central

procedure, and the result now follows by theorem 7.2. Closest tree, on the

other hand. is consistent by lemma 6.2 (3b). §

8.11 Remarks (1): Although computationally appealing as indicated by

Hendy and Penny [1988], closest tree does not give a family of CCI

procedures in the way Euclidean distance in s-space does in theorem 8.7.

(2): While ~A is not consistent, it may nevertheless be useful in giving an

initial iteration value PI for numerical methods aimed at finding the value

of P which minimizes the Euclidean distance from X/c to s(T,p).. This

value for p, is given by theorem 8.9 (1).

(3): The restriction on X in theorem 8.9 is very mild, for unless Xo«c for

all 0;%00' there would be no justification for assuming the edge weights

were small, and thereby working in A. §

Consider the case of four taxa. If the value of P which minimizes

f(p) = "X/c·s(T,p}/llieS in (0,0.5)5, P is given by the solution of the

nonlinear system of eight equations in five variables: df(P)/dPe = O. The

next theorem shows that this system can be reduced to finding the solution

of two equations, each in Q.ile. variable, thereby allowing faster numerical

methods. Furthermore we show that if there is a minimum in (0,0.5)5, it is

unique. Of course if the minimum lies on the boundary of [0,0.5]2n-3

further analysis is required.
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8.12 TheQrem

If Pof(O,O.5)5 is a critical point of f(p) = II X'c- s(T,p)11 then

(1): Po can be found by solving two algebraic equations, each in one

variable.

(2): Po is the only critical point of f(p) in (O,0.5)2n-3.

frQQf: (1): Using the notation of example 6.10, since r = Hts and H is

Hadamard, the value of p which minimizes II XI c-sll is the same value which

minimizes IIr - rOil, and hence Ilr - rOl1 2, where rO = Ht(XIc),

Let W t (1- 2pj) and x =IIr - r°I1'2 = 2: i( r i - r°i )2.

Then dX/dWj = 22:i( ri- rOj )8r i/8Wj

= 22: ifK(j) ( r i - rO i l ilW jl where K is the matr ix in the proof

of Iemma 6.11, and K(j)= {i: Kit\}.

Thus dX/dWj = 0 for all j precisely if 2:ifK(j) (ri - rOi )ri = 0 for all j.

conditions rj>O, exclude the negative roots. For if ui<O, then the negative

ri>roi' which again requires the positive root. Then since Ul = 0, letting K1

be K with the top row deleted, these conditions become KIt u = O. Now

ker K1
t = {[a,b,-b,-b,b,a,-ajt: a,bfR} which together with

rj = (rOi + !((r Oi)2-4 Uj))/ 2 gives the following conditions on a,b, from

which u and hence r can be derived:



rea) =(rOa + !((rOa)2 + 4a)) -

0.5(r02 + !((r02)2-4a))((r07 + !((r07)2-4a))) =0;

g(b) = (r04 + !((r04)2+4b))(r05 + !((r05)2+4b))-

(r03 + !((r03)2_4b))((r06 + !((r06)2_4b)) = O.

(2): Since reo, and get) are monotone increasing in t, there exists at most

one solution to the system rea) = 0, g(b) = 0, establ ishing the required

uniqueness. §

8.13 Example

Consider X = [X,.X12,X13,XI23.XI4.X'24,X134,X'2341t = [189,58,1,8,5,7,47,1403Jt,

taken from the EMBL data bank of nucleotide sequences (Hamm and Cameron

[1986]), and derived from18S RNA ribosomal sequences of length c=1718

for nematode (1), brine shrimp (2), xenopus (3) and mouse (4).

Applying theorem 8.12 for the tree T = (12)(34) we find a=-0.00200,

b=-0.00175, giving a minimum distance in s-space of 0.00214 (approx). §

Two problems arise from using the CCI procedure <Pa described in theorem

8.7. Firstly, as we have seen, approximate solutions are statistically

unsound. Secondly, finding <Pa(X) involves a search among all trees in

BPT(n), and so is not efficient.

In fact most of the more widely-used selection procedures have been

shown to be NP-complete. These include, parsimony methods (Foulds and

Graham [1982J: Day, Johnson and Sankoff [1986]), as well as compatibility

(Day and Sankoff [1986]) and dissimilarity methods (Day [1987]).
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Of course by theorem 8.7, there is no family { qJa: aE(O,1)} of selection

procedures which is both efficient in constructing qJ«(XL and CCI, because

IqJa(X)1 =b(n) for a sufficiently small, and b(n} in not bounded above by a

polynomial function of n. We now demonstrate the existence of CCI

families having the property that for every tree TEBPT(n) it can be

efficiently decided whether TEqJ a (X).

8.14 Definitions Let 0 be a quartet spectrum on Iabe I set L. The

restriction of 0, denoted (O)res is the set of trees T€BPT(L) with

'Y(T)no = <P. The dual of 0, denoted S(O), is the minimal set defined by the

rule: if (xY)(ZW)EO. and (xZ)(YW)EO, then (xW)(YZ)ES(O).

Note that (or any such 0, (O)resn<O> = <P, and for any binary tree T,

('YeT)) = ~, by theorem 3.8 (2). with k=4. Furthermore, clearly,

(O)res'£<S(O», and taking 0 = 'Y(T), so that S(O) = ~. and <S(O»= BPT(L), we

see that this containment is, in general, strict.

Now given any family of CCI selection procedures qJ 0< on sequence spaces

on four taxa, consider the following families qJ* 0<' qJ** 0< defined on

sequence spaces on n taxa. Define g(o<.n) = CXjnC4 , and let

00<= u SdL}4BPT (S)-qJg(0<,n)(X[Sl). Finally. let

qJ* (X) = (0) and qJ** (X) = <S(O » so that qJ* (X)cqJ** (X).
0< 0< res 0< 0< • • 0< - 0<

8.15 Theorem

qJ*a' and qJ**a are CCI selection procedures, and for each TEBPT(n) it can

be efficiently (in n) decided whether T€qJ*a(X}, qJ**a(X),
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frQ.Q!: One can efficiently decide whether TE<P*cx(X), <P**cx(X), since

0cx can be efficiently (in n) constructed and one can then efficiently decide

whether or not TE(Ocx) and TE<8(Ocx»'

Regarding CCI properties suppose cx,:~cx2' so that since <P is a CCl procedure,

<P g(cx 2,n)(X[S]) ~ <P g( cx l,n)(X[S]), hence 0CXl ~ 0CX2'

Now if A~B then (B)res~(A\es so that <P* cx/X)~<P*CXI(X), as required.

Now TE<P*cx(X) precisely if T[s]nBPT(S)-<Pg(cx,n)(X[S]) = <P for all SE[L]4'

Now P(T[S ]nBPT(S)-<Pg(cx,n)(X[S]) =<p) ~ pens lE<P g(cx,n)(X[S])) ~ l-g(cx,n).

Thus by lemma 6.2 (1), P(TE<P*cx(X)) ? l-cx, as required.

Convergence follows from the observation that

(USE[L]BPT(S)-T[SDres = tT). The argument for <P** is similar. §

We now consider the third question of how fast the number of sites must

grow as a function of the taxa, so as to accurately reconstruct phylogenies.

8.16 Definition

Let <P be a selection procedure, and let C~unWBT(n).

We say <P efficiently recovers C if:

(1): For each TEBPT(n) and partition frequencies X it can be efficiently

decided whether TE<P(X).

(2): There exists a function f: R+x N -+ R+ polynomial in n, such that

for all E>O, and all (T,p)ECflWBT(n)

P(<P(X(c))={T}; T,P) >1-E, for all c:?f(E,n).



8.17 Remark

The motivation for calling a selection procedure efficient under these

conditions is as follows. Consider a biologist building phylogenies for

progressively larger sets of species, in the hope that these match the

unknown underlying tree. Suppose a selection procedure, yJ, of order

O(nsct) which efficiently reconstructs the (unknown) class of trees being

sampled is used, and suppose the associated function f is O(nu). Then for

fixed E, the number of steps required to build a tree in BPT(n) which has

probability>1-E of being the tree which produced the data, does not grow

exponentially in n (it is O(ns+tu)), and thus the accurate construction of

large trees may be feasible. Since b(n+2) is asymptotically proportional to

n!2n...Jn, it is perhaps surprising that any infinite set of binary trees can be

efficiently recovered. Clearly, unWBT(n) cannot be efficiently recovered,

by theorem 8.7 (2), though trivially any finite subclass can be.

We now show that the class of balanced trees of height A, BH(A),

(definition 7.41) which contains all rooted trees (with suitable edge

weights) can be efficiently recovered. For convenience we assume a

molecular clock. That is we assume the edge lengths on the underlying

tree are additive as in definition 6.4. The general case (without a clock) is

essentially the same, though the calculations are messy, and tend to

obscure the result. For the remainder of this section recall (from

definition 6.4 (5)) that s(Tlq) = s(T,p), for Pe = O.5(1-e-2qe).
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8.18 Definition For goy, vector xE(R+}4, indexed over O(3} ordered as

{1}, {1 ,2}, {1 ,3}, {1 ,2,3,4} and the rooted tree T = (1 )(23), let

q = q(x) = [Q"Q2,Q2-ql] E [0,00]3 (where Qe = 00 is formally taken to mean Pe =

O.S) denote the edge lengths on the edges of T, as illustrated in fig. 8.1 (a),

which minimize the Euclidean distance 6(T,x,q} = IIs(Tlq}-xlI.

Let 6(T,x} denote this minimum distance.

2

(a)

3 2

(b)

3

Figure 8.1

8.19 Lemma

In the notation of definition 8.18, suppose 1 ? X123 ? Xl,x12,x13, q=q(x) and let

W = [w I'W 21. where U) j=e - 2Q i, for i= 1,2. Then

w =

Proof:

A simple application of theorem 5.28 gives for 5 = sCT Iq)

s, = (1+U)1- 2U)2)/4

S'2 =S13 =(1-U)1)/4

s - (1+U)1+ 2U)2)/
1234 - 4-

(I)
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Let 6 = 6 2(T,><,q). Then 6 = ~OtO(3)(Xo - sO)2 so that

86/80Jj = -2~0(xo-so)8s0/80Jj and for j,kt{l,2},

8
2
6/80J j80Jk = 2~0(8s0/80J j)(8s0 /80J k), since 8

2
sO/80J j80Jk= O. Thus the

Jacobian matrix [826/80Jj80Jk]jk of 6 is diagonal with leading entries 1/ 2,1,

so that any critical points of 6 are minima.

Solving the system 86/80Jj = 0 for j=I,2 gives the unique solution

For this to be a feasible solution we require oo~q2~q1~O, that is 1~0Jl~0J2~O.

Since I~X123~Xl' by hypothes is, these condit ions trans Iate into the given

condition Xl ~ (X 12 +X 13 )/2' If this does not hold then (since there is only one

critical point for 6), 6 is minimized SUbject to ql=q2' that is 0Jl = 0J2 = 0J

(say).

Solving the equation 86/80J = 0 gives 0J = (3X 123-X,-X'2- X13)/3' which lies

between 0 and 1by hypothesis and so is feasible, as required. §

8.20 Lemma

For T1 = (3)(12), with edge lengths q = [ql,q2,q 3J. q3 = q2-ql as in fig. 8.1(b), and

T = (1)(23),let 6 1= 6(T,S(T,!q)).

Then 6 1= e-2ql(1-e-2q3)/ /6

Proof:

Let Yi = e- 2q j for i=l,2. Then for s* = S(T 1' q) we have

S * - s * - (1- 11 1)/1 - 13 - ::l 4

S12* = (I+Y1- 2\:12)/4'

s * - (1+y,+2Y2)/123 - 4'
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and X123 ~ x,.X'2,x13' Thus the value for q' which minimizes 6(T,5*,q') is given

(in terms of w) by W = Ml,ll where e=(3XI23-Xl-X12-X13)/3 = (y,+2Y2)/
3

.

SUbstituting this value gives 6 1
2 = (Yl-Y2)216' as required. §

Consider the following selection procedure, <Pl' For each triple S={i,j,k}

choose that rooted binary tree (or trees) Ton S which minimizes 6(T,X[S]).

If all of the trees so produced are consistent with exactly one rooted tree

T" then select T1• otherwise select {l.

8.21 Theorem

For ToERBT(n) with edge lenghts q subject to a molecular clock, let 8 be

the mininum edge length on To, and q the the height of To (Le. the expected

number of changes from the root to the endpoints). Then

P(<P 1(X) = {To}; To,q) ~ 1 - gnC3e4q/2C8 2(1-8)2

Proof: For each Sdnh consider the event E(S) that T=T o[S] stricti\:)

minimizes 6(T, X[Sl). Then the event that <P1 selects To is precisel\:) the

event ()SdnhE(S). Let E(S) =

min{115(To[S]1 q[SJ) - 5(T 11 ql)11 : ql =[ql,q2,q2-ql1do,oo]3, T1ERBT(S), TtzT o[S]}

B\:) lemma 8.20, E(S) ~ e-2q1(1-e-2q3)116 for appropriate values of ql.q2,q3

= q2-ql (depending on S). Thus E(S) ~ 2e- 2Q 8(1-8)1/ 6 , since Ql:::Q,

(l-e- t ) ~ t- t2 / 2. (for t>O) and Q3 ~8. and this'hOldS for all Sdnh.

Let E1(S) be the event that 115(To[S]1 q[Sl) _X[Sll c ll < e- 2Q 8(1-8)1/ 6 .
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Since e- 2qS(1-S)1 /6 ~ E(S)/ 2 we have. by the triangle inequality for

Euclidean distance. that El(S),~E(S) so that p(nSEln]l(S)) ~ p(nSElnhEl(S)).

and thus p(nSElnhE(S)) ~ l L LSEln]/I-P(E 1(S)), by lemma 6.2 (1). (~)

The complement of E1(S) is precisely the event that

Ils(T0[5] Iq[sD _X[S]I c l12 > e- 4qS2(I-S)2/6 . so that by Markov's inequality

(lemma 6.2 (2)). 1- P(E 1(S)) ~ (6e 4q l S2(I-S)2)0

where 0 =ElIls(T 0[5] Iq[SD _X[s]1c ll2 ].

Writing s(T 0[5] I q[SD as [SI.··.S4], X[S] as [X 1.... ,X 4] we have

0= E[,,·(Xi- cS i)21 2] =c- 2"·E[(X·-cs·)2] =c- 2",Var[x·]0::::.1 c 0::::.) 1 I 0::::., , .

Now X has a mUltinomial distribution with parameters c and s so that

Var[X j] = cSi(l-Sj), bid lemma 6.2 (3a). Thus by proposition 6.5 ((2)

o =(I-Li Sj2)1c =(1 - s(Oo; T[S] 12q))1c ~ 3/4 C'

since s(Oo; T[s] 12q) ~ 1/4 , by lemma 6.3 (2).

Thus o~ 3/4 C' Combining this with (*), gives the result. §

8.22 Corollary

For any AE R+, ~ 1 efficiently recovers BH(A) (in the sense of 8.16).

f.rQ..Q!:

For each TERBT(n). it can certainly be efficiently decided whether TE~l(X).

We must now construct a funct ion f. as in def init ion 8.16. Let (T ,q)EBH(A).

Since the ratio of the edge lengths of any tree in BH(A)nWBT(n) is bounded

above by n-l, the shortest edge length on such a tree is at least AI (n-l)'
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By the previous theorem (taking 8 =AIn' (or convenience, and q =A) we

have P(<Pl(X(C)) ={T}; T,q) ~ 1- 9n2.nC3.e4A/2CA2(1_A/n)2 so that we can

take f(c,n) = 9n2.nC3.e4A/2AC in definition 8.16, which is polynomial in n (of

degree 5), as required. §

8.23 Remarks

(1): Consider a family of trees T(k)cRBT(2k), (definition 7.16) and assign

all edges of T(k) length A/k. Then ((T(k), (A/k)j): k=1,2....}CBH(A), so that <PI

efficiently recovers this class, yet the probability that there is a partition

with more than than one occurrence tends to zero. by theorem 6.19. This

suggests the usefulness of aggregation-based approaches such as quartet

(and in this case triplet) methods.

(2): The degree of n (namely 5) for the function f constructed in the

previous corollary is due to the coarse nature of <Pl' It is likely that

functions of lower degree in n satisfying definition 8.16, could be

constructed by using a more subtle procedure. which does not require the

structure of all nC3 triples to be known in order to select some tree. The

value of corollary 8.22 lies in demonstrating that polynomial bounded

procedures (in the sense of 8.16) exist even though BPT(n) grows much

faster than any polynomial function.
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We have seen that Markov's inequality gives a method for putting

confidence intervals on selected trees by using Euclidean distance in

s-space. One drawback with this approach is that the confidence intervals

are not very tight unless c is large, as Markov's inequality exploits only

the variance of a distribution. In general, if X has a multinomial

distribution, with parameters c, A., there is little one can say about the

distribution of the Euclidean distance II X/c- A.11 2. However by lemma 6.2

(4d), a tight distribution exists (approximately) on a centralized variant,

8.24 Definitions

For SE[nh, S={1,2,3}, T = (1)(23), choose q = [Ql,Q2,q2-ql]3 as in fig. 8.1 (a) so

as to minimize: X(T,S,X,q) = ~OEQ(3)(X[S](O)- cs(O; T IQ)2/cs(o; T Iq)'

Let X(T,S,X) be this minimum value.

Let X3 be a chi-square random variable with trlree degrees of freedom, and

for ex> 0 choose ~(ex) so that let P(X 3> ~(ex)) < ex /nC 3.

Given a set 0 of rooted binar~ trees on sets in [nh define the restriction

of 0, (O\es in the analogous way as for unrooted binar~ trees trees on

sets in [n]4 (definition 8.14).

Thus (O\es = (TERBT(n): T[S]no=q, for all Sdnh}

(where for S={i,j,k}, T[S] = (i)(j,k), (j)(i,k) or (k)(i,j)).

Finall~ let 01 ex = USE[nh{TEBPT(S): X(T,s,X.Q»~(ex)} and define

<P ex(X) = (Ol ex )res' Thus <P ex(X) ~RBT(n).



8.25 Lemma

<P a has convergent confidence intervals.

Proof: A straightforward argument similar to theorem 8.15. §

8.26 Theorem

Write [51,512,513,5123] as [51.52,53,54] and X[S] as [Xlox2.x3,X4]' Then the si

values that give X(T,S,X) are given as follows: Let A = ,,[(X2
2

+ x32)'2]'

Case 1: If xl ~ 0, X4 ~ XI. then

5 - Xlj 5 = X4 51/ 52 = 53 = (1-51-54)/2'I - (Xl + X4 + 20)' 4 Xl'

Case 2: If Xl ~ 0,X4~X"

e -1!(x 2 +x 2 +x 2)51 = 52 =53 = /(1+3e) where e = X4 [1 2 3 /3]'

Case 3: If X4~Xl~0,

51 = 54= a1/ 2(a,+a2) 52 = 53 = a2/ 2(al+a2);

where al = !(X12+X42), a2 = !(X22+X32)

Case 4: If X4~XI~0,

5,=52=53=54= 1/ 4 ,

(Cases other than 1 arise because an edge length required to minimize

X(T,S,X,q) is negative and this is disallowed. Not surprisingly, in these

cases, the resulting x(T,S,X,q) values are large -- the trees are the wrong

way around. This is illustrated in example 8.27.)

172



(1)

f.rQ.Q!: As in lemma 8.19 we have

Sl = (1+U)1- 2U)2)/
4

S12 = S13 = (1-U) 1) I 4

s - (1+U)1+ 2U)2)1
1234 - 4'

We wish to minimize X = Li(Xi
2
/c2sj - 2Xj +csi) sUbject to 0<U)2~U)1<1.

These conditions imply 1~S4~Sl~S2=S3~0.

We first solve oX/oU) j = 0 sUbject to 5>0.

oX/oU)' = L ·(c - x· 2/c2s· 2)OSi/oU)·
J 1 I I ]

= - c-2"·(x· 2/s· 2)OSj/oU)· sinC''' ".oSj/oU)· = 0
L..I I I J' ~ L..I J'

Now oX/OU)2 = 0 precisely if X1
2
I S1 2 - X4

2
I S42 = 0 (2)

and OX/OU)l = 0 precisely if X12/S12 - X22/s22 - X33/S32 + X42/S42 = O. (3)

Now if the Sj'S are positive, (1) implies

173

Furthermore, since S2=S3 ' (1) and (2) give:

X1S2 = 51! {(X2
2
+X3

2
) I 2}

(4)

(5)

. S - xIIgIve, 1- (Xl+ X4+ 2o )'

Now for j,kc{1,2}, 02 X/oU) j0U)k =

since 02 Sj/o U) j0U)k = O.

ThUS, letting Ai = (Xj2/Sj3)/16c'2, the Jacobiall matrix for X is

J
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Now f or for 5 >0. the Ai's are positive so that 82X/8W12 >0 and detJ >0, so

that J is positive definite. and thus the unique critical point

5* = [s1*,s2*,s3*,s4*1 of X in the positive s-quadrant corresponds to a

minimum of X.

Now WI =1-4s2. w2 =1-2s 1-2s 2. and we require 0$W2$W,<1. For 5* we have

wl<l. and W2$W, precisely if SI*~S2* which holds if and only if x,~o, while

0$w2 precisely if X4~XI' This gives the result for case 1.

For case 2, if Xl<O and X4~Xl' then for 5*, w,>w2~0. Since 5* is the only

critical point of X in the positive s-quadrant, X is maximized in case 2

(subject to Wl$(2) on the plane w2=Wl' In this case Sl=S2=S3=(1-Wl)/4 and

S4=(1+3W')/
4

·

Then 8X/8wl = 16c-2(XI2+X22+X321(I- Wl)2 - 3X421(1-3w,)2)

which equals zero when SI=S2=s3= ./3 1(1+ 3./3)' where

./3 = X4 -1!{(X1
2

+ X2
2

+ X3
2
)/3} and S4 =1-3s,. Clearl~ these 5 values are all

positive and 82X/82Wl >0 in the positive s-quadrant, so that the critical

point corresponds to a minimum, as required.

In case 3, if Xl~O and X4<X" a similar argument applies -- in this case X is

minimized sUbject to w2=0. In case 4, X is minimized sUbject to the

conditions of cases 2 and 3. but these imply WI=w2=0, which confine the set

of feasible 5 values to one point.

Example 8.27 For the EMBL data X on four taxa, listed in example 8.13,

let us construct qJO.005(X) by the above procedure.

We require P()(3>~) < 0.00125, so that we can take ~ = 16.7, (Burington and

May [1970, p.387]). Then we have the following table:
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S T1 X(T1,X[S]) T2,T3 x(Tj,X[Sn (i = 2,3)

{1,2,3} (1 )(23) 2.5 (2)(13), (3)(12) 115.9

{1,2,4} (1 )(24) 1.7 (2)(14), (4)(12) 105.2

{1,3,4} (1 )(34) 0.4 (3)(14), (4)(13) 336.2

{2,3,4} (2)(34) 1.2 (3)(24), (4)(23) 117.5

Thus 'P0.005(X) = (Q)res where Q is the set of all 8 trees in the fourth

column of the above table. Thus 'P0.005(X) = {T} with T defined in fig. 8.2.

2

T

3 4

1 =nemtltode, 2 =brine shrimp
3 = xenopus, 4 = mouse

Figure 8.2

8.28 Summary The theme of this section has been the construction of
confidence intervals on phylogenies by constructing such intervals on
subsets of the taxa of size three or four. These smaller cases often have
simple analytic properties (theorem 8.12 and 8.26) and the confidence
intervals generated can then be combined by lemma 6.2 (1) to give
confidence intervals on the parent phylogeny. This lemma is sufficient to
prove the existence of procedures with desirable theoretical properties
(theorem 8.15, lemma 8.25 and corollary 8.22) and its appeal lies in the
absence of any independence assumptions regarding the events involved. A
more subtle approach would be to consider the dependence between these
events arising from the constraints imposed on edge lengths of subtrees by
the requirement that they must all fit together on some parent tree in
their span. More specifically, although a binary tree with n endpoints is
defined by n-3 subtrees of size four (theorem 3.12), and each of these
subtrees has 5 edge lengths, the resulting 5(n-3) edge lengths are subject
to a number of linear constraints since the parent tree has precisely 2n-3
edge lengths (linear combinations of which give the 5(n-3) edge lengths).



a
2 3 4 5 6 7 8 9 10

n
4 1.67

5 1.80

6 1.86 2.31

7 1.89 2.52

8 1.91 2.64 2.97

9 1.92 2.71 3.22

10 1.93 2.75 3.37 3.63

II 1.94 2.79 3.48 3.90

12 1.95 2.81 3.55 4.09 4.29

13 1.95 2.83 3.61 4.22 4.57

14 1.96 2.85 3.65 4.32 4.78 4.96

15 1.96 2.86 3.69 4.40 4.94 5.25

16 1.96 2.88 3.72 4.46 5.07 5.47 5.62

17 1.97 2.89 3.74 4.51 5.17 5.65 5.92

18 1.97 2.89 3.76 4.56 5.25 5.80 6.16 6.29

19 1.97 2.90 3.78 4.59 5.31 5.91 6.35 6.59

20 1.97 2.91 3.79 4.62 5.37 6'.01 6.51 6.84 6.95

Values of 'I'(n,a) for 4~n~20.

(Refer to poge 86)

Toble Two





REFERENCES

AIGNER, M. (1979)
Combinatorial Theory. Springer-Verlag New York, 483p.

ANDERSON, I. (1974)
A fjrst Course in Combinatorial Mathematics. Oxford: Clarendon Press,
122p.

BANDELT, H-J. and DRESS, A. (1986)
Reconstrucing the shape of a tree from observed dissimilarity data.
Advances in Appl Math 7 (3) : 309-343.

BENDER. E.A (1974)
Asymptotic Methods in Enumeration. SIAM. Reyiew. 16 (4) : 485-515.

BISHOP, Y.M.M., FIENBERG, S.E. and HOLLAND, P.W. (1975)
Discrete Multivariate Analysis: Theory and Practice. MIT. MIT Press,
557p.

BOURQUE, M. (1978)
Arbres de Steiner et reseaux dont yarie I'emplagement de certains
sommets. Thesis, Ph.D., Department d'informatique et de Recherche
Operationnelle, Universite de Montreal, Quebec, Canada.

BURINGTON, R.S and MAY, D.C. (Jr), (1970)
Handbook of Probability and Statistics with Tables 2nd ed. McGraw-Hili
Inc. 462p.

CARTER, M., HENDY, M.D., PENNY, D., SZEKELY, L.A., WORMALD, N.C. (1988)
On the Distribution of lengths of evolutionary trees. SIAM J Pisc Math
in press.

CAVALLI-SFORZA, L. L. and EDWARDS, AW.F. (1969)
Phylogenetic Analysis: models and estimation proceedures. Evolution.
21: 550-570.

CAVENDER, J.A (1978)
Taxonomy with confidence. Math BioscL 40 : 271-280.

_ (1981)
Tests of phylogenetic alternatives under generalized models.
Math Bjoscj 54: 217-229.

177



_ and FELSENSTEIN, J. (1987)
Invariants of Phylogenies in a simple case with discrete states.
J Classi'fjcatjon 4 : 57-71.

COLONIUS,H. and SCHULZE, H.H. (1981)
Tree structure for proximity data. British Journal of Mathematical and
Statistical Psychology 34 : 167-180.

CONSTANTINESCU, M. and SANKOFF, D. (1986)
Tree enumeration modulo a consensus. J Classification 3 : 349-356

DAY. W.H.E. (1983)
Distribution of distances between pairs of classifications. p.127-131
In Numerical Taxonomy. Edited by Felsenstein, J. Springer-Verlag
Berlin Heidelberg,1983

_(1985)
Optimal Algorithms for Comparing Trees wih labeled leaves. Journal of
Classification 2 : 7-28.

_ (1986)
Analysis of quartet dissimilarity measures between undirected
phylogenetic trees. Syst lool 35 (3) : 325-333.

_ (1987)
Computational Complexity of Inferring Phylogeneies From Dissimilarity
Matrices. Bulletin of Math Bioi 49 (4) : 461-467.

_, JOHNSON, D. S. and SANKOFF, D. (1986)
The Computational Complexity of Inferring Rooted Phylogenies by
Parsimony. Math Biosci. 81 : 33-44.

JOHNSON, N.L. and KOTl, S. (1969)
Discrete Distributions. Boston. Houghton Mifflin Company. 328p.

_ and SANKOFF, D. (1986)
Computational complexity Of Inferring Phylogeneies by Compatibility.
Syst. lool 35 (2) : 224-229.

DIAMOND, J.M. (1988)
DNA-based phylogenies of the three chimpanzees. Nature 332 : 685-686.

ECK. R.V. and DAYHOFF, M.O. (1966)
Atlas of Protein Seguence and Structure National Biomedical Research
Foundation, Silver Spring, Maryland.

178



EDWARDS, A.W.F. (1972)
Likelihood. Cambridge: Cambridge University Press. 235p.

ERDOS, P. and SZEKERES, G. (1935)
A Combinatorial Problem in Geometry. Composito Math. 2 : 464-470.

ESTABROOK, G.F., McMORRIS, F.R. and MEACHAM, C.A. (1985)
Comparison of undirected phylogenetic trees based on subtrees of four
evolutionary units. Syst Zoo! 34 (2) : 193-200.

FARRIS, J.S. (1973)
A Probability Model for Inferring Evolutionary Trees. Syst lool 22:
250-256.

FELSENSTEIN, J. (1973)
Maximum likelihood and minimum-steps methods for estimating

evolutionary trees from data on discrete characters.
Syst lool 22 : 240-249

_(1978)
The number of evolutionary trees. Syst lool 27 : 27-33.

_ (1978)
Cases in which parsimony or compatibility methods will be positively
misleading. Syst. Zool. 27: 401-410.

_(1983)
Methods for Inferring Phylogenies: A Statistical View.
p. 315-334. In Numerical Taxonomy. Edited by Felsenstein, J.
Springer-Verlag Berlin Heidelberg,1983.

_(1985)
Confidence limits on phylogeneis with a molecular clock.
Syst. Zool. 34 : 152-161.

_(1987)
Estimation of Hominoid Phylogeny from a DNA Hybridization Data Set.
J. Mol. Evol. 26: 123-131.

_ (1988)
Phylogenies from molecular sequences: Inference and Reliability.
Annual Review of Genetics 22, (in press).

FARRIS, J.S. (1973)
A probability model for inferring evolutionary trees. Syst Zool 22
:250-256.

179



FITCH, W.M. (1971)
Towards defining the course of evolution: Minimal change for a specific
tree topology. Syst Zoo! 20 :406-416.

FOULDS, L.R. and GRAHAM, R.L. (1982)
The Steiner problem in phylogney is NP-complete.
Ady. Apo!. Math. (3) : 43-49.

FOULDS, L.R. and ROBINSON, R.W. (1984)
Enumeration of Phylogenetic Trees without points of degree two.
Ars Combinatoria 17A : 169-183.

GORDON, A.D. (1986)
Consensus Supertrees: The Synthesis of Rooted Trees Containing
Overlapping Sets of Labeled Leaves. J Classification 3 : 335-348.

GOULDEN,I.P. and JACKSON, D.M. (1983)
Combinatorial Enumeration John Wiley and Sons, Inc., 569p.

GRAHAM, R.L. and FOULDS, L.A. (1982)
Unlikelihod that Minimal Phylogenies for a realistic Biological Study
Can Be Constructed in Reasonable Computational Time.
Math Biosci 60 : 133-142.

HALL, M.H. (Jr). (1986)
Combinatorial theory. 2nd ed. John Wiley & Sons. 440p.

HAMM, G.H. and CAMERON, G.N. (1986)
The EMBL data library. Nucleic Acids Res. 14 : 5-9.

HARARY, F. (1969)
Graph Theory. Addison-Wesley Publishing Company. 274 pages.

HARARY, F. and MOWSHOWITZ, A. (1975)
Enumeration of end-labeled trees. Fibonacci Quart. 13 no. 3,
252-254.

HARDING, E. F. (1971)
The probabilities of rooted tree-shapes generated by random bifurcation.
Adv. App\. Prob. 3 : 44-77. .

HARTIGAN, J.A. (1973)
Minimum mutation fits to a given tree. Biometrics 29 : 53-65.

180



HENDY, M.D. (1988)
The relationship between simple evolutionary tree models and
observable sequence data. Syst. Zool (in press).

_(1989)
A Combinatorial Description of the Closest Tree Algorithm for Finding
Evolutionary Trees. SIAM J Discrete Maths. (in press).

_ and PENNY, D. (1982)
Branch and Bound Algorithms to Determine Minimal Evolutionary Trees.
Math. Biosci. 59 : 277-290.

_and _" (1988)
A framework for the quantitative study of evolutionary trees.
Syst. Zool (in press).

_, LITTLE, C.H.C. and PENNY, D. (1984)
Comparing trees with pendant vertices labelled.
SIAM J App! Math. 44 :1054-1065.

_, STEEL, M.A., PENNY, D. and HENDERSON, I.M. (1988)
Families of Trees and Consensus. p.355-362. In Classification and
Related Methods of Data Analysis (Edited by BOCK, H.H.) Elsevier
Science Publishers B.V. (North-Holland).

HERSTEIN,I.M. (1975)
Topics in algebra, Xerox Corp. 388p.

JOHNSON, N.L. and KOTZ, S. (1969)
piscrete distributions. Houghton MiHlin Company, Boston.

MARCZEWSKI, E. and STEINHAUS, H. (1958)
On a Certain Distance of Sets and the Corresponding Distance of
Functions. CollOQuium Mathematjcs 6 : 319-327.

MEACHAM, C.A. (1983)
Theoretical and computational considerations of the compatibility of
qualitative taxonomic characters. p.304-314. In Numerical Taxonomy
Edited by Felsenstein, J. Proceedings of a NATO Advanced Study
Institute. NATO advanced Study Inst. Series G (Ecological Sciences), no.1
Springer-Verlag, New York. .

MEIR. A., MOON J.W. and MYCIELSKI, J. (1983)
Hereditarily finite sets and identity trees. J. Comb. Theory B 35 :
142-155.

181



MOON, J. W. (1970)
Counting Labelled Trees (University of Alberta). Canadian Mathematical
monographs nO.1.

MOORE, G.W. GOODMAN, M. and BARNABAS, J. (1973)
An iterative approach from the standpoint of the additive hypothesis to
the dendogram problem posed by molecular data sets.
J. theor. BioI. 38: 423.

OTTER, R. (1948)
The number of trees Annals of Mathematics 49 : 583-599.

PALMER, E. M. and SCWENK, A.J. (1979)
On the Number of Trees in a Random Forest.
J Comb Theory B. 27 : 109-121.

PENNY, D. (1982)
Towards a Basis for Classification: the Incompleteness of Distance
Measures, Incompatibility Analysis and Phenetic Classification.
J. theor. bioI. 96: 129-142.

_, FOULDS, L.R. and HENDY, M.D. (1982)
Testing the theory of evolution by comparing phylogenetic trees
constructed from five different protein sequences.
Nature 297 : 197-200.

_and HENDY, M.D. (1985)
The use of tree comparison metries. Syst Zool 34 (1) : 75-82.

RESTLE, F. (1959)
A Metric and an Ordering on Sets. Psychometrjca 24 : 207-220.

ROBINSON, D. F. (1971)
Comparison of labelled trees with valency three.
J. Comb. Theory 11 :105-119.

_and FOULDS, L.A. (1979)
Comparison of weighted labelled trees. p.119-126. In Lecture notes in
Mathematics. Vol. 748. Springer-Verlag, Berlin.

_ and _,(1981)
Comparison of phylogenetic trees. Math Biosci 53 : 131-147.

SMITH, T.F. and WATERMAN, M.S. (1980)
How alike are two trees? Am. Math. Monthly 87 : 552-553.

182



SaKAL, A.R. and ROHLF, F.J. (1981)
Taxonomic congruence in the Leptopodomorpha re-examined.
Syst. Zool. 30: 309-325.

STEEL. M.A. (1988)
Distribution of the Symmetric Difference Metric on Phylogenetic Trees.
SIAM J Discrete Maths 1 (4): 541-551.

_, (1989) Distributions on bicoloured binary trees arising from the
principle of parsimony (manuscript).

STEEL. M.A., HENDY, M.D. and PENNY, D. (1988)
Loss of information in genetic distances. Nature 336 (6195) : 118.

WATERMAN, M.S. and SMITH, T.F. (1978)
On the Similarity of Dendograms. J theor BioI 73 : 789-800.

ZUCKERKANDL, E. and PAULING, L. (1962)
Molecular disease, evolution, and genetic heterogenicity. p.189-225. In
Horizons in Biochemistry edited by M. Marsha and B. Pullman New York:
Academic Press.

183




