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Parsimony Can Be Consistent!
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A desired property of any method for
reconstructing evolutionary trees is that it
be consistent, i.e., as sequences become
longer the method will recover the correct
tree with probability tending to 1. In an
important development, Felsenstein (1978)
showed that the popular parsimony crite-
rion could, with a simple model of evo-
lution of two-state characters, converge to
an incorrect tree as the sequences became
longer. This problem with parsimony also
applies to the compatibility criterion for
selecting optimal trees.

The problem with parsimony was orig-
inally thought to be limited to cases where
lineages had markedly different rates of
evolution (Felsenstein, 1978), but the prob-

lem was later found under wider sets of
conditions. With five or more taxa it can
be a problem, even with constant rates of
evolution (Hendy and Penny, 1989; Zhar-
kikh and Li, 1993). With six or more taxa
with both constant and arbitrarily low rates
of evolution (Hendy and Penny, 1989) and
with a large but unspecified number of taxa,
the standard parsimony criterion may fail
to converge to the correct tree even when
all edges of the tree have the same expected
number of changes (Steel, 1989). Similar
examples can be found with four-state
character models, such as Kimura’s 3ST
model (Hendy and Charleston, 1993).

We report here that the original con-
clusion is too sweeping in that the prob-
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3.0 TaBLE 1. Apparent and actual support for parsi-
mony sites.
Apparent
Parsimony partition®  Actual support? support©
%0 11,2}, 13,4, 5} 10 2.0
0.95 (1,3}, {2, 4, 5} 0 6.5
{2, 31, {1, 4 5} 0 6.5
’l 2 3}, {4, 5} 0 22.3
112, 3 5} 0 6.5
J2 4} {1, 3, 5} 0 6.5
1 2 3 4 5 {1, 2,4}, {3, 5} 0 22.3
{3, 41,11, 2, 5} 5 11.0
FIGURE 1. A tree of five taxa, 1, 2, 3, 4, and 5, with {1, 3, 4}, {2, 5} 0 21.1
bifurcation times given as multiples of 10" years. The {2, 3, 4}, {1, 5} 0 21.1

Cavender (1978) model for two-state character se-
quences with the molecular clock hypothesis assumes
a constant rate of change, A, for each site. With A =
10-% changes per year, the expected frequencies of
each of the parsimony sites for sequences of length
1,000 are given in Table 1, and the histogram of par-
simony lengths are given in Figure 2. The calculations
are determined using spectral analysis (Hendy and
Penny, 1993).

lem is not with the parsimony optimality
criterion itself but rather with the imple-
mentation of the criterion. With either the
two-state model of Cavender (1978) or the
‘Kimura three-parameter model (Kimura,
1981) for four-state characters, all selec-
tion procedures, including all distance
methods, are inconsistent unless they in-
corporate an appropriate nonlinear trans-
formation of the data. Many criteria, in-
cluding parsimony and compatibility, are
consistent after appropriate nonlinear
transformations that adjust for multiple
hits (Penny et al., 1993).

The importance of adjustments for mul-
tiple hits is known for algorithms such as
neighbor joining (Saitou and Nei, 1987),
which are inconsistent when applied to
observed distances but consistent when
used with an appropriate correction for
multiple changes (Studier and Keppler,
1988). Under Cavender’s model (1978) with
four taxa, neighbor joining and parsimony
fail under identical conditions (Penny et
al., 1992b). What appears not to have been
recognized is that adjustments for multiple
hits also allow parsimony and compatibil-
ity to be consistent. Corrections for mul-
tiple hits are made at the level of distances
(path lengths), but the development of
spectral analysis (Hendy and Penny, 1989,

2 The 10 parsimony sites for two-state characters for five
taxa.

b The expected numbers of changes on the edges of the
tree T of Figure 1 for sequences of length 1,000.

¢ The expected numbers of changes observed in the se-
quences generated by the Cavender model from the param-
eters given for sequences of length 1,000 on tree T. The high
numbers of “observed” support for some of the partitions
with no actual support is a consequence of the long-edges-
attract syndrome (Penny et al., 1987).

1993) using discrete Fourier (Hadamard)
transforms makes it a routine matter to ex-
tend this correction process to sequences.

To illustrate this point, consider the tree
T of five taxa, 1, 2, 3, 4, and 5, as illustrated
in Figure 1, with the times as shown for
the internal vertices, and assume a con-
stant rate of change A on all edges of T of
two-state character sequences. Thus, this
tree satisfies the molecular clock hypoth-
esis. This example is similar to many stud-
ies where the relationships among taxa 1,
2, 3, and 4 are uncertain but where taxon
5 is known to be an outgroup. Using spec-
tral analysis, we can calculate the frequen-
cy of the 10 parsimony partitions; the re-
sults for the tree in Figure 1 are given in
Table 1 for sequences of length 1,000. Giv-
en these values, we then determine the
corresponding ““corrected” numbers of
changes supporting each of these parti-
tions.

Using the parsimony criterion on the se-
quence data, we find that on the original
tree T (Fig. 1) the expected number of du-
plicate changesis 112.8, whereas four other
binary trees of these four taxa have only
101.6 duplicate changes and hence would
have been selected ahead of T. In Figure
2, we give the expected lengths of the 15
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binary trees for five taxa; 12 tree lengths
are less than 112.8. In contrast, using the
corrected data, the original tree T has no
duplicate changes, whereas each of the
other 14 trees has at least five changes. Thus
parsimony and compatibility now select the
correct tree.

INCONSISTENCY UNDER ANY LINEAR
TRANSFORMATION

The two basic theorems reported here
apply to Cavender’s two-character-state
model (1978) and Kimura’s three-parame-
ter model for four-character-state data (Ki-
mura, 1981) such as nucleotides. We use
the terminology of Penny et al. (1992a),
including the use of a model to include
three components: a tree, a mechanism of
character change, and the edge lengths on
the tree.

The statement of the theorem is as fol-
lows. Under either Cavender’s model for
two-state characters or Kimura’s three-pa-
rameter model for four-state characters,
even for four taxa, no method can always
be consistent that (1) omits singleton sites
(i.e., uses only the parsimony “informa-
tive” sites, with or without constant sites
included) or (2) selects the tree that opti-
mizes any linear function of all sites.

Proofs (given in the Appendix) are for
four taxa but can easily be extended to larg-
er numbers. The form of the proof is to
construct two distinct trees with the same
expected frequencies of parsimony sites.
Hence, using only parsimony sites, no
transformation of the data, linear or non-
linear, can consistently recover the true
tree. A procedure that uses all the sites in
the data may be consistent with a suitable
nonlinear transformation. However, using
only linear transformations (which in-
cludes no alteration), the procedure cannot
always be consistent. (The linear combi-
nations of the frequencies of the nonpar-
simony sites would be the same for each
tree, and we have shown that the parsi-
mony sites cannot always recover the true
tree.) Distances between pairs of taxa are
a linear transformation of observed se-
quences, and thus no method that opti-
mizes a linear function of the observed dis-
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FIGURE2. The histograms of the frequencies of the
parsimony lengths of the 15 binary trees of five taxa.
In (a), the lengths have been derived from the par-
simony sites in the sequences, and in (b) the lengths
are derived from the corrected lengths. In each case,
the generating tree T is indicated by the arrow, show-
ing 12 of the trees having a parsimony length shorter
than that of T, whereas with the corrected data, T is
clearly the shortest.

tances can be consistent, again under the
models being considered here. This gen-
eralizes an observation (Penny et al., 1992b:
177) that some of the better distance meth-
ods for four taxa fail precisely under the
same conditions as parsimony and com-
patibility. Quadratic functions of distances
can be consistent (Penny et al., 1992b:173).

CONSISTENCY UNDER NONLINEAR
TRANSFORMATIONS

Appropriate corrections for multiple hits
allow many distance methods to be con-
sistent, including neighbor joining (Stu-
dier and Keppler, 1988), neighborliness
(Sattath and Tversky, 1977), and several
“compare distance” methods that optimize
the fit between corrected pairwise distanc-
es and the equivalent path lengths on the
tree (see Swofford and Olsen, 1990).

The development of spectral analysis has
helped clarify the role of nonlinear trans-
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FIGURE 3. Invertible transformations between data and model. The calculations may start with either the

data or the model. Sequence data are converted to the frequencies of “observed edge length” patterns (middle
left). The Hadamard transform is a linear transformation between these and a generalized set of distances (a
set of distances for all subsets with an even number of taxa, i.e., including pairs, quartets, sextets, etc.).
Transformation between observed and corrected generalized distances (sets of path lengths) is nonlinear; it
is an exponential /logarithmic transformation under both the Cavender model and the Kimura three-parameter
model where all sites are equally likely to change. The inverse Hadamard matrix gives the linear transformation
between these corrected distances and “expected edge lengths.” It inverts back from corrected generalized
distances to properties of individual edges of a tree. The tree is derived directly from the expected edge
lengths (or indirectly from corrected distances). All transformations are invertible so the model can be used
to predict properties of sequences. Each tree selection procedure (applied to information at that point) is
identified as consistent or inconsistent for the Cavender model or the Kimura three-parameter model. “Dis-
tance compare” procedures optimize the fit between pairwise distances derived from data and path lengths
on the tree. Pairwise distances are a subset of the generalized distances. [Based on Penny et al., 1993.]

formations that adjust for multiple hits. The
overall relationships among the original
data, linear and nonlinear transformations,
and how the point of selection of a tree
affects consistency are shown in Figure 3.
Under the first linear transformation, se-
quences are equivalent to “generalized dis-
tances” (lengths of path sets of Hendy and
Penny [1989, 1933]), and observed pairwise
distances are a subset of these. The second
transformation (nonlinear) corrects for
multiple hits, and the third transformation
(linear) recovers trees in the following

sense. For two-state characters, correcting
sequences directly for multiple hits by
spectral analysis provides a weighting of
each split (bipartition of the taxa set) (Hen-
dy and Penny, 1993). A phylogenetic tree
is just a set of compatible splits, each split
corresponding to an edge of the tree (Bune-
man, 1971). Under Cavender’s model of
substitution, splits not corresponding to
edges of the tree generating the sequences
will be given a weighting that, with prob-
ability 1, tends to zero as the length of the
sequence grows. Consequently, any tree-
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building method that gives a tree, T, when-
ever each of the weighted splits corre-
sponding to edges of T “dominate” all oth-
er weighted splits not in the generating
tree must be statistically consistent when
applied to these corrected data, even
though the method may have been incon-
sistent when applied to uncorrected data.
For example, a sufficient condition for the
consistency of a method for corrected data
based on splits ¢ of weight w(o) is the fol-
lowing condition. The method returns tree
T whenever (for some constant k > 0)

min{w(o):0 € T} > k 2, |w(0)].

o¢T

This is satisfied by parsimony, compatibil-
ity (for k = 1), and closest tree.

For four-state characters that have
evolved according to Kimura’s three-pa-
rameter model, spectral analysis will also
identify the splits in the true tree for suf-
ficiently long sequences (see Steel et al.,
1992; Evans and Speed, 1993). However,
an additional feature of the four-state mod-
el is that a subset of the corrected values
always tends to zero with increasing se-
quence length, regardless of which tree
generated the data. As with Cavender’s
two-state model, selection criteria such as
parsimony, compatibility, and closest tree
will be consistent for the corrected data,
even though they may be inconsistent for
uncorrected data (Hendy and Charleston,
1993).

DISCUSSION

The results reported here are relevant to
the two models discussed. With four-state
characters, such as nucleotides, the theo-
rems in the Appendix do not apply to ei-
ther the one-parameter model (Jukes-Can-
tor, all nucleotide changes equally likely)
or Kimura’s two-parameter model (transi-
tions having a different rate from trans-
versions). Linear invariants (involving only
linear transformations) are known for these
models (Lake, 1987; Sidow and Wilson,
1990; Felsenstein, 1991; Fu and Li, 1992).
However, the theorems apply to more
complex transition matrices that can be re-
duced to the three-parameter model.

An apparent problem appears in the use
of the “appropriate” correction for multi-
ple hits; a pattern cladist may not wish to
“assume” a mechanism. In principle, the
assumption of a mechanism is not a prob-
lem because the invertibility of all trans-
formations allows a test of the fit between
the model and the data. For example, a chi-
square or a G-test can be made between the
observed and predicted patterns in se-
quences (Penny et al., 1987; Lockhart et al.,
1992). This, in principle, allows the data to
reject the model, an essential point for a
scientific theory (Penny et al., 1992a). By
testing alternative mechanisms, it may be
possible to accept that a model (tree, edge
lengths, and mechanism of change) ex-
plains the observed data. But with many
sets of real data, more powerful methods
are needed to handle complexities in the
data such as unequal GC content between
sequences (Lockhart etal., 1992) or nontree
models that allow recombination, hybrid-
ization, and gene conversion.

Minimal evolution (Rzhetsky and Nei,
1992) is an approximation of the full spec-
tral analysis in that adjustments for mul-
tiple hits are for pairwise distance values
and their matrix A for converting from

" paths to individual edge lengths is a sub-

matrix of K from Hendy and Penny (1989)
and Penny et al. (1987). The matrix K itself
is a linearly transformed submatrix of H
(Hendy and Penny, 1993). The advantage
of using H rather than A or K is that H is
constant for all trees and its inverse is
known, whereas separate transformations
and inversions based on A or K must be
made for every tree.

We are not in any way advocating the
use of parsimony or compatibility for
transformed data; we are just pointing out
that these criteria will always be consistent
after appropriate nonlinear transforma-
tions. If anything, we have a preference
for the closest-tree optimality criterion,
which is very fast to calculate (Hendy and
Penny, 1989). But again, it is not our pur-
pose here to advocate the use of this pro-
cedure, because more testing is required.
Compatibility is faster to calculate on cor-
rected edge lengths than is parsimony, but
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we do not know how powerful (in the sense
of Penny et al., 1992a) the criterion is com-
pared with parsimony or closest tree. To
make appropriate corrections for multiple
hits, it is necessary to use all sites in the
data, even though parsimony and compat-
ibility use only a subset of sites for the final
selection of the optimal tree. We prefer the
term parsimony sites rather than infor-
mative sites because the information from
all sites must be used for correcting for
multiple hits, otherwise the methods can-
not be consistent.

We must separate a “method” into at least
two components: the tree selection pro-
cedure and any transformations of the data.
We cannot consider parsimony or compat-
ibility a method; rather they are optimality
criteria whose properties depend on the
information they are applied to, including
transformations of the original data. Better
transformations depend on a better un-
derstanding of the underlying mecha-
nisms of evolution.
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APPENDIX

Any tree building procedure that either (1) omits
singleton sites or (2) selects the tree that optimizes
any linear function of all sites can be inconsistent,
even for four taxa, under either Cavender’s model for
two-state characters or under Kimura’s three-param-
eter model for four-state characters. The result de-
scribed above is a more general conclusion.

Parsimony and compatibility for observed (uncor-
rected data) satisfy both (1) and (2), and for these
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1 3 1 2

T T

FIGURE 4. Two unrooted binary trees of four taxa,
which induce the same expected frequencies for the
three parsimony patterns (and the constant pattern)
under Cavender’s model when p* = g(1 — g).

procedures inconsistency has been shown by Felsen-
stein (1978). Here we prove the more general results
described above, the first of which follows from a
slight modification of Felsenstein’s (1978) argument.
Because Cavender’s model (1978) is a submodel of
Kimura’s 35T model (1981) (by setting the two trans-
version rates to zero on each edge of the generating
tree), it suffices to consider only the Cavender model.
The arguments apply equally to rooted and unrooted
trees.

Let T and T’ be the trees shown in Figure 4, where
p and q denote the probabilities of a net change of
state across the edges shown. For a pattern = of states
(e.g., where 0, 0, 1, 0 is regarded as the same pattern
as 1,1, 0, 1), let f, (or f',) be the probability of gen-
erating the pattern = on the leaves of T (or T') under
Cavender’s model. (For four taxa there are eight dis-
tinct patterns: three parsimony patterns [each sup-
porting a different tree], four singleton patterns, and
one pattern where all taxa are constant.)

By choosing p* = q(1 — g), we see that f, = f', for
the three parsimony patterns and the constant pat-
tern. In particular, if x =1 — 2pand y = 1 — 2g, then

=s5.=(1—-y")/8
Sis = [1 — 4x]/(1 - }/) - y4]/8
s =[1 + 4xy(1 + y) — y*]/8.

Thus, two different trees can generate the same ex-
pected frequencies of these four patterns, so no meth-
od based on just these four patterns can consistently
recover the original tree. This establishes (1).

Si2

For (2), suppose a method selects a tree T that max-
imizes the sum

L, =2, w(w, Tn,,

where 7, is the number of sites indicating pattern 7
and w is any positive weighting function dependent
on T and on =.

We show that such a method can be inconsistent
by demonstrating a contradiction: if the method were
always consistent it would depend only on the par-
simony sites, and therefore by part (1) it would be
inconsistent. Thus, suppose the method is consistent.
First consider a tree T of four taxa in which all the
edges have a probability ¢ of a change of character
state. Under Cavender’s model, L. has expected value

c[w(m,, T*) + h(e)],
where 7, is the constant pattern,

lim h(¢) = 0,

«—0
and c¢ is the sequence length. For the method to re-
cover each of the three trees T for all ¢ > 0, we must
have

w(m,, T*) is equal for each T*. (1)

Next, consider any tree T on which the edge inci-
dent with taxon i (=1, 2, 3, 4) has probability p > 0
of a change of state, whereas all the remaining edges
have probability e. Under Cavender’s model, the ex-
pected value of L. for sequences of length ¢ generated
by T, is

clpw(x, T*) + (1 — plw(w,, T*) + h'(e)], (2)

where , is the singleton pattern with taxon i distin-
guished and

h'(e) = h'(e, p, i) > 0 as e > 0.

Applying Equation (1) to Equation (2), we see that
consistency of the method for each of the three trees
T and all € > 0 implies that w(=x, T*) is the same for
all T*. Repeating the argument for all i, we see that
the method is independent of all singleton sites. Thus
by part (1) of the theorem it can be inconsistent. Thus
both parts (1) and (2) are established for both the
Cavender model and the Kimura three-parameter
model.





