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- Abstract. We describe some discrete structural properties of evolutionary trees gen-

erated under simple null models of speciation, such as the Yule model. These models
have been used as priors in Bayesian approaches to phylogenetic analysis, and also to
test hypotheses concerning the speciation process.

Here we describe new results for four properties of trees generated under such mod-
els. Firstly, for a rooted tree generated by the Yule model we describe the probability
distribution on the depth (number of edges from the root) of the most recent common
ancestor of a random subset of k species. Secondly, for trees generated under the Yule
and uniform models, we describe the induced distribution they generate on the number
C.. of cherries in the tree, where a cherry is a pair of leaves each of which is adjacent
to a common ancestor. Next we show that, for trees generated under the Yule model,
the approximate position of the root can be estimated from the associated unrooted
tree, even for trees with a large number of leaves. Finally, we analyse a biologically-
motivated extension of the Yule model and describe its distribution on tree shapes
when speciation occurs in rapid bursts.

1 Introduction

Phylogenetic trees are widely used in biology to represent evolutionary relation-
ships between species. In these trees the leaves represent extant species, and
the internal vertices represent hypothesised speciation events. There is much
interest in the process of speciation, and the extent and manner in which the
distribution of phylogenetic tree shapes can be modelled by a random process.
Several simple stochastic models of speciation have been proposed and several
investigators have aimed to test or refine such models by comparing their pre-
dictions with published phylogenetic trees [1-8]. These models make predictions
about the shape of the phylogenetic tree connecting the extant species, and they
are also used as a basis for calculating the probability of certain configurations
under random speciation [9]. These probabilities may then be useful in testing
hypotheses concerning the speciation process. Speciation models can also pro-
vide prior probabilities for phylogenetic trees in Bayesian approaches to tree
reconstruction [10-12].

In this paper we will consider just the model’s predictions regarding the
discrete underlying tree structure, without regard to the lengths of the edges.
While such an approach may neglect some informative characteristics of the tree,
the approach has two motivations - firstly, the predictions regarding the discrete
tree remain valid under a much wider class of models (they are insensitive to
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Fig. 1. A hypothetical sequence of speciation and extinction events is illustrated on the
left. The descending (dashed) lineages become extinct, while seven species survive to
the present. At the time corresponding to the horizontal dashed line there are six extant
species. The circled present-day species (a,c,d, g, f) are those that are selected by the
investigator for study. The induced phylogenetic tree on these five selected species is
shown at right.

underlying parameters) and, secondly, we are interested in isolating out the
information that is conveyed solely by the discrete tree shape. One may also
make a random selection of species from the set of extant species, to obtain the
(induced) phylogenetic tree (as illustrated in Fig. 1) and for certain models this
does not alter the induced distribution on (discrete) tree shapes.

We will initially concentrate on some properties of the Yule model, which is
perhaps the simplest stochastic model for speciation. In this model whenever a
speciation event occurs, each of the species existing at that moment is equally
likely to give rise to the new species. However the rate of speciation (and ex-
tinction) may vary arbitrarily with time. For example, in Fig. 1 each of the six
species that exists at the time indicated by the horizontal dashed line has an
equal rate of speciation at that moment.

Despite the generality of such a model it leads to a well-defined probability
distribution on the (discrete) shapes of phylogenetic trees. In this paper we in-
vestigate certain predictions that this (and other) models make regarding some
of the properties of phylogenetic trees that can be determined simply by consid-
ering their shape.

One of the problems we will consider is how to recover the position of the
root of such a tree, when one is only given the associated unrooted tree. This
is particularly relevant in phylogenetic analysis, since most tree reconstruction
methods return an unrooted tree. Somewhat surprisingly, it is possible to esti-
mate the approximate position of the root fairly accurately even for very large
trees generated by the Yule model (a similar result for a related, but different,
process was established by [13]).

It is useful to contrast the Yule distribution with (i) the distribution on
tree shapes obtained by selecting a phylogenetic tree uniformly at random (the
“uniform dist¥ibution”) and (ii) the shapes of published phylogenetic trees that
have been reconstructed from biological data. Several studies (see for example
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[14]), have suggested that published trees tend, on average, to be less balanced
than the Yule model would predict, yet more balanced than the uniform model
would allow. Of course a published tree is only an estimate of the true species
tree. Thus, it may also be important to determine biases in tree shape that arise
due to particular tree reconstruction methods, and other factors, such as the
non-random selection of species by the investigator [8].

~ Nevertheless, with a view to obtaining less balanced trees than those gener-
ated by the Yule model, we will consider a simple modification to this model. In
this modified model a species that has recently speciated is more likely to spe-
ciate again than one that has existed without undergoing speciation for a long
time. Such a model appears to lead to less balanced trees, and we prove that in a
sufficiently extreme case it leads precisely to the uniform model (which, inciden-
tally, provides a natural way in which the uniform model may be regarded as a
speciation model). It would be interesting, for future work, to evaluate precisely
how well these types of models can account for the shapes of published trees,
and also to explore the effect of extinctions in such models.

The structure of the paper is as follows. We begin by introducing some basic
terminology for phylogenetic trees (Sect. 2). The Yule model is then introduced,
and some of its properties are described (Sect. 3). We then consider the proba-
bility distribution on the number of edges separating the root of a tree from the
most recent common ancestor of a randomly selected subset of size k (Sect. 4).
Following this we investigate the induced probability distribution for the num-
ber of cherries under the Yule and uniform models (Sect. 5). Exact formulae
are given for small trees, and the asymptotic distribution is found to be nor-
mal. Next, a maximum likelihood approach to edge-rooting an unrooted tree is
presented, and it is shown that even for large unrooted trees the approximate
location of the root can be identified with high probability (Sect. 6). Following
this a modification of the Yule model is considered in which the rate of specia-
tion of a lineage is dependent on the time back to the last speciation event on
that lineage (Sect. 7). We show that this modified model reduces to the uniform
model under the condition of “explosive radiation”. The results we describe here
are mostly based on [7] for Sect. 5 and [15] for Sects. 4,6,7 where full proofs and
details may be found. :

2 Terminology

Evolutionary relationships are often represented by rooted or unrooted binary
(phylogenetic) trees [16]. Such trees consist of labeled nodes of degree 1 called
leaves and unlabelled internal nodes of degree 3 (also, in case the tree is rooted, it
contains an additional root node of degree 2, so that every node can be regarded
as having exactly two descendants). A pair of leaves adjacent to a common node
is called a cherry. Edges adjacent to alcaf are called pendant edges, while all other
edges are internal. A (tree) shape is the unlabeled tree obtained by dropping the
labeling of the leaves of a binary phylogenetic tree. For further clarification of
these terms see Fig. 2. The number of rooted leaf-labeled binary trees on n leaves
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Fig.2. (a) A labeled rooted tree with 4 leaves. (b) An unrooted tree shape with 5
leaves

is given by (2n — 3)!! = 1 x 3 x 5--- x (2n — 3), and the number of unrooted
leaf-labeled binary trees on n leaves is given by (2n—5)!! = Ix3x5---x (2n—5)
(17,18).

Throughout we will use T to denote a phylogenetic tree, and 7 to denote
a tree shape. We will frequently use the asymptotic expression f(n) ~ g(n) to

denote lim % = 1. As usual, P[A] (resp. P[A|B]) denotes the probability of
n—00

event A (resp. the conditional probability of event A given B), and E[X] (resp.
E[X|Y]) denotes the expectation of random variable X (resp. the conditional
expectation of X given Y).

3 The Yule model

A simple model of speciation is to assume the exchangeability condition that,
at any given time, each of the then-extant species are equally likely to give rise
to one new species. The ‘rate’ of speciation may vary with time, or with the
present and past number of species in the tree. Also we may allow extinctions
(or random sampling of extant taxa) provided that a similar exchangeability
criterion applies - that is, whenever an extinction event occurs each of the then-
extant species is equally likely to go extinct. Depending on how the various
parameters are set in such a model, we obtain various probability densities over
all edge-weighted trees that connect a group of extant species. However, if we
simply regard these trees as unlabeled discrete graphs without edge length (tree
shapes) then the underlying parameters and details do not affect the resulting
discrete probability distribution, provided the exchangeability criteria still apply
(see [1]). This distribution on tree shapes is often called the Yule model and it
has been widely studied [3,19-21].
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Fig. 3. The Yule model probabilities for shapes with 4 leaves. A shape on 4 leaves is
formed by the splitting of one of the pendant edges of the shape on 3 leaves. Each
pendant edge has the same probability of splitting, so for the shape on 3 leaves each
pendant edge has a probability of 1 /3 of splitting. The resulting symmetric shape on
4 leaves has a probability of 1/3. The other two shapes on 4 leaves are the same (up
to rotation about internal vertices), and so the probability of this shape is 2/3

We can reformulate this model in the discrete setting, by evolving a (discrete)
tree shape under the following rule. We start with the rooted tree on two leaves
and repeat the following procedure until the tree has n leaves:

For the tree shape so far constructed, select a leaf randomly and uni-
formly, and make it the direct ancestor of two new descendent leaves.

Alternatively, we may attach an edge added uniformly and randomly to a pen-
dant edge at each step. This process is illustrated in Fig. 3.

This process provides a probability distribution on rooted tree shapes and
also on unrooted tree shapes (by suppressing the root). Also if species are as-
signed to the leaves in random order we also obtain probability distributions on
rooted and unrooted phylogenetic trees ([3]).

The Yule model arises in a number of seemingly different ways. For example,
in the context of population genetics, one has the coalescent model [1,22,23).
In this model one starts with n objects, then picks two at random to coalesce,
giving n — 1 objects. This process is repeated until there is only a single object
left. If this process is reversed, starting with one object to give n objects, then
it is equivalent to the Yule model. Note that in the coalescent model there is
commonly a probability distribution for the times of coalescences, but in the
Yule model we ignore this element.

Another closely-related realisation of the Yule model is obtained as follows.
Given a rooted binary phylogenetic tree T, let V denote the set of internal
vertices of T. A ranking of T is a function r that associates to each vertex v € V of
T' a unique element from the set {1,2,...,|V} in such a way that r(v1),r(v2),---
is strictly increasing along any sequence v1, vz, . of vertices directed away from
the root. Thus we might regard r as describing the order of the speciation events
that are represented by the internal vertices of T Observe that a phylogenetic
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tree having the shape of the right-most tree in Fig. 2 has exactly two possible
rankings, while for the left-most tree there is just one possible ranking. The pair
(T,7) is sometimes called a labeled history. If we now select a labeled history
(T, r) on n species uniformly and consider just T, then this once again leads to
the Yule distribution on rooted binary phylogenetic trees. Furthermore, if we
consider just the shape of T' we obtain the Yule model on rooted tree shapes.

This connection with labeled histories provides a convenient tool for describ-
ing the probability distribution of a tree shape 7, since it is possible to count
the number of labeled histories, and rankings on a given tree. For a vertex v of a
rooted binary phylogenetic tree, let 6(v) denote the number of internal vertices
(including v) that are descendants of v (v/ is a descendant of v if the path from
v’ to the root includes v). Note that §(v) is equal to one less than the number
of leaves of the tree that are descendants of v.

Then, for a rooted binary phylogenetic tree with n leaves, the number of
associated labeled histories is precisely

(n—1)!
[ev é(v)

where V denotes the set of internal vertices of the tree. This result is from
[2,24]. Tt is also possible to give an exact expression for the total number of
labeled histories on a set of species. From [25] the number of labeled histories
on n species is

(1)

nl(n — 1)!
'-‘(27T1-)' (2)
A further important property of the Yule model is that it satisfies the follow-
ing hereditary property. Let us generate a rooted binary tree T according to the
Yule model, and let #;,%> denote the two subtrees of 7' incident with the root.
Let S denote a fixed subset of species. Then, conditional on the event that S is
the set of species labeling the leaves of ¢; the probability distribution on #; is
also the Yule distribution. This property follows from a particular case of the
group elimination property, described by [1].

4 Depth of a most recent common ancestor (MRCA)

Suppose we evolve a rooted phylogenetic tree T on n extant species under the
Yule model, and we select a random subset S of k extant species. Let X, , de-
note the number of edges separating the root of T from the vertex in T that
corresponds to the most recent common ancestor of S. In this section we inves-
tigate the probability distribution of X, ; for various values of k, particularly
in the limit as n becomes large. Some of the reasons why a biologist might be
interested in such questions are discussed by Sanderson [26]; the cases k = 1 and
k = 2 are also of some independent interest as we will see.

Note that although we will regard S as a random subset of the n species,
our results would apply even if we regard S as a fixed set of species, since we
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are investigating properties of S in a tree that is generated by a model that
assigns equal probability to all possible labelings of the leaves by the n species.
Also, whenever we talk about the distance between two vertices in a tree, we
are referring to the number of edges separating the two vertices (also called the
graph distance). The following summarises results from [15].

4.1 Distance of MRCA from root

The case k = 1 corresponds to the distance of a randomly selected leaf from
the root, and has been analysed before [27,28]. In the following theorem c(n,q)
denotes the unsigned Stirling number of the first kind, which is the number of
permutations on n elements that have exactly ¢ cycles [29].

Theorem 1. [27,28] Let P2, be the probability that a randomly chosen leaf
from a tree on n + 1 leaves has distance q from the root. Under the Yule model

we have
pr_ 2en9)
ntl ™ (n+ 1) ’

Furthermore, the mean (u,) and variance (c2) of this distribution are given by

where py =0 and 02 =0.

For k > 1, the asymptotic probability P[Xnk = 0] was determined by Sander-
son [26] who showed that

nlll;I;oP[Xnyk = 0] =1- m .

Here we provide an exact, closed-form expression for P[X, x = 0]. In addition,
as n becomes large, Xn, x has a geometric distribution with parameter 2/(k+1).
Theorem 2. [15]

1.

o 2(n — k)
PXn =00 =1= G-

2 Fork>1r2>0,
. 2 Y\
i P21 = ()

The case k = 2 allows us to obtain an expression for the expected distance
between two randomly selected leaves in a rooted binary tree with n leaves
generated by the Yule model. Recall that the distance d(vy,vz) between a pair
of vertices vy, vg of T is being measured by the number of edges separating them.
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Let v;; € V denote the most recent common ancestor of i and j in the tree, and
let p denote the root of the tree. Then for leaves i, j of T,

d(i,§) = d(3, p) + d(j, p) — 2d(vij, p)

and 50 B[d(i, )] = B[d(i, p)|+E[(j, p)|—2E[d(vs5, ))- Now, Eld(i, p)] = Eld(j, p)] =
tn (see Theorem 1), while E[d(v;5, p)] = E[Xp 2], so we have E[d(¢, 5)] = 2un —
2E(X 2] . By Theorem 2, limy 00 E[X;, 2] = 2 and so if 1, denotes the expected
distance between two randomly selected leaves, then

. R
Jim 2pp —pn ~ 4
Actually, it is possible to derive an exact expression for E[X,, ], namely .

E[X,2) =2 (1 — o >

n—1

which provides an exact expression for E[d(z, 7).

5 Probability distribution for cherries

A cherry is a pair of leaves, each of which is adjacent to a shared vertex. In
this section we describe the distribution of the number of cherries for a tree that
evolves under the Yule model. We also compare this to the distribution of the
number of cherries for a tree selected uniformly at random from the set of all
(unrooted) leaf-labelled trees. Note that when we suppress the root of a rooted
tree (and thereby convert an rooted tree into an unrooted one) the number of
cherries is either unchanged or it increases by at most 1, and this difference has
a negligible effect on the asymptotic results described.

Under either model we will let the random variable C, denote the number
of cherries in the randomly generated tree. By realizing the process of cherry
formation in these two models by extended Polya urn models it can be shown
that C,, is asymptotically normal. We also give exact formulas for the mean and
standard deviation of C,, in these two models. This section is based on [7], where
proofs of the main results may be found.

5.1 Yule Model

Theorem 3. [7,30] Let pu,, be the mean number of cherries for a rooted binary
tree on n leaves, and o2 be the variance for the number of cherries. Under the
Yule distribution we have the recursions, for n > 2:

2 4 2 2
Hng1 =1+ pn(l = E)v Ui-{-l = ‘7721.(1 he ;) + Eﬂn(l - Eﬂn)

which may be solved ezactly to give
®
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Fig. 4. Rejection limits for large n of the Yule and uniform null hypotheses at the
o — 0.05 level. The solid line represents the mean number of cherries, while the dashed
lines are the lower and upper limits for rejection of the null hypotheses. The rejection
limits are based upon a normal approximation which is valid for n > 20. (a) Yule
model (b) Uniform model

Asymptotically we have
C,—n/3
/2n/45

The Yule model can be used as a simple null hypothesis to explore patterns
in phylogenetic trees. A simple two-tailed test of the Yule null hypothesis, for a
given tree, can be made based on the number of cherries in the tree. If the number
of cherries is below some lower critical value, or above some upper critical value,
then the Yule null hypothesis is rejected.

For small n, the rejection limits may be calculated exactly using a recursive
formula for the probabilities. For larger values of n (n 2 20) a normal approxi-
mation is valid. In this case, based on the asymptotic result in Theorem 3, the
rejection region for a two-sided test at the o level is given by

— N(0,1) .

n 2n
d Z 4+ Zey—.
an Cp > 3 +Zg 5

n 2n
< = — e[ —
C, <3 s\ 15

The lower and upper critical values for rejection at an a = 0.05 level are
shown in Fig. 4. If the Yule model is rejected then this implies that one or more
of the assumptions upon which it is based is invalid. Often it is assumed that
the assumption of equal probability of speciation is the invalid assumption, but
this need not be the case [21].

5.2 Uniform model

In the uniform model equal probability is assigned to each possible leaf-labeled
binary tree on n leaves. Thus the uniform model distribution may be used to
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model the frequency of outcomes that would occur if the process of tree recon-
struction did no better than random selection from the set of possible binary
trees on n leaves.

Theorem 4. [7,30-82] Let pi,, be the mean value of Cy, for an unrooted binary
tree on n leaves, and o2 be the variance for Cp. Under the uniform model, for
n >4,

(a) n—2k
nl(n — 2)!(n — 4)12 £>9

P[Cr = k] = (n—2K)l2n—A)K(k—2)!" =~

(b)
n(n-1) n 2 _nn-1n-4)n-5 =n

Fn=on—5 "4 T o@n-s52@n-7) 16

Asymptotically we have
Cn—n/4
\/n/16

A test of the uniform model null hypothesis may be constructed based on
the number of cherries in a tree. For small n the probability distribution given in
Theorem 4 may be used to calculate the rejection limits. For larger n (n 2 20) a
analysis similar to that for the Yule model, but based on the asymptotic result
in Theorem 4, gives as the rejection region:

— N(0,1) .

n n

n n
C"<Z—Z% 6 and C">Z+Z%’/E'

The lower and upper critical values for rejection at an a = 0.05 level are
shown in Fig. 4.

5.3 An example

Figure 1 in [33] is a rooted phylogenetic tree for 34 species of eureptantic ne-
merteans (ribbon worms). This tree has 7 cherries (rooted or unrooted). For the
Yule model null hypothesis test at the o = 0.05 level the lower rejection limit is
8 cherries or less, and the upper rejection limit is 15 cherries or more. So for the
ribbon worm tree the Yule model null hypothesis is rejected. For the uniform
model null hypothesis test at the o = 0.05 level the lower rejection limit is 5
cherries or less, and the upper rejection limit is 13 cherries or more, and so the
test does not reject the uniform model null hypothesis. In any hypothesis test,
however, it is important to note that a reconstructed tree is only an estimate of
the underlying species tree. Consequently a more refined analysis would take into
account thg uncertainty and possible biases in phylogeny reconstruction [8,34].
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6 Rooting an unrooted tree

Typically, construction of an evolutionary tree for a set of species is a two stage
process. In the first stage, using biological data of some sort, an unrooted tree
is constructed. In the next stage, the unrooted tree is rooted at some point.
Commonly this is done by outgroup comparison, or using some auxiliary data
(for example embryological or fossil data) [35].

However, in some circumstances an outgroup is not available, or the auxiliary

gy I e

data is unclear. Furthermore, the choice of outgroup can strongly influence the
accuracy of tree reconstruction [36]. In these circumstances heuristic methods
provide an alternative way to root the tree. For example, in the midpoint method,
the root is located at the point halfway between the two leaves that are the
furtherest distance apart [37,38]. In another approach the root is located at a
point where the mean distance to the species on either side is the same (for
example, the program described in [39) uses this method). Here we explore a
third alternative, based on the structure of the trees under the Yule model.

Before proceeding further we introduce some terminology. For a rooted binary
tree T’ the associated unrooted binary tree T'is obtained from 7" by suppressing
the root and identifying the two edges incident with the root to form a single
edge e — we call this edge the root edge of T. Given T and its root edge, one can
easily recover the rooted tree by subdividing e — that is, by placing a new (root)
vertex at the midpoint of the root edge.

In applications, one is typically given just the unrooted tree T and one would
like to estimate which edge is the root edge, or at least find a small subset of
edges that contains the root edge with high probability. For detailed proofs of
the results that follow see [15].

6.1 Maximum likelihood estimation of the root edge

Suppose we have a stochastic model (such as the Yule model) for the generation
of rooted binary phylogenetic trees. Given an unrooted binary tree, T and an
edge ¢, let P[T, ¢] denote the probability of generating the rooted binary tree ob-
tained by subdividing edge e of T. Let P[T] = S, P{T, €] which is the probability
of generating a rooted binary tree which produces T’ when the root is suppressed
(this provides a probability distribution on unrooted binary phylogenetic trees).
Finally, let P,
,e
P @)

Note that P[e | T is the probability that edge e is the root edge of T, given
that T is the unrooted tree obtained by suppressing the root.

For example, consider a labeled unrooted tree on 4 leaves (Fig. 5). The prob-
ability of this tree (P[T)) is 1/3. For the internal edge, the probability of the cor-
responding labeled rooted tree is 1/9, thus the conditional probability (Ple | T1)
for the internal edge is 1/3. For the pendant edges the probability of the corre-
sponding labeled rooted tree is 1/18, thus the conditional probability (Ple | T)
for each pendant edge is 1/6.

Ple|T) =
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A C

B D

Fig. 5. Conditional probabilities (P[e | T'|) for the edges of a labeled unrooted tree on
4 leaves

Given an unrooted binary tree T', the method of mazimum likelihood selects as
its estimate of the root edge any edge e that maximizes Ple | 7). We let Emax(T)
denote the set of edges of T' that maximize Ple | T, and we let eyay(T) denote
any edge in Ema.(T). It is possible, for example when symmetry is present,
that |Enax(T)| > 1. However, we will describe below that, for the Yule model,
|Ennax(T)] < 3.

6.2 Probability of locating the root edge

Suppose we generate a rooted binary tree T’ on n leaves according to the Yule
distribution, and we let u(7”) denote the unrooted binary tree obtained from
T’ by suppressing the root. Let £(n) denote the probability that a particular
maximum likelihood edge (emaz) of u(T") is the root edge of u(T"). By the law
of total probability,

e(n) = ZP[emax is the root edge of T|u(T") = T|P[u(T") = T},
T

where the summation is over all unrooted binary trees on the set of n species,
and hence,

e(n) =Y Plemax(T) | T PT) . 4)
T

One might expect that £(n) would converge to 0 as n tends to infinity, since
the number of edges (and so possible root edges) grows without bound. Indeed
we will see that Plemax(T) | T] can converge to 0 for certain (“caterpillar”) trees
as the number of leaves grows.

However we will see that e(n) has a non-zero limit. This parallels similar
non-zero asymptotic behaviour for an analogous model, the Yule-Furry model,
in which edges are added at random to vertices [13]. Furthermore, although
the limit e(n) is small (about 0.15) the fact that it is non-zero suggests that
one should be able to locate the root edge to within a small (edge) distance of
emax(T") with high probability, and this is confirmed by simulations.

»

o
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Fig. 6. Simulation results for the conditional probability of edges. Two hundred un-
rooted trees were randomly generated for different values of n. The trees were produced
by unrooting the rooted tree generated by a Yule process. The minimum and maximum
probabilities for each simulation are represented by crosses (+) (a) Estimate of the
mean probability that emax(T) contains the true root. (b) Estimate of the mean value
for the sum of the five largest conditional probabilities for a tree

For n small, £(n) can be explicitly calculated, but for larger values e(n) was
approximated by simulation. Simulated values were calculated by the formula

1+ 1 o PIT3 emax(13)]

8(”) ~ ']\7 ;P[emax(n) l Tl] - N ; P[E] ’ (5)
where T; is a labeled unrooted binary tree on n leaves obtained by generating
a rooted tree according to the Yule process, then unrooting it, and where N is
the number of trees generated.

The simulation results suggest that lim, . e{(n) & 0.15 (Fig. 6a). The five
edges with the largest conditional probabilities for a tree were always an internal
edge and the four edges adjacent to it. Let €5(n) denote the mean value for
the sum of the five largest conditional probabilities for a tree. The simulations
suggest that limy, 00 £5(n) ~ 0.58 (Fig. 6b). Thus, even for a large unrooted tree,
the location of the root may be narrowed down to a small cluster of five edges, of
which one is more likely than not to be the true root. Progressively extending the
radius further it appears from simulations that the limiting expected probability
that the root edge is within a given (edge) distance d from emax(T) continues to
increase towards 1. For example, when d = 3 the limiting probability appears to
be close to 0.9.

6.3 Exact asymptotic value of (n)

Given an edge e of an unrooted phylogenetic tree, let H(e) denote the number of
labeled histories associated with the rooted tree that arises from T' by subdivid-
ing edge e. Let edge e be an internal edge of an unrooted binary phylogenetic tree
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T. Denote the four subtrees of T adjacent to e by A, B,C, D, and let a,b,c,d
respectively denote the number of leaves in these trees. Then H(e) > H(e')
for each of the four edges e’ incident with e precisely if both the following two
inequalities hold:

a+b>maz{c,d}; c+d>mazxia,b}. (6)

Furthermore, H(e) > H(e') for all ¢’ precisely if these two inequalities hold
as strict inequalities. It follows that any two edges in Eax(T') are adjacent, and
consequently, |Emax(T)| < 3. Furthermore, if both the inequalities in (6) are
strict, then |Ep.(T)| = 1.

We now describe the exact asymptotic value of £(n). This value was calculated
by embedding the discrete process of rooting a tree into a continuous analogue
involving ‘stick breaking’.

Theorem 5. [15] Generate a rooted binary tree with n leaves randomly under
the Yule model, and let T denote the tree obtained by suppressing the root. The
probability that edge emax(T") is unique and equal to the root edge of T' conver-
gences to the value 41n(4/3) — 1 (= 0.15) as n — oo.

We end this section by noting that Plemax(T) | T] may be arbitrarily close to
zero, for a tree T with a sufficiently large number of leaves. For example, consider
a caterpillar tree, which is any unrooted binary phylogenetic tree that reduces
to a path (a tree having vertices of degree 1 or 2) once the pendant edges and
leaves are deleted. The simulation results suggest that caterpillar trees are the
trees for which Pleyax(T) | 77 is smallest. For the caterpillar tree Plemax(T) | T
may be calculated exactly, and asymptotically, as n — oo,

2 /21

P[emax(cn) , On] ~ 3 ;ﬁ — 0. (7)

7 Extending the Yule model

In the Yule model, at any time each existing species has the same probability
of giving rise to a new species, and all lineages are treated exchangeably. Here
we consider a simple modification of this model, in which the rate of speciation
events on a given lineage is a function of the time back to the last speciation
event on that lineage.

More precisely, we suppose that at time ¢ = 0 there is just orie species, labeled
80, subject to a 2-state Markov process on state space {1,2}. Under this process,
So is initially in state 1, and state 2 corresponds to a “speciation event”, that is,
the replacement of the original species by two species (either two new species, or
the original species plus one new one, and we will not distinguish here between
these two possibilities). Let s(t) denote the rate of change from state 1 to state
2 at time ¢, We call this the “speciation rate”. Once a speciation event occurs
(say at time A) the two species are again assumed to be independently subject
to the same Markov process, with time reset to 0 (that is, with rate function
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Fig. 7. Rooted tree types (a) An unlabeled binary tree on 5 leaves ; 7 € UB(5). The
root vertex is labeled so. (b) The edge-rooted unlabeled binary tree on 5 leaves obtained
by removing the root leaf and its incident edge ; 7" € EUB(5) (c) A labeled binary
tree on 5 leaves ; 7 € LB(5) (d) The two subtrees, 7' and 72 of the tree 7 in (a)

s(t — A)). Continuing in this way, we obtain a probability distribution on the
trees of descent of species starting from sg up to some fixed time ¢ which we can
assume (by rescaling s if necessary) lies in the range [0, 1].

The biological motivation for this model is that a recently evolved species, or
the species that it has split off from, are often colonizing new regions or niches,
and so may be more likely to give rise to further new species (in a given short
time period) than a species that has existed for a very long time without giving
rise to any new species (thus we are thinking of s being a monotone decreasing
function). It would also be interesting and useful to build extinctions into such
a model, however we do not pursue this here.

Kubo and Iwasa [6] consider a rate-varying model of speciation, however in
their case, the speciation rate is a function of (absolute) time, rather than the
lineage-specific time back to the last speciation event. Our model has more sim-
ilarity to that discussed by Heard [5] who used computer simulation rather than
analytical techniques in his analysis. Our general approach, which encompasses
more than one model in a single analytical framework, is akin to that taken by
Aldous [14]. We are interested in the probability distribution that this model
induces on the tree that describes the species descendent from sp. Since we are
only interested in the “shape” of these speciation trees, we will mostly deal with
trees in which the vertices are unlabeled. More detail of the work that follows
may be found in [15].

In this section the following additional terminology for rooted trees is neces-
sary.

e For n > 1, let UB(n) denote the (finite) set of unlabeled binary trees con-
sisting of n leaves together with an additional leaf, the root leaf so (where
the Toot leaf is the top-most vertex), and whose remaining internal vertices
are all of degree 3 (Fig. 7a).

e For n > 2, let EUB(n) denote the (finite) set of edge-rooted unlabeled
binary trees obtained from UB(n) by deleting from each tree the root leaf
and its incident edge. If 7 € UB(n) we will let 7* denote the associated tree
in EUB(n) (Fig. Tb).
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e For 7 € UB(n), let L(7) be the set of distinct trees that can be obtained by
assigning the (species) labels {1,...,n} bijectively to the n non-root leaves
of 7. Let LB(n) := Ureup(n)L(T), the set of labeled binary trees (Fig. 7c).

For the model described above, the speciation tree at time t € [0, 1], T'(t), is
the unlabeled tree of descent of the species that have evolved up to time ¢ from
the root leaf sg. For 0 <t < 1 and 7 € UB(n), consider the following (absolute
and conditional) probabilities

f(r,t) =P[T(t) =1; p(7) :=P[T(1) = 7|T(1) has n leaves] .  (8)

Let A(so) denote the time until speciation of sg, and set

S(z) = P[A(sg) > =; o(z) = s(z)S(z), 9)

where s(z) is, as previously, the “speciation rate” at moment z.
Since the speciation of sg is a time-dependent Poisson process we have,
from [40}

P[A(s9) > z] = exp[— /01 s(A)dM] . (10)

Thus, o(z) = lims o+ PM(SD)%(E’IM) and so, by the assumptions that define
the model, we have the following fundamental recursion:

f(r,t) =280 /t f(rt t =) f(r2,t — x)o(z)dz (11)
o]

where 7! and 72 denote the two subtrees of T whose two vertex sets (i) intersect
precisely on v and (ii) cover all vertices of 7 except so (Fig. 7d), and where

a(r)={1 if 71 # 72

0 otherwise.

Let N(t) denote the total number of species existing at time ¢ € [0,1], and
let
v(k,t) :=P[N(t) =k].

For 7 € UB(n) we wish to calculate the conditional probability:

plr) = PIT() = 7IN(1) =) = S (12)

We may also wish to compute the probability of the induced edge-rooted
tree. Thus, given 7 € UB(n) and its associated tree 7* € EUB(n) let

Y= 1 1)=7|N1)=mn; .
p(r*) = lim P[T(1) = 7|N(1) = n; A(s0) < €]
The motivation for considering p(7*) is that one is frequently interested in the

distribution on edge-rooted trees, and we can simplify matters by supposing that
the first speciation event happened at time 0. We have the recursion

" p(r*) = 2"p(r!)p(r?) (13)
with 71,72 as in Eq. (11).



178 Mike Steel and Andy McKenzie

7.1 Two classes of models

1. The simplest model has s(z) = s > 0, constant. This gives the Yule model as
described in Sect. 3. In this case, o(z) = se~*% and N(t) models a pure birth
process, so v(k,t) = e~*4(1 — e~**)5~1. Under this model p(r) = p(t*) =
9u(7) [Tis2(i— 1)~%(7), where d;(7) denotes the number of internal vertices.
of 7 which have exactly i descendant leaves, and u(r) is the number of
unbalanced internal vertices of 7 - that is, internal vertices for which the two
descendant subtrees are not identical.

9. A second class of models are those which satisfy the condition:

s(zy=0forz>¢,

which we will call “explosive radiation” models. In these model, unless a
species has undergone a speciation event within the last € time interval, it
will never do so. Thus, in this model, speciation events would tend to be
clustered close together. Our last result (Theorem 6) shows that, provided
epsilon is sufficiently small, then this model is precisely that induced by a
uniform distribution on leaf-labeled trees.

Under the uniform model, on rooted trees, a tree is selected uniformly from
LB(n), and then it is viewed as an unlabeled tree 7 € UB(n). The proba-
bility of the tree shape T is calculated as Punif (1) = |L(7)|/|LB(n)|, where
L(t) = {T' € LB(n) : T is a leaf-labeling of }. Fortunately, the numerator and
denominator of this ratio can both be evaluated exactly, and so we get an ex-
plicit formula for punif(7) as follows. We have |L(r)| = n127%") where b(7) is
the number of balanced internal vertices of 7 - that is, internal vertices for which
the two descendant subtrees are identical. Now, from [17], |[LB(n)| = (T(f?—)_,;nl:
Therefore, under the uniform model on rooted trees,

= LDl _ (2n -2 )
s =i = () #0009

where u(7) is the number of unbalanced internal vertices (and so b(r) +u(r) =
n—1).

Theorem 6. [15] Under an explosive radiation model, with € < 1/n, the prob-
ability distribution on trees is precisely that induced by the uniform model. That

18,
p(7) = Punif(7), VT €UB(n) .
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